
Scripting Language Extensions

Jeffery McDougle, Thomas Blocker, and David Prestwich
Schweitzer Engineering Laboratories, Inc.

Presented at the
13th Annual Western Power Delivery Automation Conference

Spokane, Washington
March 29–31, 2011

1

Scripting Language Extensions
Jeffery McDougle, Thomas Blocker, and David Prestwich, Schweitzer Engineering Laboratories, Inc.

Abstract—Proprietary software is often used to collect data,
including fault records and event reports, sequential events
records, meter information, settings, and diagnostics, from
microprocessor-based devices. This paper discusses techniques to
connect, collect, and parse ASCII-based responses from multiple-
vendor devices.

I. INTRODUCTION
Electric utility engineers often need to collect more data

than an individual software vendor can provide. The primary
goal for creating and working with these data is to place
configurations, events, and device application information in a
central location. Organizing these elements helps to eliminate
mistakes and increase productivity throughout an
organization. Centralizing this information provides users with
the highest level of flexibility. Types of information that can
be collected include connection information, maintenance
schedules, audit data, and security requirements and levels.
Automating the data collection allows for periodic
maintenance checks that help customers meet the ever-
growing North American Electric Reliability Corporation
(NERC) demands, while eliminating the need for new
equipment and costly maintenance tasks. Understanding and
implementing data collection using customized scripts gives
users the highest level of flexibility and better compliance to
NERC PRC-002 and PRC-005 as well as CIP-002 through
CIP-009.

This paper evaluates the importance of flexible scripting
that allows users to retrieve information by adding new
commands or reports to the device, without being dependent
on or delayed by revisions to proprietary device-specific
collection software. Project development and maintenance are
far more efficient when report-gathering software includes
capabilities to tailor the collection to specific needs using
scripting. This allows users to easily build and test their own
access scripts, user-based command scripts, and external
parsers in order to perform the following tasks:

• Connect to a device.
• Navigate the device to a desired state via ASCII

dialog.
• Retrieve data from the device via ASCII capture or a

standard file transfer format.
• Save the results of the capture or file transfer for

subsequent viewing and analysis.
• Execute an external script or program, automatically

passing the name of the file to that script or executable
file.

• Send emails and data logs, or create and schedule
follow-up jobs via these external scripts or programs.

Collection software should have the capability to poll data
at a preconfigured interval. This provides the ability to start
gathering important information from a device without having
to wait for manufacturers to update software. Plus, scripts can
be optimized to collect only the information that is required.
This improves the overhead of manually processing data for
the pertinent information that will be collected.

II. SCADA SYSTEMS AND ENGINEERING ACCESS
Supervisory control and data acquisition (SCADA) systems

have become widely accepted and have grown into feature-
rich applications, allowing for supervision and control. From
the first-generation monolithic systems to modern networked
installations, SCADA continues to evolve into various
industry standards as well as a wide variety of supported
protocols.

Increased requirements lead engineers to evaluate what
classes of information are appropriate for SCADA
communications links. Engineers must answer the following
questions: Do we have the capacity to support full event
reports sent across the system? Should operators be sent even
more information on what is critical or normal operation?
How do we allow engineering units access to these data while
continuing to secure communication?

Security issues have also come to the forefront of modern
industry discussions. Connections and data volumes between
SCADA systems and wide-area network/local-area network
(WAN/LAN) infrastructures have increased. Internet
cybersecurity threats are forcing companies to make choices,
such as removing outside access. Eliminating the ability to
gain outside access limits the amount of oscillographic,
Sequential Events Recorder (SER), and maintenance data that
can be gathered. These limits can increase costs and threaten
the progress made over the past decade in developing and
maintaining settings configured for installations. In general,
SCADA misconceptions include the following:

• No one attempts to exploit the vulnerability because
SCADA is not widely known.

• SCADA is already physically secure.
• SCADA lacks authentication.
• SCADA is immune to attacks because it is

disconnected from the Internet.
• It costs more to install and maintain a larger network

infrastructure.
Similar to the evolution of SCADA, engineering access to

devices and remote locations has changed over the years.
What once required hours of driving to and from site
installations can now be done from the comfort of an
engineering workstation. Modems have been replaced by

2

virtual private networks (VPNs) and high-speed
communication. Printouts of settings or events are sent using
email communication. Improved reliability in substation-ready
computers allows for gigabytes of data to be stored, collected,
and evaluated across an organization.

As was the case with SCADA, increased features introduce
more questions that need to be answered for modern
substation designs (an example design is shown in Fig. 1). To
what location does this user have access? Who connected to
this location last? What was changed? Did the user collect the
correct information? How do we store all of these data over
long periods of time?

Substation

Corporate Office Control Center

WAN

Gateway

Communications Processor

LAN

Relay Relay Relay

Fig. 1. Example of a modern substation design

In general, engineering access concerns include the
following:

• Identity-based access controls and audits for who or
what can connect to the device and from what
location.

• Length of time and cost to collect required data from
remote locations.

• Amount of training required to implement solutions.
• Human interaction, which can be prone to error and

costly mistakes.
• Scalable and manageable solutions.

III. SCRIPTING
Scripting is a programming language that allows control of

one or more software applications or processes. Scripting
languages came about largely because of the development of
the Internet as a communications tool. JavaScript, Active
Server Pages (ASP), JavaServer Pages (JSP), Hypertext
Processor (PHP), Perl, Tool Command Language (Tcl) and
Python are examples of scripting languages [1]. Additionally,
some large application programs include an idiomatic
scripting language tailored to the needs of the application user.
An application-specific scripting language can be viewed as a
domain-specific programming language specialized to a single
application.

While traditional scripting languages may have new
terminology and feature sets, the concept of taking data,
defining a desired result, and acting on those data is not new
to the industry. Engineers have used similar if-then logic
within intelligent electronic devices (IEDs), programmable
logic controllers (PLCs), and human-machine interfaces
(HMIs).

A. Scripting Language Extensions
With scripts, the core application can be extended to

perform tasks other than its primary functionality, as shown in
Fig. 2.

Fig. 2. Core application can be extended to take action or collect newly
added command data from IEDs through extension scripts

In a typical application, a design is implemented to meet
the requirements at the time of development. Often, after a
program is delivered, the user wants added functionality, or
different users require custom functionality based on their
specific needs. In order to accommodate these situations
without requiring a complete rewrite or causing a
develop/compile/test/ship scenario, a framework needs to be
implemented to allow for future additions of modules without
breaking the existing code base.

As shown in the Fig. 2 example, the primary functionality
of the core application is the ability to collect breaker
command data, SER data, event report data, and settings from
an IED. When new firmware releases for these IEDs, it often
includes new functionality. New functionality often brings
new commands to read data. The obvious solution for the
supporting software is to release updates to the software
alongside the IED firmware releases, so software and
firmware are matched and supported. This is fine for most
IEDs with propriety software, but maintaining and upgrading
multiple-vendor software can be a daunting task. An
alternative solution is to create infrastructure that includes
communications applications that can be extended in such a
way that any and all data can be collected from a particular
IED. Once the data are collected, the same core application
can then execute a customized script extension that completes
the work.

3

B. Building More Powerful Programs
Being able to extend a program adds flexibility and makes

the program “programmable.” The scripting interface allows
users to easily modify the behavior of the program without
modifying the original contents. The benefits of this are
numerous. In fact, think of the large software packages that
people use every day. Nearly all of them include special
macro languages, configuration languages, or even scripting
engines to allow users to make customizations.

C. Extending the Extensions
With scripting, a system can be easily extended to perform

additional functions. For example, a script that collects data
could invoke a script to parse the data and another script to
send an email notification. See Fig. 3.

Fig. 3. Extend the data collection system to perform additional tasks

IV. AUTOMATING THE DATA COLLECTION SYSTEM
This section outlines the solutions to problems that can be

solved one time, up front, and in a generic way. This
eliminates many difficult problems that would otherwise be
left to the person creating the scripts to communicate with the
devices. These solutions can be encapsulated within a
standalone application. This application can be implemented
as a standalone service (e.g., Windows® Service or Linux®
Daemon) and provide the following solutions:

• Automatic script invocation. The application can be
capable of invoking individual scripts and providing
support services.

• Periodic scheduling. The application can provide
scheduling services that invoke the scripts based upon
a predefined schedule (e.g., once per month). The
script author need not be concerned with how or when
the script is executed. Scheduling becomes a separate
concern.

• Triggered scheduling. The application can provide
scheduling services that invoke the script or scripts
based on the occurrence of some external triggering
event (e.g., system fault). The script author need not
be concerned with this triggering but only deals with
data written to and read from the connected device.

• Record keeping. The application can assume the
responsibilities of maintaining the recorded history of
the script executions. Thus the application records
when the script is executed and any status information
relating to that execution. The script author need not
be concerned with where or how this information is
recorded.

• Confirmation of successful execution. The application
can assume the responsibility of retrying the script if
system errors cause a script failure. The script author
need not be concerned with retries. The application
tries until it succeeds. The script author simply trusts
that this occurs.

• Information passing. The application can pass
information that the script requires via command line
arguments or an equivalent method. Thus it becomes
easier for the script author to discover what device is
connected and other information relating to the work
to be performed. All external information needed by
the script is provided by the application, or the script
can be given the information needed to find that
external information on its own.

• Communication. The application can establish
communication with devices using an external
connection directory and become a communications
tunnel between the user-authored script and the
connected devices. The application can manage the
communication when one or more pass-through
devices are involved (e.g., communications
processors). The application can communicate using
virtually any protocol, such as Transmission Control
Protocol/Internet Protocol (TCP/IP) and serial.
However, the script author need not be concerned with
the communications protocols, how the connections
are made, or how many devices are involved. The
script author is only concerned with the content of
those communications and the responses to data sent
by the connected devices. The accidental complexities
of these communications are removed from the script
author’s focus, as are the complexities of simultaneous
device communications.

• Device authentication. The application can provide
authentication services for the scripts, thereby
eliminating the need for usernames and passwords to
appear in the scripts. The script author need not know
the usernames or passwords.

• Code signing. The script can be digitally signed and
that signature can be permanently recorded. Before the
application executes the script, it can test the script
against the saved signature to ensure the script has not
been modified or replaced. Thus the application only
executes approved scripts, further enhancing system
security.

4

• Auxiliary services. The application can provide the
following auxiliary services:
− Error reporting. The application can encapsulate

the infrastructure needed to report errors or other
interesting events occurring during the script
execution. The script author need not be concerned
with how or where errors or other events are
recorded.

− User notification. The application can encapsulate
the infrastructure needed to send email or perform
other messaging services, providing immediate
notification of device data or status to those who
have a vested interest in the data retrieved from the
device. For instance, if a script determines that a
breaker needs service, the script can instruct the
application to email a notification to the correct
individuals.

− File transfer. The application can provide file
transfer services, such as YMODEM or File
Transfer Protocol (FTP), for the script, greatly
simplifying the process for the script author. The
script author need not know the details of
performing these operations. The script simply
instructs the application to carry out the operation,
and the application notifies the script when the
operation is finished.

− Other. Virtually any operation that is not specific
to a single script can be encapsulated in the
application, providing the script author a simple
application programming interface (API) to
perform these operations.

V. EXAMPLE SCRIPTS AND PRACTICAL USES
The industry has made advances in the automatic collection

of data from various media. Collection can be completed
through scheduled tasks or on demand. With the data
collected, engineers can create and generate customized
scripts to reduce time and effort during the development of
troubleshooting tools.

NERC PRC standards have introduced new functional
requirements, dealing with everything from cyberassets and
physical security to the full implementation of recovery plans.
Using scripting languages within a system allows users to
better automate many of the requirements that directly impact
day-to-day activities. In particular, automated scripting could
be applied to better meet CIP and PRC-005-2 requirements.

A. CIP-003: Cyber Security – Security Management Controls
CIP-003 requires the establishment of change control and

configuration management for all critical cyberassets. This
change control includes any change to hardware or software
components of the critical cyberasset.

Once the device has been identified as a critical cyberasset,
scripting techniques can be used to continually monitor
settings and values without the introduction of human
interaction, which can lead to errors or poor interpretations.
Examples of applications include the following:

• Validation of settings. Devices have the ability to
display settings in a wide variety of ways. Settings can
collect and store in a delaminated format. Quickly
parse and compare these settings with a set of baseline
values using standard scripting environments.

• Status verification. Scripts can be created for
validation of status. These scripts can be as simple as
verifying a ping response (Fig. 4) or connecting to a
device and verifying the device identifier (Fig. 5).

Fig. 4. Example of a script that pings an IP address and receives a result

Fig. 5. Example of a script that connects to a device and issues the ID
command

B. PRC-005-2: Protection System Maintenance
The main purpose of PRC-005-2 is to ensure the

maintenance of all transmission and generation protection
systems affecting the reliability of the bulk electric system.
The bulk electric system includes protection systems,
underfrequency and undervoltage load-shedding systems, and
special protection systems, such as remedial action schemes.

As is commonly known but important to review, the
definition of protection systems includes the following
components:

• Protective relays, including internal diagnostics,
analog-to-digital (A/D) converters, relay trip outputs,
settings, and firmware verification.

• Associated communications systems necessary for
correct operation of protective devices.

• Voltage and current sensing inputs to protective
relays.

• DC control circuitry.
• Station dc supply and batteries.

As stated by PRC-005-02, each transmission owner and
generator owner shall establish a protection system
maintenance program (PSMP) that shall include the following:

• Take inventory of each critical protection system
component.

• Identify whether each protection system component is
addressed through time-based, conditioned-based,
performance-based, or a combination of these
maintenance methods, and identify the associated
maintenance interval.

• Have a documented maintenance program with
procedures, test intervals, and records showing that
maintenance was performed.

5

• Combining a device ASCII interface with a common
scripting language allows a user to create any number
of batch scripts to be run on demand or during a set
interval for verification of these PSMP procedures.
Examples of items to verify include the following:

• IED internal diagnostics
• IED A/D converter
• Current transformer (CT) and potential transformer

(PT) sensing devices or circuit inputs
• IED trip outputs
• IED peer-to-peer communication
• Firmware revisions
• IED settings

C. Collecting and Prioritizing SER Records
Traditionally, SER records provide data relevant to reclose

intervals and carrier issues. Today, however, SER records can
contain security alarm information, manipulate settings, and
control data when using more modern communications
processors. With these valuable data, scripting tools allow
users to not only collect the data but to parse, categorize, and
make quick decisions and/or recommendations.

D. Battery Status Command Verification With Email
Notification

Processor-based devices send battery status commands
(BTT) that generate an output, as shown in Fig. 6.

Fig. 6. Example of BTT command output

When the BTT command is issued, the output response can
be captured and saved to a file, as shown in Fig. 7.

Fig. 7. Example of a script that issues a BTT command, captures the
response, and calls another script to verify the data captured

The output can be parsed, run through logic by comparing
with desired limits, and emailed in reports to state, for
example, that a battery level is becoming too low. Fig. 8
shows an example of a script where the BTT response was
captured in a file and then opened and examined to look for a
failed condition. If the failed condition is detected, an email
notification is sent.

Fig. 8. Example of a script that analyzes the BTT command response and
sends an email if a battery has failed

VI. CONCLUSION
Scripting extends core applications to allow the collection

of new data or the control of devices. Script extensions
remove the need for software application updates, which also
removes the burden of installation from the user. Over time,
the core application evolves to consume scripting extensions
as they become more stable and complex, so the operator does
not have to maintain the scripts. This improves speed and
efficiency throughout the application. Another advantage of
scripting extensions is the ability to tailor the scripts in such a
way that only high-priority data items are collected, analyzed,
and acted upon, which helps satisfy NERC PRC and CIP
requirements.

VII. REFERENCE
[1] L. Greiner, “PHP, JavaScript, Ruby, Perl, Python, and Tcl Today: The

State of the Scripting Universe,” CIO Newsletter, August 2008.
Available: http://www.cio.com.

VIII. BIOGRAPHIES
Jeffery McDougle received a 2-year electronics degree from ITT in 1995 and
a BS in Computer Engineering from Washington State University in 2002. He
joined Schweitzer Engineering Laboratories, Inc. in 1995, where he has been
involved in the development of various software and firmware products.

Thomas Blocker received his BS in Computer Information Systems from
Eastern Washington University in 2000. He joined Schweitzer Engineering
Laboratories, Inc. in 2005, where he has been involved in the design and
development of various Windows applications. He is also a 15-year
U.S. Navy veteran with more than 10 years of experience operating ship
power plants.

David Prestwich received his BS in Mathematics from the University of
Idaho in 1999. He has been a product engineer and development manager for
the PC software group at Schweitzer Engineering Laboratories, Inc. (SEL) for
the past 5 years and has led several projects touching a wide variety of SEL
products. Prior to joining SEL, he worked as an automation engineer
implementing control systems around the world.

© 2011 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

20110201 • TP6481-01

	CoverPage_20150318
	6481_ScriptingLanguage_JM_20110201

