
Increase Security Posture With
Application Whitelisting

Dwight Anderson
Schweitzer Engineering Laboratories, Inc.

Presented at the
13th Annual Western Power Delivery Automation Conference

Spokane, Washington
March 29–31, 2011

1

Increase Security Posture
With Application Whitelisting

Dwight Anderson, Schweitzer Engineering Laboratories, Inc.

Abstract—Application whitelisting is a cybersecurity design
that increases the security posture for the substation
environment, while reducing computational overhead and
congestion. This paper discusses application whitelisting as a tool
to secure computers in a substation environment, providing a
new countermeasure to deal with malware. Application
whitelisting only allows applications on the whitelist to run. This
security approach eliminates the need for antivirus definition
updates.

This paper describes what the benefits of whitelisting are and
how to use application whitelisting. Traditional antivirus
software works against threat tactics by blocking malware based
on a set of definitions. As most users have experienced, this
technique tends to become congested and often slows down
system operations with the ever-increasing size of virus
definitions. Application whitelisting is a technique where the
operating system allows a limited number of programs to run,
while blocking all other programs from running by default. The
end result is better cybersecurity with less overhead obfuscating
operations.

I. CONTEXT REGARDING APPLICATION WHITELISTING
This paper focuses on application whitelisting software

restriction policies to secure computers that help automate
systems found in a power utility environment and other
similar mission-critical process control systems. The benefits
that computers and networking provide include their ability to
centrally locate technical resources and save time, resolving or
preventing issues that might negatively impact safe and
reliable power system operation. The security of these systems
is critical for continued safe and reliable power infrastructure
operation.

In the past, resolving a power system problem and
restoring power often took hours. Today, restoring power
often occurs within minutes, seconds, or even milliseconds,
thanks to automation and communication. In the not too
distant past, a person with no computer had to drive to the area
of concern and attempt to determine the root cause of the
failure to resolve it. Identifying, locating, and remediating the
failure often took time and depleted valuable resources just
traveling to and from the failure. Today, microprocessor-based
relays, computers, and communications channels work
together to automatically take action and send technical
information to the subject matter experts. Centrally locating
experts in order to identify, locate, and, in some instances,
mediate a problem (without the need to travel) saves a great
deal of time and resources. A central location provides access
to a larger collection of resources, such as other accessible
subject matter experts, to offer advice to resolve issues.
Remote access to systems provides access to historical data

that may help resolve problems as well. Unfortunately, these
tools, such as computers and networks, operate on a premise
of trust. This leads to the need to make these tools more
secure.

One area of concern with computer security is the need to
use antivirus software. This leads to the problem that antivirus
software must update its definitions on a regular basis to be
effective. As new viruses arise, new antiviruses must reach the
computer to maintain security. This usually requires a
connection to the public Internet to update antivirus
definitions. If a connection to the antivirus vendor is not
available, as is often the case in a substation environment, the
administrator must find other ways to distribute updates.
Updates are important even on computers not connected to a
public network because viruses and malware are often
introduced by removable storage. Application whitelisting
software restriction policies eliminate the need for a public
Internet connection.

Application whitelisting software restriction policies, like
all security tools, must be used in context. Just focusing on a
single security technology to address a specific security issue
may provide a false sense of security and lead to larger
security failures in overall system operation. Good security
must fall in line with other priorities, such as safety and
reliability. Also, good security must follow time-tested
security frameworks, such as those found in storage area
networks (SANs) and the International Information Systems
Security Certification Consortium, Inc., that recommend
creating well-formed security policies and procedures. These
procedures must align with the way a company does business,
as well as support regulations, such as those found in the
North American Electric Reliability Corporation (NERC)
Critical Infrastructure Protection (CIP) requirements. Once
good security policies and procedures are in place, they create
a foundation for a tool like application whitelisting.

Computer security is an important part of an overall
security program. It is important to approach security by
applying multiple layers of security measures, creating what is
known as a defense-in-depth security posture. A good
defense-in-depth posture is like an onion that has multiple
layers. An attacker may compromise one layer, but if the
attacker finds new and different layers of security, it becomes
too troublesome to continue. Increasing the number of security
layers on a computer platform deters an attacker, causing the
attacker to retreat altogether.

This paper encourages the use of multiple layers, and the
reader is reminded to not focus on one layer. Application
whitelisting software restriction policies provide a new tool

2

that administrators have at their disposal. If the administrator
includes strong passwords and firewalls and sets up user
accounts with privileges that align with the user’s need to
know, this tool creates a formidable part of an overall security
program.

II. WHAT ARE APPLICATION WHITELISTING
SOFTWARE RESTRICTION POLICIES?

Traditional antivirus software uses samples of malware
code and compares these samples to file contents. The
antivirus software uses a list of known bad signatures to
quarantine or remove the offending malware (i.e.,
blacklisting). In some cases, the virus mutates, and the
database of signatures or samples of viral code does not work,
or the delay between the virus and its antivirus signature
causes what is known as a zero-day vulnerability.

To address zero-day vulnerabilities, antivirus software may
use heuristics—a fancy name for the way antivirus software
seeks and prevents bad behavior. For example, a virus may
behave badly by changing the content of an important
program file. The virus might change the computer host file,
for example. The computer host file maps Internet Protocol
(IP) numbers to fully qualified domain names. If a computer
used for supervisory control and data acquisition (SCADA)
systems contained malware, a user looking at a human-
machine interface (HMI) may unknowingly be looking at a
redirected or forged SCADA HMI interface. In this scenario,
the heuristic or bad behavior that the antivirus software
examines is to watch if a program attempts to change the host
file on a computer. Typically, the antivirus software creates a
quarantine area that the program starts in, and if it does not
exhibit the bad behavior of a virus (such as changing an IP
host file), then it is allowed to start and run outside of the
quarantine. These actions all take time and require regular
updates to maintain good security.

The way antivirus protects a computer is known as
blacklisting, a well-known approach to computer security. An
alternative to blacklisting is whitelisting. In the case of
whitelisting, the security process defines a set of rules that
allow or permit files to operate or execute in a computer. In
application whitelisting, a system administrator provides a
permitted list of software programs and files that, if they meet
the appropriate rules, can run on the computer. If the software
or file is not on the permitted list and there are no rules to
allow it to operate, the software is restricted or not allowed to
operate. There are provisions for such a policy and rules in the
Microsoft® Windows® XP and Linux® operating systems.
There are also third-party software packages that provide this
type of approach to dealing with malware and a valuable
alternative to malware protection with no need for updates or a
connection to the Internet.

The focus of this paper is based on the Microsoft approach
to application whitelisting. The Microsoft term for this
solution is software restriction policy (SRP). The same
principles also apply to Linux, as well as to third-party
software approaches, such as McAfee® Embedded Security™.

The following is an overview for application whitelisting
software restriction policies. Suppose a user tries to run a new
substation training video on a computer. Also, assume that
someone modified the video to contain and execute a hidden
malicious program. If the user inserts or downloads the video
onto the computer, such as from a Universal Serial Bus (USB)
thumb drive, and opens the web browser to that file or runs the
video, the malicious program loads and becomes operational.

In this example, if application whitelisting software
restriction policies are operating on the computer, the malware
would not have the correct rules or permissions to run and
therefore would not execute. This paper demonstrates similar
actions and explains how to generate a warning banner and log
event.

There are some assumptions and issues regarding
application whitelisting software restriction policies. Namely,
when a computer is built, there is an assumption that no
malware is installed onto the system. There are ways to
address this issue and get the computer to a known good state.

The other issue in using this form of application
whitelisting is that the computer must have an administrator
who manages software installations and authorizes the
application whitelisting software restriction policies. The
administrator and application whitelisting enforce and log the
software approved to operate. The administrator should
periodically review the event log files for optimum security
results.

A computer in a power utility control system infrastructure
lends itself well to the use of application whitelisting because
it operates as a closed system. There is no need to install new
software onto the control system computer. Even so, there are
ways to permit installation of new application software if it is
needed.

III. BASIC STEPS FOR APPLICATION WHITELISTING
SOFTWARE RESTRICTION POLICIES

The following is the basic outline of actions that create
application whitelisting software restriction policies in a
Windows operating system environment [1]:

• Create and enable local software restriction policies.
• Set up and apply enforcement of the policies.
• Designate the file types considered as executable.
• Generate the rules relating to hashes, certificates,

paths, and Internet zones.
• Assign the software restriction policies, designated file

types, and rules to users or groups.
The following example describes these steps. For a

Windows software restriction policy, there are two security
levels: disallowed and unrestricted. Disallowed means a
program is not permitted to run unless additional rules enable
it to run. Unrestricted means the software access rights are
determined by the access rights of the user.

In this example case for the substation HMI computer,
select disallowed because the system is a closed system and
the list of programs needed for operating in the substation
environment is a known set.

3

In Windows, the default software restriction policy is
assigned to unrestricted: in other words, it is wide open. When
setting up the software restriction policies, this is changed to
disallowed. That is, regardless of the user access rights, the
operating system will not run the software. In order to allow
updates and software installations, the default enforcement
setting changes to All users except local administrators. In
this case, local administrators are able to run all programs. The
administrator assigns the policy to particular Designated File
Types Properties. This configures the application whitelisting
software restriction policies to act on particular file types.

IV. APPLICATION WHITELISTING SOFTWARE
RESTRICTION POLICY RULES

This section lists the application whitelisting rules that
quantify the permissions for the software applications to
operate on the computer. Windows supports the following
four ways to identify and secure software applications:

• Hash rules provide cryptographic calculations, or
hashes, to program files to enable them to operate. The
hash on the file provides a mathematical digest or
digital fingerprint. The fingerprint can either allow or
prevent a program from running. Permission or denial
of program operation occurs regardless of its location
or name.

• Certificate rules use a signed software publisher
certificate for permission to run. Like the hash rule,
this rule applies regardless of the program location or
name.

• Path rules apply to programs that run from a specific
(local or network) path or from subfolders located in
the path.

• Internet zone rules apply policy rules based on the
Windows Internet Explorer® security zones, but
Internet connections are not recommended for use in
the substation environment.

The above rules provide the means to restrict or permit
programs from running, even if they are modified or changed.
The software restriction policy can also apply to file types.

V. RELATING WHITELISTING SOFTWARE RESTRICTION
POLICY TASKS TO RULES

The Microsoft TechNet website has a useful table to
identify when and what rules to use for various protection
scenarios [2]. This table identifies appropriate rules for
software restriction policy scenarios.

It is very important to understand that there is precedence
in the software restriction policy rules. The rules follow this
order (from highest to lowest): hash rule, certificate rule, path
rule, and Internet zone rule.

The rules also follow precedence, with the highest assigned
to rules that are more specific. If a path rule is defined for
C:\Example\ with a disallowed security level and another
path rule is defined for C:\Example\Subfolder with an
unrestricted security level, the rule with
C:\Example\Subfolder is more specific. Therefore, the

unrestricted path rule takes precedence. The more
conservative rule takes precedence if there are two identical
rules with differing security levels.

In certain unique situations, the hash rule can even help
prevent running code caused by a virus or a Trojan horse. An
administrator could create a hash rule by calculating the hash
value of the virus program and then restricting the hash value
from running. This rule operates independently of the name or
location of the malware. Also, if the malware takes a
particular known path, a path rule could be set up to prevent
execution of the malware.

Performing a successful attack against a system using
application whitelisting software restriction policies requires
that an attacker exploit the permitted programs list. However,
enabling the policy means preventing this action because the
policy rules watch for changes in a program by means of hash
values.

Another positive aspect of application whitelisting is its
ability to generate event logs that alarm and notify of attempts
to bypass the security restriction policy. For example, when
the application whitelisting software restriction policies
prevent a program from running, a log event is generated in
the Microsoft Windows event log file, as shown in Fig. 1.

Fig. 1. Example event log

VI. HOW TO SET UP APPLICATION WHITELISTING SOFTWARE
RESTRICTION POLICIES ON A WINDOWS COMPUTER

This section identifies the specific steps to take to
implement the application whitelisting software restriction
policies available for Windows XP Professional [3]. This
example assumes a new computer and software image as
delivered from the manufacturer. All necessary third-party
application software modules were installed with appropriate
licenses. Also, in this example, unnecessary software was

4

removed from the computer. An antivirus and vulnerability
scan were conducted prior to setting up the application
whitelisting software restriction policies. This process ensures
that there are no incipient malware and/or vulnerabilities
installed on the computer as received from the manufacturer.

In this example, application whitelisting only protects those
accounts logged on as users. If users are permitted
administrative-level privileges, they do not receive protection
from this policy. When evaluated for application whitelisting,
a third-party software program was able to provide protection
for both administrative and user access privileges.

The following steps assume the person configuring the
computer is logged on with administrative-level privileges and
is configuring these policies for user-level accounts. The
example demonstrates a basic application of a whitelisting
policy using Windows software restriction policies. It is
intended to get readers to a starting point and help them
become familiar with application whitelisting. The author
encourages readers to experiment with additional rules and
access rights.

Step 1. Click Start > Run, and enter gpedit.msc, as
shown in Fig. 2. Alternatively, click Start >
Control Panel > Administrative Tools > Local
Security Policy. Look for the Software
Restriction Policies.

Fig. 2. Quick way to open the policy menu

Step 2. When running gpedit.msc, select Computer
Configuration > Windows Settings > Security
Settings > Software Restriction Policies, as
shown in Fig. 3.

Fig. 3. Start new group policy with gpedit.msc

Step 3. If Software Restriction Policies is not visible,
go to Action > Create New Policies to enable
this function. It populates the drop-down list, as
shown in Fig. 4.

Fig. 4. Create new policy if none is shown

Step 4. Select Software Restriction Policies, and then
double-click Enforcement in the right pane, as
shown in Fig. 5.

Fig. 5. Enforcement policy settings

Step 5. It is very important to follow Step 5 to enable the
policy to act on all files. Choose All software
files, select All users except local
administrators, and click OK. As stated
previously, the assumption is that the person
administering these steps has administrative
privileges on the computer and has the
authorization to make these changes. The reason
for this exception is to allow the administrator
the right to make changes to the policy and
install and/or update software.

5

Step 6. Select Designated File Types Properties. The
list shows the files that are restricted from
running. For example purposes, select the LNK
file type, and delete this extension from the list.
This action allows the Windows shortcuts to
work normally. Later, by reinserting this option
into the list, the administrator can test user-level
access and learn if the software restriction policy
is working. Select OK, and close the Designated
File Types Properties with the LNK file type
not on the list, as shown in Fig. 6.

Step 7. In the left-hand pane, select Additional Rules.
Notice the default rules for hashes, certificates,
paths, and Internet zones. At this point, do not
add any additional rules. For demonstration
purposes, a path rule could be added that
prevents access to a particular folder location.

Step 8. The last step is to select Security Levels, and
click on Disallowed. Set this as the default.
Select Yes to confirm the changes, as shown in
Fig. 7.

Fig. 6. File type associations

Fig. 7. Changing the default settings

6

At this point, for the system administrator, there is no
change in the computer operation. However, if the system
administrator logs off and logs back in as a user, only those
files permitted by the software restriction policy can run.
Attempting to run or install a new program generates a
warning and log event.

VII. TESTING APPLICATION WHITELISTING SOFTWARE
RESTRICTION POLICIES

It is important to test the application whitelisting software
restriction policies on a computer in a test environment prior
to implementing them in an operational environment.

Tests were conducted with both Windows XP Professional
application whitelisting software restriction policies and a
third-party software package (McAfee Embedded Security).
The test computer ran as a real-time distribution automation
control system. The computer was set up and interoperating
with a real-time power system simulator. The system operated
normally with the application whitelisting software restriction
policies and third-party software package. During operation,
tests were conducted to see how well the application
whitelisting protected the substation distribution automation
system.

One part of a test strategy is to find a means to simulate
malware and attempt to install and run the file. This checks if
the administrator deployed the application whitelisting
software restriction policies correctly. It also checks to see if
the application whitelisting prevents operation of the
simulated malware.

For the purpose of this paper, it is preferable not to
deliberately generate or play with a real virus in order to test.
Because it is an unacceptable risk and dangerous to test with
real viruses, the European Institute for Computer Antivirus
Research (EICAR) provides a file that can be safely passed
around [4]. It is nonviral but tests antivirus measures as if it
were a real virus. This simulated test file is the EICAR
Standard Anti-Virus Test File [4]. It is safe to use because it
is not a virus and does not include any fragments of viral code.
As part of the testing, consider including the Information
Systems (IS) security department to help administer and
oversee this test. Because anti-malware products react to
EICAR as if it were a virus, the IS department may receive
notices of viruses coming from the test computer. Typical
anti-malware responses log and report the file as
EICAR-AV-Test.

Informing the IS department of issues prevents invoking
unnecessary alarms and responses to a legitimate testing. The
EICAR file is a DOS program and produces the display

message EICAR-STANDARD-ANTIVIRUS-TEST-FILE!
(see Fig. 8) if the anti-malware does not prevent it from
running.

Fig. 8. EICAR test from the DOS command prompt

Another part of the test process was an attempt to run and
move the file into different locations. The test file did generate
appropriate log entries in the Windows log files. Each attempt
to run the malware produced a log entry in the Windows log
file, indicating that the application whitelisting software
restriction policies prevented the malware from taking action.
In some cases, a warning banner directed the user to contact
the system administrator for further information (see Fig. 9).

Fig. 9. Event log file warning

7

The tests showed how important it is that the system
administrator create strong access controls to operate in
conjunction with the application whitelisting software
restriction policies. Adding access controls along with
application whitelisting policies prevented attempts to copy
the simulated virus from a USB memory stick to the computer
system. Access controls, such as file permissions, can disable
the write permission for a user, as shown in Fig. 10.

Fig. 10. Setting access control permissions

The testing showed no negative impact in the performance
of the distribution automation system, yet it provided anti-
malware protection.

VIII. FURTHER STUDIES ON UPDATING WHITELISTING
SOFTWARE AND RESTRICTION POLICIES

Application whitelisting is a relatively new tool; however,
it needs more testing. How would a person update the
application whitelisting programming infrastructure? This is
an especially difficult problem in a control system
environment. It might be beneficial for application
whitelisting to allow creation of an auditable or baseline
document of the system configuration. The document would
allow a user, at a later point in time, to assess if the application
whitelisting system configuration underwent changes.

Documentation regarding who, what, and when the
application whitelisting was modified is an important tool for
an audit document. Related to this topic is the process to
update the infrastructure for application whitelisting.
Microsoft tends towards an automated solution that is often
bundled into its operating system service patches. A power
utility must test that the fixes do not negatively impact safe
and reliable operations. This concept aligns well with a
signature phrase adopted by former President Ronald Reagan
of a Russian proverb, “doveryai, no proveryai” (Russian:
Доверяй, но проверяй). “Trust, but verify.” Trusting and
verifying the update or patch before installing it into a
substation is an important concept for critical infrastructure
system administrators to follow.

IX. CONCLUSION
Application whitelisting software restriction policies are a

new tool that holds promise to secure control system
computers that are stable or fixed in their configurations. A
third-party software package provides easier configuration and
greater coverage by protecting the administrator.

Administrators want confidence that their systems operate
with known and verified software. Application whitelisting
provides a promising technology to guarantee that only
authorized code can operate.

Application whitelisting is a cybersecurity tool that has the
potential to increase the security posture for the substation
environment, while reducing computational overhead and
congestion, providing a new countermeasure to deal with
malware.

X. ACKNOWLEDGMENT
The author gratefully acknowledges Eric Cosman of Dow

Chemical for his help and guidance on application
whitelisting.

XI. REFERENCES
[1] P. W. Barnes, “Defending Windows With Application Whitelisting,”

September 2009. Available: https://patrickwbarnes.com/blog/2009/09/
defending-windows-with-application-whitelisting/.

[2] Microsoft TechNet, “Using Software Restriction Policies to Protect
Against Unauthorized Software,” May 2004. Available: http://technet.
microsoft.com/en-us/library/bb457006.aspx.

[3] Microsoft TechNet, “What’s New in Security for Windows XP
Professional and Windows XP Home Edition,” February 2003.
Available: http://technet.microsoft.com/en-us/library/bb457059.aspx.

[4] EICAR: European Expert Group for IT-Security, “The Anti-Virus or
Anti-Malware Test File.” Available: http://www.eicar.org/.

XII. FURTHER READING
National Security Agency: Information Assurance Directorate:
Vulnerability Analysis and Operations: Systems and Network Analysis
Center, “Application Whitelisting Using Software Restriction Policies,”
June 2010. Available: http://www.nsa.gov/ia/_files/os/win2k/
Application_Whitelisting_Using_SRP.pdf.

XIII. BIOGRAPHY
Dwight Anderson received his BS in electrical engineering from Steven’s
Institute of Technology. He is now a project engineer for Schweitzer
Engineering Laboratories, Inc. (SEL) in Pullman, Washington. Prior to
joining SEL in 2005, Dwight worked 20 years for Hewlett-Packard as an
aerospace and defense business development manager and systems engineer,
working on projects ranging from electronic warfare countermeasures to
SCADA system programming. He holds the Global Security Essentials
Certification (GSEC) from Global Information Assurance Certification
(GIAC) and is a Certified Information Systems Security Professional (CISSP).

© 2011 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

20110201 • TP6477-01

	CoverPage_20150318
	6477_IncreaseSecurity_DA_20110201

