SEL SEL-421-4, -5 Protection, Automation, and Control System

High-Speed Line Protection, Automation, and Control System

Key Features and Benefits

The SEL-421-4, -5 Protection, Automation, and Control System combines high-speed distance and directional protection with complete control for a two-breaker bay.

- ➤ Complete Distance Protection. You can apply as many as five zones of phase and ground distance and directional overcurrent elements. Select mho or quadrilateral characteristics for any phase or ground distance element. Use the optional high-speed distance elements and series-compensation logic to optimize protection for critical lines or series-compensated lines. Patented coupling capacitor voltage transformer (CCVT) transient overreach logic enhances the security of Zone 1 distance elements. Best Choice Ground Directional Element[®] logic optimizes directional element performance and eliminates the need for many directional settings. Apply the distance and directional elements in communications-based protection schemes such as POTT, DCB, and DCUB, or for instantaneous or time-step backup protection.
- Power Swing Blocking and Out-of-Step Tripping. You can select power swing blocking of distance elements for stable power swings or out-of-step tripping for unstable power swings. Zero-setting, out-of-step detection logic is available, eliminating the need for settings and power system studies.
- ➤ Switch-Onto-Fault. Disconnect status inputs and voltage elements can enable high-speed protection.
- ➤ Synchronism Check. Synchronism check can prevent circuit breakers from closing if the corresponding phases across the open circuit breaker are excessively out of phase, magnitude, or frequency. The synchronism-check function has a user-selectable synchronizing voltage source and incorporates slip frequency, two levels of maximum angle difference, and breaker close time into the closing decision.
- Reclosing Control. You can incorporate programmable single-pole or three-pole trip and reclose of one or two breakers into an integrated substation control system. Synchronism and voltage checks from multiple sources provide complete bay control.
- ► Fault Locator. Utilities can efficiently dispatch line crews to quickly isolate line problems and restore service faster.

- ► Dual CT Input. You can combine currents within the relay from two sets of CTs for protection functions or keep them separately available for monitoring and station integration applications.
- ➤ Primary Potential Redundancy. Multiple voltage inputs to the relay provide primary voltage input redundancy. Upon loss-of-potential (LOP) detection, the relay can use inputs from an electrically equivalent source connected to the relay. Protection remains in service without compromising security.
- ➤ Comprehensive Metering. The built-in, high-accuracy metering functions can improve feeder loading. Use watt and VAR measurements to optimize feeder operation. Minimize equipment needs with full metering capabilities, including: rms, maximum/minimum, demand/peak, energy, and instantaneous values.
- ► Auxiliary Trip/Close Pushbuttons. These optional pushbuttons are electrically isolated from the rest of the relay. They function independently from the relay and do not need relay power.
- ➤ Bay Control. The relay provides bay control functionality with status indication and control for disconnect switches. The relay features control for as many as two breakers and status indication of as many as three breakers. Numerous predefined user-selectable mimic displays are available; the selected mimic appears on the front-panel screen in one-line diagram format. The one-line diagram includes user-configurable labels for disconnect switches, breakers, bay name, and display for as many as six analog quantities. The relay features SELOGIC programmable local control supervision of breaker and disconnect switch operations.
- ➤ Breaker Failure. High-speed (less than one cycle) open-pole detection logic reduces coordination times for critical breaker failure applications. Apply the relay to supply breaker failure protection for all supported breakers. Logic for breaker failure retrip and initiation of transfer tripping is included.
- ► IEC 60255-149 Compliant Thermal Model. The relay can provide a configurable thermal model for the protection of a wide variety of devices. This function can activate a control action or issue an alarm or trip when equipment overheats as a result of adverse operation conditions. A separate resistance temperature detector (RTD) module is required for this application.
- Ethernet Access. The optional Ethernet card grants access to all relay functions. Use IEC 61850 Manufacturing Message Specification (MMS) or DNP3 protocol directly to interconnect with automation systems. You can also connect to DNP3 networks through a communications processor. Use File Transfer Protocol (FTP) for high-speed data collection. Connect to substation or corporate LANs to transmit synchrophasors by using TCP or UDP internet protocols.
- Serial Data Communication. The relay can communicate serial data through SEL ASCII, SEL Fast Message, SEL Fast Operate, MIRRORED BITS[®], and DNP3 protocols. Synchrophasor data are provided in either SEL Fast Message or IEEE C37.118 format.
- Automation. The enhanced automation features include programmable elements for local control, remote control, protection latching, and automation latching. Local metering on the large front-panel LCD eliminates the need for separate panel meters. Serial and Ethernet links efficiently transmit key information, including metering data, protection element and control I/O status, synchrophasor data, IEC 61850 GOOSE messages, Sequential Events Recorder (SER) reports, breaker monitoring, relay summary event reports, and time synchronization. Apply expanded SELOGIC[®] control equations with math and comparison functions in control applications. Incorporate as many as 1000 lines of automation logic to accelerate and improve control actions.
- ➤ Synchrophasors. You can make informed load dispatch decisions based on actual real-time phasor measurements from relays across your power system. Record streaming synchrophasor data from the relay for system-wide disturbance recording. Control the power system by using local and remote synchrophasor data.
- Breaker and Battery Monitoring. You can schedule breaker maintenance when accumulated breaker duty (independently monitored for each pole) indicates possible excess contact wear. The relay records electrical and mechanical operating times for both the last operation and the average of operations since function reset. Alarm contacts provide notification of substation battery voltage problems (as many as two independent battery monitors in some SEL-400 series relays) even if voltage is low only during trip or close operations.
- Six Independent Settings Groups. The relay includes group logic to adjust settings for different operating conditions, such as station maintenance, seasonal operations, emergency contingencies, loading, source changes, and adjacent relay settings changes. Select the active group settings by control input, command, or other programmable conditions.
- Software-Invertible Polarities. Inverting individual or grouped CT and PT polarities allows you to account for field wiring or zones of protection changes. CEV files and all metering and protection logic use the inverted polarities, whereas COMTRADE event reports do not use inverted polarities but rather record signals as applied to the relay.
- ► Parallel Redundancy Protocol (PRP). PRP provides seamless recovery from any single Ethernet network failure. The Ethernet network and all traffic are fully duplicated with both copies operating in parallel.

- ► IEC 61850 Operating Modes. The relay supports IEC 61850 standard operating modes such as Test, Blocked, On, and Off.
- ► IEEE 1588, Precision Time Protocol (PTP). PTP provides high-accuracy timing over an Ethernet network.
- Digital Relay-to-Relay Communications. MIRRORED BITS communications can monitor internal element conditions between bays within a station, or between stations, using SEL fiber-optic transceivers. Send digital, analog, and virtual terminal data over the same MIRRORED BITS channel.
- Sequential Events Recorder (SER). The SER records the last 1000 events, including setting changes, startups, and selectable logic elements.
- Socillography and Event Reporting. The relay records voltages, currents, and internal logic points at a sampling rate as fast as 8 kHz. Offline phasor and harmonic-analysis features allow investigation of bay and system performance. Time-tag binary COMTRADE event reports with high-accuracy time stamping for accuracy better than 10 μs.
- ➤ **Digitally Signed Upgrades.** The relay supports upgrading the relay firmware with a digitally signed upgrade file. The digitally signed portion of the upgrade file helps ensure firmware and device authenticity after it is sent over a serial or Ethernet connection.
- ► Increased Security. The relay divides control and settings into seven relay access levels; the relay has separate breaker, protection, automation, and output access levels, among others. Set unique passwords for each access level.
- ► Rules-Based Settings Editor. You can communicate with and set the relay by using an ASCII terminal or use QuickSet to configure the relay and analyze fault records with relay element response. Use as many as 200 aliases to rename any digital or analog quantity in the relay.

Functional Overview

Figure 1 Functional Overview

Protection Features Complete Distance Protection

The SEL-421 simultaneously measures as many as five zones of phase and ground mho distance protection plus five zones of phase and ground quadrilateral distance protection. You can apply these distance elements, together with optional high-speed distance elements, in communications-assisted and step-distance protection schemes. You can use expanded SELOGIC control equations to tailor the relay further to your particular application.

The relay includes LOP detection, load encroachment, and CCVT transient detection logic for enhanced security.

Optional series-compensated line logic can also be added to prevent overreach of the Zone 1 distance element, resulting from the series capacitor transient response.

Each of the distance elements has a specific reach setting. The ground distance elements include three zero-sequence compensation factor settings (k01, k0R, and k0F) to calculate ground fault impedance accurately. Setting k01 uses positive-sequence quantities to adjust zero-sequence transmission line impedance for accurate measurement. Settings k0F and k0R account for forward and reverse zero-sequence mutual coupling between parallel transmission lines.

Figure 2 shows the performance times of the high-speed and standard distance elements for a range of faults, locations, and source impedance ratios (SIR).

Subcycle Tripping Times Using Optional High-Speed Elements

Figure 2 Distance Zone 1 Median Operating Time for Varying Fault Locations and Different SIRs

90% 100%

Figure 2 Distance Zone 1 Median Operating Time for Varying Fault Locations and Different SIRs (Continued)

The relay provides two different algorithms for out-of-step detection. One of the two schemes may be selected by the user.

The zero-setting method requires no power system studies or any settings (other than enabling). Using local voltage measurements (see Figure 4) to closely approximate the swing center voltage (SCV) allows the relay to use the rateof-change of SCV to quantify the power swing condition.

Figure 3 Mho Characteristic

Zs

As an optional addition to the standard distance elements, there are three zones (either three forward, or two forward and one reverse) of high-speed distance elements. These high-speed elements use voltage and current phasors derived

High-Speed Quadrilateral Ground Element

70% 80% 90% 100%

Fault position (% of relay setting)

SIR 0.1 ____SIR 1 ____SIR 10

High-Speed Quadrilateral Phase Element

40%

30%

50% 60%

Fault position (% of relay setting)

70% 80%

Expanded

Characteristic

1.75

(chi 1.50 (chi 1.25) (chi 1.25

time 1.00

Operate 0.75 0.50

0.25

0.00

1.75

Oberate time (cycles) 1.25 1.00 1.00 0.75

0.50

025

0.00

0%

10% 20%

0%

10% 20% 30% 40% 50% 60%

> from a fast half-cycle filter to provide subcycle tripping times. Settings are automatically associated with the standard element zone reach, requiring no additional settings.

Standard Quadrilateral Ground Element

50% 60%

Fault position (% of relay setting)

SIR 0.1 ____SIR 1 ____SIR 10

Standard Quadrilateral Phase Element

70% 80% 90% 100%

30% 40% 50% 60% 70% 80% 90% 100%

Fault position (% of relay setting)

SIR 0.1 ----- SIR 1 ----- SIR 10

1.75

0.50

0 2 5

0.00

1.75

0 0.75 0 0.75 0 0.75

0.50

0.25

0.00

.% 10% 20%

0%

10% 20% 30% 40%

Quadrilateral Distance Elements

The SEL-421 provides five zones of quadrilateral phase and ground distance characteristics for improved fault and arc resistance coverage and reach-limiting action on short lines. The top line of the quadrilateral characteristic automatically tilts with load flow to avoid under- and overreaching. Available settings prevent overreaching of the quadrilateral characteristic from nonhomogeneous fault current components. You can use the mho and quadrilat-

The second algorithm is a conventional out-of-step detection that provides timers and blinders that are set outside any of the distance element reach settings. A power swing is declared when an impedance locus travels through the blinders slower than a preset time.

Figure 4 Applying VS to Approximate the Swing Center Voltage Provides an Accurate Local Quantity to Detect Power Swings

Directional Elements

The SEL-421 includes a number of directional elements for supervision of overcurrent elements and distance elements. The negative-sequence directional element uses the same patented principle proven in the SEL-321. This directional element can be applied in virtually any application, regardless of the amount of negative-sequence voltage available at the relay location.

The following three directional elements working together provide directional control for the ground overcurrent elements:

- Negative-sequence voltage-polarized directional element
- ► Zero-sequence voltage-polarized directional element
- ► Zero-sequence current-polarized directional element

Our patented Best Choice Ground Directional Element selects the best ground directional element for the system conditions and simplifies directional element settings. (You can override this automatic setting feature for special applications.)

Communications-Assisted Tripping Schemes

Use MIRRORED BITS communications with SEL fiberoptic transceivers for 3–6 ms relay-to-relay transmission time. Among the schemes supported are the following:

- Permissive overreaching transfer tripping (POTT) for two- or three-terminal lines
- Directional comparison unblocking (DCUB) for two- or three-terminal lines
- Directional comparison blocking (DCB)

Use the SELOGIC control equation TRCOMM to program specific elements, combinations of elements, inputs, etc., to perform communications scheme tripping and other scheme functions. The logic readily accommodates the following conditions:

- ► Current reversals
- ► Breaker open at one terminal
- ► Weak-infeed conditions at one terminal
- ► Switch-onto-fault conditions

Step-distance and time-overcurrent protection provide reliable backup operation should the communications channel be lost.

Combined Current for Protection Flexibility

For traditional relays, when protecting a line fed from two breakers, such as a breaker-and-a-half system or doublebreaker system, you must parallel the CTs before connecting these inputs to the relay. The relay accepts two separate CT inputs (these CTs can be a different ratio) and combines these currents mathematically. This allows collecting separate current metering and breaker monitor information for each breaker and breaker failure functions on a per-breaker basis. Breaker diagnostic reports from the SEL-421 provide you comparative breaker information that you can use for advanced, proactive troubleshooting.

Multifunction Recloser With Flexible Applications

The SEL-421 includes both single-pole and three-pole trip and reclose functions, for either one or two breakers (*Figure 5*). Synchronism check is included for breaker control. Synchronizing and polarizing voltage inputs are fully programmable with dead line/dead bus closing logic as well as zero-closing-angle logic to minimize system stress upon reclosing. Program as many as two single-

pole reclose attempts and four three-pole reclose attempts as well as combined single-/three-pole reclosing sequences. Select leader and follower breakers directly, or use a SELOGIC control equation to determine reclosing order based on system conditions. Coupled with independentpole-operating circuit breakers, this reclosing system gives maximum flexibility for present system conditions and for future requirements.

Figure 5 Two-Breaker Reclosing With Synchronism Check

Additional Features Front-Panel Display

The LCD shows event, metering, setting, and relay selftest status information. The target LEDs display relay target information as described in *Figure 6* and *Figure 7*.

The LCD is controlled by the navigation pushbuttons (*Figure 8*), automatic messages the relay generates, and user-programmed analog and digital display points. The rotating display scrolls through alarm points, display points, and metering screens. If none are active, the relay scrolls through displays of the fundamental and rms metering screens. Each display remains for a user-programmed time (1-15 s) before the display continues scrolling. Any message generated by the relay because of an alarm condition takes precedence over the rotating display.

Figure 6, Figure 7, and *Figure 8* show close-up views of the front panel of the SEL-421. The front panel includes a 128 x 128 pixel, 3" x 3" LCD screen; LED target indicators; and pushbuttons with indicating LEDs for local

control functions. The asserted and deasserted colors for the LEDs are programmable. Configure any of the directacting pushbuttons to navigate directly to any HMI menu item. Quickly view events, alarm points, display points, or the SER.

Figure 6 Factory-Default Status and Trip Target LEDs (8 Pushbutton, 16 Target LED Option)

Figure 7 Factory-Default Status and Trip Target LEDs (12 Pushbutton, 24 Target LED Option)

Figure 8 Factory-Default Front-Panel Display and Pushbuttons

Bay Control

The SEL-421 provides dynamic bay one-line diagrams on the front-panel screen with disconnect and breaker control. You can download the QuickSet interface from selinc.com to obtain additional user-selectable bay types. The bay control can control as many as ten disconnects and two breakers, depending on the one-line diagram selected. Certain one-line diagrams provide status for as many as three breakers and five disconnect switches. Operate disconnects and breakers with ASCII commands, SELOGIC control equations, Fast Operate Messages, and from the one-line diagram. The one-line diagram includes user-configurable apparatus labels and as many as six user-definable analog quantities.

One-Line Bay Diagrams

The SEL-421 offers a variety of preconfigured one-line diagrams for common bus configurations. Once you select a one-line diagram, you can customize the names for all of the breakers, disconnect switches, and buses. Most

one-line diagrams contain analog display points. You can set these display points to any of the available analog quantities with labels, units, and scaling. The SEL-421 updates these values along with the breakers and switch position in real time to give instant status and complete control of a bay. The following diagrams demonstrate some of the preconfigured bay arrangements available in the SEL-421.

Programmable interlocks help prevent operators from incorrectly opening or closing switches or breakers. The SEL-421 not only prevents the operator from making an incorrect control decision, but can notify and/or alarm upon initiation of an incorrect operation.

Circuit Breaker Operations From the Front Panel

Figure 9–Figure 12 are examples of some of the selectable one-line diagrams in the SEL-421. Select the oneline diagram from the Bay settings. Additional settings for defining labels and analog quantities are also found in the Bay settings. One-line diagrams are composed of the following:

- ► Bay names and bay labels
- ► Busbar and busbar labels
- ► Breaker and breaker labels
- ► Disconnect switches and disconnect switch labels
- Analog display points

Figure 9 Breaker-and-a-Half

Figure 10 Ring Bus With Ground Switch

9

Figure 12 Source Transfer Bus

Figure 13 shows the breaker control screens available when the ENT pushbutton is pressed with the circuit breaker highlighted as shown in *Figure 13(a)*.

Figure 13 Screens for Circuit Breaker Selection

Rack-Type Breakers Mosaics

The SEL-421 supports the display of rack-type (also referred to as truck-type) circuit breakers. The rack-type breakers have three positions: racked out, test, and racked in. When in the test or racked-in positions, the breaker can be displayed as open or closed. When racked out, no breaker open/close display are available. The rack-type breakers are a display-only functionality and do not impact any circuit breaker control capabilities.

Status and Trip Target LEDs

The SEL-421 includes programmable status and trip target LEDs, as well as programmable direct-action control pushbuttons on the front panel. *Figure 6* and *Figure 7* show these targets.

The SEL-421 features a versatile front panel that you can customize to fit your needs. Use SELOGIC control equations and slide-in configurable front-panel labels to

change the function and identification of target LEDs and operator control pushbuttons and LEDs. The blank slide-in label set is included with the SEL-421. You can use templates supplied with the relay or hand label supplied blank labels and print label sets from a printer.

Alarm Points

You can display messages on the SEL-421 front-panel LCD that indicate alarm conditions in the power system. The relay uses alarm points to place these messages on the LCD.

Figure 14 shows a sample alarm points screen. The relay can display as many as 66 alarm points. The relay automatically displays new alarm points while in manual-scrolling mode and in autoscrolling mode. You can configure the alarm points message and trigger it either immediately by using inputs, communications, or conditionally by using powerful SELOGIC control equations. The asterisk next to the alarm point indicates an active alarm. Use the front-panel navigation pushbuttons to clear inactive alarms.

Figure 14 Sample Alarm Points Screen

Advanced Display Points

Create custom screens showing metering values, special text messages, or a mix of analog and status information. *Figure 15* shows an example of how display points can be used to show circuit breaker information and current metering. As many as 96 display points can be created. All display points occupy only one line on the display at all times. The height of the line is programmable as either single or double as shown in *Figure 15*. These screens become part of the autoscrolling display when the front panel times out.

Figure 15 Sample Display Points Screen

Auxiliary Trip/Close Pushbuttons and Indicating LEDs

Optional auxiliary trip and close pushbuttons (see *Figure 16*) and indicating LEDs allow breaker control independent of the relay. The auxiliary trip/close pushbuttons are electrically separate from the relay, operating even if the relay is turned off.

The auxiliary trip/close pushbuttons incorporate an arc suppression circuit for interrupting dc trip or close current. To use these pushbuttons with ac trip or close circuits, disable the arc suppression for either pushbutton by changing jumpers inside the SEL-421. The operating voltage ranges of the breaker **CLOSED** and breaker **OPEN** indicating LEDs are also jumper-selectable.

Figure 16 Operator Controls (Auxiliary Trip/Close Model)

Figure 17 Optional Breaker Trip/Close Control Switches and Indicating Lamps

Control Inputs and Outputs

The basic SEL-421 includes five independent and two common inputs, two Form A and three Form C standard interrupting outputs, and three Form A high-current interrupting outputs. The following additional I/O boards are currently available.

- ► Eight independent inputs, 13 standard Form A and two standard Form C contact outputs.
- Eight independent inputs, eight high-speed, highcurrent interrupting Form A contact outputs.

- Eight independent inputs, 13 high-current interrupting Form A outputs and two standard Form C contact outputs.
- Twenty-four inputs, six high-speed and two standard Form A contact outputs.

Assign the control inputs for control functions, monitoring logic, and general indication. You can use SELOGIC control equations to program each control output. No additional I/O boards can be added to the 3U chassis; however, you can add one board to the 4U chassis and two additional I/O boards to the 5U chassis. Order standard and additional I/O as either universal (15–265 Vdc settable pickup) or optoisolated type.

Communications Features

See Specifications on page 22 for specific supported protocols.

Figure 18 System Functional Overview

The relay offers the following communications features:

- ► Four independent EIA-232 serial ports.
- Access to event history, relay status, and meter information from the communications ports.
- Password-controlled settings management and automation features.
- SCADA interface capability, including FTP, IEC 61850 Edition 2.1, DNP3 LAN/WAN (via Ethernet), and DNP3 (via serial port). The relay does not require special communications software. You only need ASCII terminals, printing terminals, or a computer supplied with terminal emulation and a serial communications port.
- Synchrophasor data at 60 message-per-second data format.

Ethernet Card

Use popular Telnet applications for easy terminal communications with SEL relays and other devices. Transfer data at high speeds for fast file uploads. The Ethernet card communicates using FTP applications for easy and fast file transfers. Communicate with SCADA by DNP3 and other substation IEDs by using IEC 61850 Manufacturing Message Specification (MMS) and GOOSE messaging.

Choose Ethernet connection media options for primary and standby connections:

- ► 10/100BASE-T twisted pair network
- ► 100BASE FX fiber-optic network

Telnet and FTP

Use Telnet to access relay settings, metering, and event reports remotely by using the ASCII interface. Use FTP to transfer settings files to and from the relay via the high-speed Ethernet port.

DNP3 LAN/WAN

DNP3 LAN/WAN provides the relay with DNP3 Level 2 Outstation functionality over Ethernet. Configure DNP3 data maps for use with specific DNP3 masters.

PTP

The Ethernet card provides the ability for the relay to accept IEEE 1588 PTPv2 for data time synchronization. PTP support includes the Default, Power System, and Power Utility Automation Profiles. When connected directly to a grandmaster clock providing PTP at 1-second synchronization intervals, the relay can be synchronized to an accuracy of ± 100 ns in the PTP time scale.

Figure 19 Example PTP Network

SNTP Time Synchronization

Use SNTP to synchronize relays to as little as ± 1 ms with no time source delay. Use SNTP as a primary time source, or as a backup to a higher accuracy time input to the relay.

PRP

Use PRP to provide seamless recovery from any single Ethernet network failure, in accordance with IEC 62439-3. The Ethernet network and all traffic are fully duplicated with both copies operating in parallel.

HTTP Web Server

The relay can serve read-only webpages displaying certain settings, metering, and status reports. The web server also allows quick and secure firmware upgrades over Ethernet. As many as four users can access the embedded HTTP server simultaneously.

IEC 61850 Ethernet Communications

IEC 61850 Ethernet-based communication protocols provide interoperability between intelligent devices within the substation. Standardized logical nodes allow interconnection of intelligent devices from different manufacturers for monitoring and control of the substation. Eliminate system RTUs by streaming monitor and control information from the intelligent devices directly to remote SCADA client devices.

You can order the relay with IEC 61850 protocol for relay monitor and control functions, including:

- ➤ As many as 128 incoming GOOSE messages. You can use the incoming GOOSE messages to control as many as 256 control bits in the relay with <3 ms latency from device to device depending on network design. These messages provide binary control inputs to the relay for high-speed control functions and monitoring.</p>
- ➤ As many as eight outgoing GOOSE messages. Configure outgoing GOOSE messages for Boolean or analog data such as high-speed control and monitoring of external breakers, switches, and other devices. Boolean data are provided with <3 ms latency from device to device depending on network design.
- ➤ IEC 61850 Data Server. The relay equipped with embedded IEC 61850 Ethernet protocol provides data according to predefined logical node objects. Each relay supports as many as seven simultaneous MMS client sessions, with support to associationbased and indexed reports. Relevant Relay Word bits are available within the logical node data, so status of relay elements, inputs, outputs, or SELOGIC control equations can be monitored.
- ➤ As many as 256 virtual bits. Configure the virtual bits within GOOSE messaging to represent a variety of Boolean values available within the relay. These bits that the relay receives are available for use in SELOGIC control equations.
- As many as 64 remote analog outputs. Assign the remote analog outputs to virtually any analog quantity available in the relay. You can also use SELOGIC math variables to develop custom analog quantities for assignment as remote analog outputs. Remote analog outputs that use GOOSE messages provide peer-to-peer transmission of analog data. Each relay can receive as many as 256 remote analog inputs and use those inputs as analog quantities within SELOGIC control equations.
- ➤ IEC 61850 standard operating modes. The relay supports Test, Blocked, On, and Off. The relay also supports Simulation mode for added flexibility.

MMS File Services

This service of IEC 61850 MMS provides support for file transfers completely within an MMS session. All relay files that can be transferred via FTP can also be transferred via MMS file services.

MMS Authentication

When enabled via a setting in the Configured IED Description (CID) file, the relay requires authentication from any client requesting to initiate an MMS session.

Architect Software

Use ACSELERATOR Architect SEL-5032 Software to manage the IEC 61850 configuration for devices on the network. This Windows-based software provides easyto-use displays for identifying and binding IEC 61850 network data among logical nodes that use IEC 61850compliant CID files. Architect uses CID files to describe the data available in each relay.

Serial Communications MIRRORED BITS Communications

The SEL patented MIRRORED BITS technology provides bidirectional relay-to-relay digital communication.

Figure 20 shows two relays with SEL-2815 Fiber-Optic Transceivers that use MIRRORED BITS communications. MIRRORED BITS communications can operate simultaneously on any two serial ports. This bidirectional digital communication creates additional outputs (transmitted MIRRORED BITS) and additional inputs (received MIRRORED BITS) for each serial port operating in the MIRRORED BITS communications mode.

Communicated information can include digital, analog, and virtual terminal data. Virtual terminal allows operator access to remote relays through the local relay. You can use this MIRRORED BITS protocol to transfer information between stations to enhance coordination and achieve faster tripping.

Figure 20 Integral Communication Provides Secure Protection, Monitoring, and Control as Well as Terminal Access to Both Relays Through One Connection

Open Communications Protocols

The relay does not require special communications software. ASCII terminals, printing terminals, or a computer supplied with terminal emulation and a serial communications port are all that is required. *Table 1* lists a brief description of the terminal protocols.

Туре	Description
ASCII	Plain-language commands for human and simple machine communications. Use for metering, setting, self-test status, event reporting, and other functions.
Compressed ASCII	Comma-delimited ASCII data reports. Allows external devices to obtain bay data in an appropriate format for direct import into spreadsheets and database programs. Data are checksum protected.
Extended Fast Meter, Fast Operate, and Fast SER	Binary protocol for machine-to-machine communications. Quickly updates communications processors, RTUs and other substation devices with metering information, bay element, I/O status, time-tags, open and close commands, and summary event reports. Data are checksum protected. Binary and ASCII protocols operate simultaneously over the same communications lines so that control operator metering information is not lost while a technician is transferring an event report.
Ymodem	Support for reading event, settings, and oscillography files.

Table 1 Open Communications Protocol (Sheet 1 of 2)

14

Туре	Description
Optional DNP3 Level 2 Outstation	DNP with point remapping. Includes access to metering data, protection elements, contact I/O, targets, SER, relay summary event reports, and settings groups.
IEEE C37.118	Phasor measurement protocol.
MIRRORED BITS	SEL protocol for exchanging digital and analog information among SEL relays and for use as low-speed termi- nal connection.
IEC 61850	Ethernet-based international standard for interoperability between intelligent devices in a substation.
PRP	PRP provides redundant Ethernet network capabilities for seamless operation in the event of loss to one network.
SNTP	Ethernet-based SNTP for time synchronization among relays.
FTP and Telnet	Use Telnet to establish a terminal-to-relay connection over Ethernet. Use FTP to move files in and out of the relay over Ethernet.

Table 1 Open Communications Protocol (Sheet 2 of 2)

Automation Flexible Control Logic and Integration Features

Use the control logic to perform the following:

- ► Replace traditional panel control switches
- ► Eliminate remote terminal unit (RTU)-to-bay wiring
- ► Replace traditional latching relays
- ► Replace traditional indicating panel lights

Eliminate traditional panel control switches with 64 local control points. Set, clear, or pulse local control points with the front-panel pushbuttons and display. Program the local control points to implement your control scheme via SELOGIC control equations. Use the local control points for such functions as trip testing, enabling/disabling reclosing, and tripping/closing circuit breakers.

Eliminate RTU-to-bay wiring with 64 remote control points per relay. Set, clear, or pulse remote control points via serial port commands. Incorporate the remote control points into your control scheme via SELOGIC control equations. Use remote control points for SCADA-type control operations (e.g., trip, close, settings group selection).

Replace traditional latching relays for such functions as remote control enable with 64 latching control points. Program latch set and latch reset conditions with SELOGIC control equations. Set or reset the latch control points via control inputs, remote control points, local control points, or any programmable logic condition. The relay retains the states of the latch control points after turning on following a power interruption.

Replace traditional indicating panel lights and switches with as many as 24 latching target LEDs and as many as 12 programmable pushbuttons with LEDs. Define custom messages (i.e., BREAKER OPEN, BREAKER CLOSED, RECLOSER ENABLED) to report power system or relay conditions on the large format LCD. Control displayed messages with SELOGIC control equations by driving the LCD via any logic point in the relay.

SELOGIC Control Equations With Expanded Capabilities and Aliases

Expanded SELOGIC control equations put relay logic in the hands of the engineer. Assign inputs to suit your application, logically combine selected bay elements for various control functions, and assign outputs to your logic functions.

Programming SELOGIC control equations consists of combining relay elements, inputs, and outputs with SELOGIC control equation operators (*Table 2*). Any element in the Relay Word can be used in these equations. For complex or unique applications, these expanded SELOGIC functions allow superior flexibility.

Table 2	SELOGIC (Control	Equation	Operators	(Sheet 1	of 2)
---------	-----------	---------	----------	-----------	----------	-------

Operator Type	Operators	Comments
Boolean	AND, OR, NOT	Allows combination of measuring units.
Edge Detection	F_TRIG, R_TRIG	Operates at the change of state of an internal function.
Comparison	>, >=, =, <=, <, <>	
Arithmetic	+, -, *, /	Uses traditional math functions for analog quantities in an easily programmable equation.

Table 2 SELOGIC Control Equation Operators (Sheet 2 of 2)

Operator Type	Operators	Comments
Numerical	ABS, SIN, COS, LN, EXP, SQRT, LOG	
Precedence Control	()	Allows multiple and nested sets of parentheses.
Comment	#, (* *)	Provides for easy documentation of control and protection logic.

Use the relay alias capability to assign more meaningful names to analog and Boolean quantities. This improves the readability of customized programming. Use as many as 200 aliases to rename any digital or analog quantity. The following is an example of possible applications of SELOGIC control equations that use aliases.

```
=>>SET T <Enter>
1: PMV01.THETA
```

(assign the alias "THETA" to math variable PMV01)

```
2: PMV02,TAN
```

(assign the alias "TAN" to math variable PMV02)

```
=>>SET L <Enter>
```

```
1: # CALCULATE THE TANGENT OF THETA
2: TAN:=SIN(THETA)/COS(THETA)
```

(use the aliases in an equation)

Add programmable control functions to your relay and automation systems. New functions and capabilities enable using analog values in conditional logic statements. The following are examples of possible applications of SELOGIC control equations with expanded capabilities.

- ► Emulate a motor-driven reclose timer, including stall, reset, and drive-to-lockout conditions.
- ► Scale analog values for SCADA retrieval.
- Initiate remedial action sequence based on load flow before fault conditions.
- ► Interlock breakers and disconnect switches.
- Restrict breaker tripping in excessive duty situations without additional relays.
- Hold momentary change-of-state conditions for SCADA polling.

Metering and Monitoring

Access a range of useful information in the relay with the metering function. Metered quantities include fundamental primary and secondary current and voltage magnitudes and angles for each terminal. RMS voltage and current metering is also provided. Fundamental phase and real and reactive power, per-phase voltage magnitude, angle, and frequency are displayed in the metering report for applications that use the relay voltage inputs.

Capabilities	Description		
Instantaneous Quantities			
Voltages V _{A, B, C} (Y), V _{A, B, C} (Z), V¢¢, 3V0, V1, 3V2	0300~V with phase quantities for each of the six voltage sources available as a separate quantity.		
Currents $I_{A, B, C}$ (W), $I_{A, B, C}$ (X), $I_{A}L$, $I_{B}L$, $I_{C}L$, (combined currents) IGL, 11L, 312L (combined currents)	Phase quantities for each of the two current sources available as a separate quantity or combined as line quantities.		
Differential Metering			
Currents I _{A, B, C} , I1, 3I ₂ , 3I ₀	Local terminal/all Remote Terminals		
Differential Current I _{A, B, C} , I1, 3I ₂ , 3I ₀	Local terminal/all Remote terminals		
Alpha Plane k alpha	Alpha plane ratio Alpha plane angle		

Table 3 Metering Capabilities (Sheet 1 of 2)

 Table 3
 Metering Capabilities (Sheet 2 of 2)

Capabilities	Description			
Power/Energy Metering Quantities				
MW, MWh, MVAR, MVARh, MVA, PF, single-phase and three-phase	Available for each input set and as combined quantities for the line.			
Demand/Peak Demand Metering				
I _{A, B, C} , 3I ₂ , 3I ₀	Thermal or rolling interval demand and peak demand.			
MW, MVAR, MVA, single-phase	Thermal or rolling interval demand and peak demand.			
MW, MVAR, MVA, three-phase	Thermal or rolling interval demand and peak demand.			
Synchrophasors				
Voltages (Primary Magnitude, Angle) V _{A, B, C} (Y), V _{A, B, C} (Z)	Primary phase quantities (kV) for each of the six voltage sources available.			
Currents $I_{A, B, C}(W), I_{A, B, C}(X)$	Primary phase quantities (A) for each of the six voltage sources available.			
Frequency FREQ dF/dT	Frequency (Hz) as measured by frequency source potential inputs. Rate-of-change in frequency (Hz/s).			

Event Reporting and SER

Event reports and SER features simplify post-fault analysis and help improve your understanding of both simple and complex protective scheme operations. These features also aid in testing and troubleshooting relay settings and protective schemes.

Oscillography and Event Reporting

In response to a user-selected internal or external trigger, the voltage, current, and element status information contained in each event report confirms relay, scheme, and system performance for every fault. The relay provides sampling rates as fast as 8 kHz for analog quantities in a COMTRADE file format, as well as eight-sample-percycle and four-sample-per-cycle event reports. The relay stores as much as 3 seconds of 8 kHz event data. The relay supports inclusion of user-configurable analogs in the events. Reports are stored in nonvolatile memory. Relay settings operational in the relay at the time of the event are appended to each event report.

Each relay provides event reports for analysis with software such as SEL-5601-2 SYNCHROWAVE[®] Event Software. With SYNCHROWAVE Event, you can display events from several relays to make the fault analysis easier and more meaningful. Because the different relays time-stamp the events with values from their individual clocks, be sure to time synchronize the relay with an IRIG-B clock input or PTP source to use this feature.

Event Summary

Each time the relay generates a standard event report, it also generates a corresponding event summary. This is a concise description of an event that includes the following information:

- ► Relay/terminal identification
- Event date and time
- ► Event type
- Event number
- ► Time source
- ► Active settings group
- Targets asserted during the fault
- Current magnitudes and angles for each terminal
- Pre-fault and fault calculated zero- and negativesequence currents
- Voltage magnitudes and angles
- Terminals tripped for this fault
- Recloser shot count at time of trigger (if applicable)
- ► Fault location (if applicable)
- Breaker status (open/close)

With an appropriate setting, the relay sends an event summary in ASCII text automatically to one or more serial ports each time an event report is triggered.

SER

Use this feature to gain a broad perspective of relay element operation. Items that trigger an SER entry are selectable and can include as many as 250 monitoring points, such as I/O change-of-state and element pickup/dropout. The relay SER stores the latest 1000 events.

Analog Signal Profiling

The relay provides analog signal profiling for as many as 20 analog quantities. Select any analog quantity measured or calculated by the relay for analog signal profiling. You can select signal sampling rates of 1, 5, 15, 30, and 60 minutes through settings. The analog signal profile report provides a comma-separated variable (CSV) list that you can load into any spreadsheet or database for analysis and graphical display.

SELOGIC enable/disable functions can start and stop signal profiling based on Boolean or analog comparison conditions.

Substation Battery Monitor for DC Quality Assurance

The relay measures and reports the substation battery voltage for up to two battery systems. The SEL-411L, SEL-421, SEL-451 support two battery monitors while the SEL-487B, SEL-487E, and SEL-487V support one. Each battery monitor supports programmable threshold comparators and associated logic provides alarm and control for batteries and chargers. The relay also provides dual ground detection. Monitor dc system status alarms with an SEL communications processor and trigger messages, telephone calls, or other actions.

The measured dc voltage is reported in the METER display via serial port communications, on the LCD, and in the event report. Use the event report data to see an oscillo-

graphic display of the battery voltage. Monitor the substation battery voltage drops during trip, close, and other control operations.

Breaker Contact Wear Monitoring

Circuit breakers experience mechanical and electrical wear during each operation. Effective scheduling of breaker maintenance takes into account the manufacturer's published data of contact wear versus interruption levels and operation count.

- ➤ Every time the breaker trips, the relay integrates interrupted current. When the result of this integration exceeds the threshold set by the breaker wear curve (*Figure 21*), the relay can alarm via an output contact or the optional front-panel display. With this information, you can schedule breaker maintenance in a timely, economical fashion.
- The relay monitors last and average mechanical and electrical interruption time per pole. You can easily determine if operating time is increasing beyond reasonable tolerance and then schedule proactive breaker maintenance. You can activate an alarm point if operation time exceeds a preset value.

The relay also monitors breaker motor run time, pole discrepancy, and breaker inactivity.

Figure 21 Breaker Contact Wear Curve and Settings

Diagrams and Dimensions

Figure 22 3U Front Panel, Rack-Mount Option With Standard HMI

Figure 23 5U Front Panel, Panel-Mount Option With Extended HMI and Optional Trip/Close Pushbuttons

Figure 24 3U Rear Panel, Main Board With Terminal Block

Figure 25 4U Rear Panel, Main Board, Connectorized® Option With One (INT5) I/O Board

Figure 26 5U Rear Panel, Main Board With Terminal Block and Two (One INT3 and One INT2) I/O Boards

(Horizontal Mounting Shown; Dimensions Also Apply to Vertical Mounting)

Figure 27 SEL-421 Dimensions for Rack- and Panel-Mount Models

Models and Options

Consider the following options when ordering and configuring the SEL-421.

- ► Chassis size
 - > 3U, 4U, and 5U
 - (U is one rack unit—1.75 inches or 44.45 mm)

Board Name	Inputs	Description	Outputs	Description
Main board	5	Optoisolated, independent, level-sensitive	2	Standard Form A
	2	Optoisolated, common, level-sensitive	3	Standard Form C
			3	High-current interrupting, Form A
INT1	8	Independent, programmable pickup	13	Standard Form A
			2	Standard Form C
INT2	8	Optoisolated, independent, level-sensitive	13	Standard Form A
			2	Standard Form C
INT3	18	Two sets of 9 common optoisolated, level-sensitive	4	High-current interrupting, Form A
	6	Optoisolated, independent, level-sensitive		

Table 4 Main Board and Interface Board Information (Sheet 1 of 2)

Board Name	Inputs	Description	Outputs	Description
INT4	18	Two sets of 9 common optoisolated, level-sensitive	6	High-speed, high-current interrupting, Form A
	6	Optoisolated, independent, level-sensitive	2	Standard Form A
INT5		Independent, programmable pickup	8	High-speed, high-current interrupting, Form A
INT6	8	Independent, programmable pickup	13	High-current interrupting, Form A
			2	Standard Form C
INT7	8	Optoisolated, independent, level-sensitive	13	High-current interrupting, Form A
			2	Standard Form C
INT8	8	Optoisolated, independent, level-sensitive	8	High-speed, high-current interrupting, Form A

Table 4 Main Board and Interface Board Information (Sheet 2 of 2)

- ► Chassis orientation and type
 - Horizontal rack mount
 - Horizontal panel mount
 - Vertical rack mount
 - Vertical panel mount
- ► Power supply
 - ➤ 24–48 Vdc
 - ➤ 48–125 Vdc or 110–120 Vac
 - ➤ 125-250 Vdc or 110-240 Vac
- ► Secondary inputs
 - > 1 A nominal or 5 A nominal CT inputs
 - ➤ 300 V phase-to-neutral wye configuration PT inputs
- ► Ethernet card options
 - Ethernet card with combinations of 10/ 100BASE-T and 100BASE-FX media connections on each of two ports

- ► Communications protocols
 - Complete group of SEL protocols
 - (SEL ASCII, SEL Compressed ASCII, SEL Settings File Transfer, SEL Fast Meter, SEL Fast Operate, SEL Fast SER, RTDs, Enhanced MIRRORED BITS Communications), and Synchrophasors (SEL Fast Message and IEEE C37.118 format), and DNP3
 - ➤ All of the standard protocols, plus IEC 61850 Edition 2.1
- ► Connector type
 - Screw-terminal block inputs
 - > Connectorized

Contact the SEL factory or your local Technical Service Center for particular part number and ordering information (see *Technical Support on page 23*). You can also view the latest part number and ordering information on the SEL website at selinc.com.

SEL-421 Versions and Supported Features

SEL-421 Features	-4	-5
Protection		
21MG Mho Ground Distance and 21MP Mho Phase Distance	Standard	Standard
21XG Quadrilateral Ground Distance and 21XP Quadrilateral Phase Distance	Standard	Standard
High-Speed Distance and High-Speed Directional		Standard
50N/G Ground, 50P Phase, and 50Q Negative-Sequence—O/C	Standard	Standard
51N/G Ground, 51P Phase, and 51Q Negative-Sequence Time—O/C	Standard	Standard
67N/G Ground, 67P Phase, and 67Q NegSeq. Directional-O/C	Standard	Standard
Programmable Analog Math	Standard	Standard
Out-of-Step Trip and Block	Standard	Standard
Load-Encroachment Supervision	Standard	Standard
Switch-Onto-Fault	Standard	Standard
Single-Pole Trip	Standard	Standard
MIRRORED BITS Communications	Standard	Standard

SEL-421 Features	-4	-5
Zone/Level Timers	Standard	Standard
Pilot Protection Logic	Standard	Standard
Series-Compensated Line Logic		Standard
Instrumentation and Control		
79 Automatic Reclosing, Voltage Check on Closing, 25 Synchronism Check	Standard	Standard
Fault Locating	Standard	Standard
SELOGIC Control Equations	Standard	Standard
Maximum Automation SELOGIC Control Equations	1000 ^a	1000
Substation Battery Monitor	Standard	Standard
Breaker Wear Monitor	Standard	Standard
Event Report (Multicycle Data) and Sequential Events Recorder	Standard	Standard
Instantaneous, RMS, and Demand Meter	Standard	Standard
DNP3 Level 2 Outstation	Standard	Standard
Synchrophasors (IEEE C37.118 and SEL Fast Message)	Standard	Standard
Remote Synchrophasor Measurement		

^a Not all firmware versions of the SEL-421-4 support 1000 lines.

Specifications

Note: TiDL (EtherCAT) technology is no longer offered in the SEL-421-4, -5. TiDL (T-Protocol) is available in the SEL-421-7. If the relay uses TiDL (EtherCAT), the operating times will be delayed by 1.5 ms. Use caution when setting the relay coordination times to account for this added delay. Element operate times will also have this small added delay.

Compliance

Designed and manufactured under an ISO 9001 certified quality management system

FCC Compliance Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference in which case the user will be required to correct the interference at his own expense.

UL Listed to U.S. and Canadian safety standards (File E212775; NRGU, NRGU7)

CE Mark

General

AC Analog Inputs

Sampling Rate: 8 kHz

AC Current Inputs (Secondary Circuits)

Current Rating (With DC Offset at X/R = 10, 1.5 Cycles)

18.2 A

3 A

- 1	A	Non	nina	l:

5 A Nominal: 91 A

Continuous	Thermal	Rating
------------	---------	--------

- 1	Α	No	minal	•
		110	mmai	•

	4 A (+55°C)
5 A Nominal:	15 A
	20 A (+55°C)

Saturation Current (Linea	r) Rating
1 A Nominal:	20 A
5 A Nominal:	100 A
A/D Current Limit	
Note: Signal clipping may oc	cur beyond this limit.
5 A Nominal:	247.5 A
1 A Nominal:	49.5 A
One-Second Thermal Ration	ng
1 A Nominal:	100 A
5 A Nominal:	500 A
One-Cycle Thermal Rating	
1 A Nominal:	250 A-peak
5 A Nominal:	1250 A-peak
Burden Rating	
1 A Nominal:	\leq 0.1 VA at 1 A
5 A Nominal:	\leq 0.5 VA at 5 A
AC Voltage Inputs	
Three-phase, four-wire (wy	ve) connections are supported.
Rated Voltage Range:	55–250 V_{LN}
Operational Voltage Range:	0–300 V _{LN}
Ten-Second Thermal Rating:	600 Vac

≤0.1 VA @ 125 V

Frequency and Rotation

Burden:

Nominal Frequency Rating: Phase Rotation:

50 ±5 Hz 60 ±5 Hz ABC or ACB

Frequency Tracking	40.0–65.0 Hz			
Range:	<40 Hz = 40 Hz >65 0 Hz = 65 Hz	Data d Matterna	Desisting Desist	Inductive Break
Maximum Slew Rate:	15 Hz/s	Rated Voltage	Resistive Break	L/R = 40 ms (DC) PF = 0.4 (AC)
Power Supply		24 Vdc	0.75 Adc	0.75 Adc
24-48 Vdc		48 Vdc	0.63 Adc	0.63 Adc
Rated Voltage:	24–48 Vdc	125 Vdc	0.30 Adc	0.30 Adc
Operational Voltage		250 Vdc	0.20 Adc	0.20 Adc
Range:	18–60 Vdc	110 Vrms	0.30 Arms	0.30 Arms
Vdc Input Ripple:	15% per IEC 60255-26:2013	240 Vrms	0.20 Arms	0.20 Arms
Interruption:	20 ms at 24 Vdc, 100 ms at 48 Vdc per IEC 60255-26:2013	Hybrid (High-Curre	nt Interrupting)	
Burden:	<35 W	Rated Voltage:	24-250 Vdc	
48-125 Vdc or 110-120 Vac		Operational Voltage	e 0.300 Vdc	
Rated Voltage:	48–125 Vdc, 110–120 Vac	Operating Time:	Pickup <6 ms	(resistive load)
Operational Voltage Range:	38–140 Vdc 85–140 Vac		Dropout ≤6 m	(resistive load) is (resistive load)
Rated Frequency:	50/60 Hz	Withstand:	50 Adc for 1 s	
Range:	30–120 Hz	Continuous Contact Current:	t 6 Adc at 70°C 4 Adc at 85°C	
Vdc Input Ripple:	15% per IEC 60255-26:2013	Contact Protection:	MOV protecti	on across open contacts
Interruption:	14 ms at 48 Vdc, 160 ms at 125 Vdc per IEC 60255-26:2013	Limiting Presking	300 Vdc conti	nuous voltage
Burden:	<35 W, <90 VA	Capacity/Electrica	al 4 operations in	n 1 second, followed by
125-250 Vdc or 110-240 Va	ac	Endurance:	2 minutes id	le
Rated Voltage:	125-250 Vdc, 110-240 Vac	Deted Volters	Desistive Desat	Inductive Decels
Operational Voltage Range:	85–300 Vdc 85–264 Vac	24 Vdc	10 Adc	Inductive Break $10 \text{ Adc} (L/R = 40 \text{ ms})$
Rated Frequency:	50/60 Hz	48 Vdc	10 Adc	10 Adc (L/R = 40 ms)
Operational Frequency		125 Vdc	10 Adc	10 Adc (L/R = 40 ms)
Range:	30–120 Hz	250 Vdc	10 Adc	10 Adc (L/R = 20 ms)
Vdc Input Ripple:	15% per IEC 60255-26:2013			
Interruption:	46 ms at 125 Vdc, 250 ms at 250 Vdc per IEC 60255-26:2013	Note: Do not use hyb outputs are polarity	orid control outputs to sw -dependent.	itch ac control signals. These
Burden:	<35 W, <90 VA	Fast Hybrid (High-S	peed High-Current Ir	iterrupting)
Control Outputs		Rated Voltage:	24–250 Vdc	
Note: IEEE C37.90-2005 at	nd IEC 60255-27:2013	Operational Voltage Range:	e 0-300 Vdc	
Update Rate:	1/8 cycle	Operating Time:	Pickup ≤10 µs	(resistive load)
Make (Short Duration Contact Current):	30 Adc 1 000 operations at 250 Vdc	1 0	Dropout ≤8 m	s (resistive load)
Limitine Maline Constitut	2,000 operations at 125 Vdc	Short-Time Therma Withstand:	ll 50 Adc for 1 s	
Mechanical Endurance:	1000 w at 250 v dc ($L/R = 40$ ms)	Continuous Contact	t 6 Adc at 70°C	
Standard	10,000 operations	Current:	4 Adc at 85°C	
Rated Voltage:	24–250 Vdc	Contact Protection:	300 Vdc conti	on across open contacts nuous voltage
	110–240 Vrms	Limiting Breaking	10,000 operati	ions
Operational Voltage Range:	0–300 Vdc 0–264 Vrms	Capacity/Electrica Endurance:	2 minutes id	e l second, followed by le
Operating Time:	Pickup ≤6 ms (resistive load) Dropout ≤6 ms (resistive load)	Rated Voltage	Resistive Break	Inductive Break
Short-Time Thermal Withstand:	50 A for 1 s	24 Vdc	10 Adc	10 Adc (L/R = 40 ms)
Continuous Contact	6 A at 70°C	48 Vdc	10 Adc	10 Adc ($L/R = 40$ ms)
Current:	4 A at 85°C	125 Vdc	10 Adc	10 Adc (L/R = 40 ms)
Contact Protection:	MOV protection across open contacts 264 Vrms continuous voltage	250 Vdc	10 Adc	10 Adc (L/R = 20 ms)
Limiting Breaking Capacity/Electrical Endurance:	300 Vdc continuous voltage 10,000 operations 10 operations in 4 seconds, followed by 2 minutes idle	Note: Do not use hy	ybrid control outputs to	switch ac control signals.

Auxiliary Breaker Control Pushbuttons		
Quantity:	2	
Pushbutton Functions:	One (1) pushbutton shall be provided to open the breaker. One (1) pushbutton shall be provided to close the breaker.	
Resistive DC or AC Outp	uts With Arc Suppression Disabled	
Make:	30 A per IEEE C37.90-2005	
Carry:	6 A continuous carry	
1 s Rating:	50 A	
MOV Protection:	250 Vac/330 Vdc/130 J	
Breaking Capacity (10,00	0 Operations):	

Rated Voltage	Resistive Break	Inductive Break
48 Vdc	0.50 A	0.50 A (L/R = 40 ms)
125 Vdc	0.30 A	0.30 A (L/R = 40 ms)
250 Vdc	0.20 A	0.20 A (L/R = 20 ms)

High-Interrupt DC Outputs With Arc Suppression Enabled

· IEEE C37.90-2005		
tinuous carry		
e/130 J		
Breaking Capacity (10,000 Operations):		

Rated Voltage	Resistive Break	Inductive Break
48 Vdc	10 A	10 A (L/R = 40 ms)
125 Vdc	10 A	10 A (L/R = 40 ms)
250 Vdc	10 A	10 A (L/R = 20 ms)

Breaker Open/Closed LEDs:

48 Vdc: on for 30-60 Vdc;

125 Vdc: on for 80–150 Vdc; 96–144 Vac 250 Vdc: on for 150–300 Vdc; 192–288 Vac

Note: With nominal control voltage applied, each LED draws 8 mA (max.). Jumpers may be set to 125 Vdc for 110 Vdc input and set to 250 Vdc for 220 Vdc input.

Control Inputs

Direct-Coupled (For Use With DC Signals)

INT1, INT5, and INT6 Interface Boards:	8 inputs with no shared terminals
Range:	15-265 Vdc, independently adjustable
Accuracy:	±5% ±3 Vdc
Maximum Voltage:	300 Vdc
Sampling Rate:	2 kHz
Typical Burden:	0.24 W @ 125 Vdc
Optoisolated (Use With AC	or DC Signals)
Main Board:	5 inputs with no shared terminals 2 inputs with shared terminals
INT2, INT7, and INT8 Interface Boards:	8 inputs with no shared terminals
INT3 and INT4 Interface Boards:	6 inputs with no shared terminals 18 inputs with shared terminals (2 groups of 9 inputs with each group sharing one terminal)
Voltage Options:	24 V standard 48, 110, 125, 220, 250 V level-sensitive
Current Drawn:	<5 mA at nominal voltage <8 mA for 110 V option
Sampling Rate:	2 kHz

DC Thresholds (Dropout Thresholds Indicate Level-Sensitive Option)

24 Vdc:	Pickup 19.2–30.0 Vdc; Dropout <14.4 Vdc
48 Vdc:	Pickup 38.4–60.0 Vdc; Dropout <28.8 Vdc
110 Vdc:	Pickup 88.0–132.0 Vdc; Dropout <66.0 Vdc
125 Vdc:	Pickup 105–150 Vdc; Dropout <75 Vdc
220 Vdc:	Pickup 176–264 Vdc; Dropout <132 Vdc
250 Vdc:	Pickup 200–300 Vdc; Dropout <150 Vdc

AC Thresholds (Ratings Met Only When Recommended Control Input Settings Are Used—see *Table 2.1*)

24 Vac:	Pickup 16.4–30.0 Vac rms; Dropout <10.1 Vac rms
48 Vac:	Pickup 32.8–60.0 Vac rms; Dropout <20.3 Vac rms
110 Vac:	Pickup 75.1–132.0 Vac rms; Dropout <46.6 Vac rms
125 Vac:	Pickup 89.6–150.0 Vac rms; Dropout <53.0 Vac rms
220 Vac:	Pickup 150.3–264 Vac rms; Dropout <93.2 Vac rms
250 Vac:	Pickup 170.6–300 Vac rms; Dropout <106 Vac rms

Communications Ports

Serial Data Speed:

EIA-232:

1 Front and 3 Rear

```
300-57600 bps
```

Communications Card Slot for Optional Ethernet Card

Ordering Options:	10/100BASE-T
Connector Type:	RJ45
Ordering Option:	100BASE-FX Fiber-Optic
Connector Type:	LC
Fiber Type:	Multimode
Wavelength:	1300 nm
Source:	LED
Min. TX Power:	-19 dBm
Max. TX Power:	-14 dBm
RX Sensitivity:	-32 dBm
Sys. Gain:	13 dB

Communications Ports for Optional TiDL (EtherCAT) Interface

EtherCAT Fiber-Optic	
Ports:	8
Data Rate:	Automatic
Connector Type:	LC fiber
Protocols:	Dedicated EtherCAT
Class 1 LASER/LED	
Wavelength:	1300 nm
Fiber Type:	Multimode
Link Budget:	11 dB
Min. TX Power:	-20 dBm
Min. RX Sensitivity:	-31 dBm
Fiber Size:	50–200 μm
Approximate Range:	2 km
Data Rate:	100 Mbps
Typical Fiber Attenuation:	–2 dB/km

Time Inputs			Type Tests		
IRIG Time Input-Serial Por	-t 1		Installation Requirements		
Input:	Demodulated IRI	З-В	Overvoltage Category:	2	
Rated I/O Voltage:	5 Vdc		Pollution Degree	2	
Operating Voltage Range:	0–8 Vdc		Safety	2	
Logic High Threshold:	≥2.8 Vdc			WG (0255 27 2012	
Logic Low Threshold:	≤0.8 Vdc		Product Standards	IEE 00255-27:2013 IEEE C37.90-2005	
Input Impedance:	2.5 kΩ			21 CFR 1040.10	
IRIG-B Input-BNC Connec	tor		Dielectric Strength:	IEC 60255-27:2013, Section 10.6.4.3	
Input:	Demodulated IRI	З-В		2.5 kVac, 50/60 Hz for 1 min: analog inputs, contact outputs, digital inputs	
Rated I/O Voltage:	5 Vdc			3.6 kVdc for 1 min: power supply, battery	
Operating Voltage Range:	0–8 Vdc			monitors 2.2 kVdc for 1 min: IRIG-B	
Logic High Threshold:	≥2.2 Vdc			1.1 kVdc for 1 min: Ethernet	
Logic Low Threshold:	≤0.8 Vdc		Impulse Withstand:	IEC 60255-27:2013, Section 10.6.4.2	
Input Impedance:	1 kΩ			IEEE C37.90-2005 Common Mode:	
Dielectric Test Voltage:	0.5 kVac			±1.0 kV: Ethernet	
PTP-Ethernet Port 5A, 5B	3			±2.5 kV: IRIG-B	
Input:	IEEE 1588 PTPv2			±5.0 kV: all other ports Differential Mode:	
Profiles:	Default, C37.238- IEC/IEEE 61850	2011 (Power Profile),)-9-3-2016 (Power Utility		0 kV: analog inputs, Ethernet, IRIG-B, digital inputs	
	Automation Prot	file)		±5.0 kV: standard contact outputs,	
Synchronization Accuracy	: ±100 ns @ 1-seco intervals when c	nd synchronization		+5.0 kV: hybrid contact outputs	
	with master cloc	k	Insulation Resistance:	IEC 60255-27:2013, Section 10.6.4.4	
Operating Temperature				>100 MΩ @ 500 Vdc	
-40° to +85°C (-40° to +185°F)			Protective Bonding:	IEC 60255-27:2013, Section 10.6.4.5.2 <0.1 Ω @ 12 Vdc, 30 A for 1 min	
Note: LCD contrast impaired Stated temperature ranges in	d for temperatures bel not applicable to UL a	ow -20° and above $+70^{\circ}$ C. pplications.	Ingress Protection:	IEC 60529:2001 + CRGD:2003 IEC 60255-27:2013	
Humidity				IP30 for front and rear panel	
5% to 95% without condensation				IP10 for rear terminals with installation	
Weight (Maximum)				IP40 for front panel with installation of	
3U Rack Unit:	8.0 kg (17.7 lb)			serial port cover	
4U Rack Unit:	9.4 kg (20.7 lb)			IP52 for front panel with installation of dust protection accessory	
5U Rack Unit:	11.3 kg (25.0 lb)		Max Temperature of Parts	dust protection accessory	
Terminal Connections			and Materials:	IEC 60255-27:2013, Section 7.3	
Rear Screw-Terminal Tigh	tening Torque, #8 R	ing Lug	Flammability of Insulating	IEC 60255-27:2013, Section 7.6	
Minimum:	1.0 Nm (9 in-lb)		Materials:	Compliant	
Maximum:	2.0 Nm (18 in-lb)		Electromagnetic (EMC) Imn	nunity	
User terminals and strande temperature rating of 105	d copper wire should	l have a minimum are recommended.	Product Standards:	IEC 60255-26:2013 IEC 60255-27:2013 IEEE C37 00 2005	
Wire Sizes and Insulation			Surge Withstand Canability	$EEC 61000-4-18:2006 \pm 4:2010$	
Wire sizes for grounding (connections are dictated l currents. You can use the sizes. The grounding con- equal to or greater than a unless otherwise required	earthing), current, vo by the terminal block following table as a ductor should be as s ny other conductor c by local or national	oltage, and contact as and expected load guide in selecting wire hort as possible and sized onnected to the device regulations.	(SWC):	IEEE C37.90.1-2012 Slow Damped Oscillatory, Common and Differential Mode: ±1.0 kV ±2.5 kV Fast Transient, Common and Differential Mode:	
Connection Type	Min. Wire Size	Max. Wire Size	.	±4.0 kV	
Grounding (Earthing) 1 Connection	14 AWG (2.5 mm ²)	N/A	Electrostatic Discharge (ESD):	IEC 61000-4-2:2008 IEEE C37.90.3-2001 Contact:	
Current Connection 16 AWG (1.5 mm ²) 10 AWG (5.3 mm ²)		10 AWG (5.3 mm ²)		±8 kV	
Potential (Voltage) Connection	18 AWG (0.8 mm ²)	14 AWG (2.5 mm ²)		Air Discharge: ±15 kV	
Contact I/O	$18 \mathrm{AWG} (0.8 \mathrm{mm}^2)$	$10 \mathrm{AWG}(5.3 \mathrm{mm}^2)$			

18 AWG (0.8 mm²)

10 AWG (5.3 mm²)

Other Connection

Radiated RF Immunity:	IEEE C37.90.2-2004 IEC 61000-4-3:2006 + A1:2007 + A2:2010	Dry Heat, O
	20 V/m (>35 V/m, 80% AM, 1 kHz) Sweep: 80 MHz to 1 GHz Spot: 80, 160, 450, 000 MHz	Dry Heat, S
	10 V/m (>15 V/m, 80% AM, 1 kHz) Sweep: 80 MHz to 1 GHz Sweep: 1.4 GHz to 2.7 GHz	Damp Heat
	Spot: 80, 160, 380, 450, 900, 1850, 2150 MHz	Damp Heat
Electrical Fast Transient Burst (EFTB):	IEC 61000-4-4:2012 Zone A:	Cyclic Tem
	±2 kV: communication ports ±4 kV: all other ports	Vibration R
Surge Immunity:	IEC 61000-4-5:2005 Zone A:	Shock Resi
	$\pm 2 \text{ kV}_{\text{L-L}}$ $\pm 4 \text{ kV}_{\text{L-E}}$	Seismic:
	EIA-232, and IRIG-B communications	Reporting
	ports shall be less than 10 m in length for Zone A compliance.	High-Resolu
	Zone B: $\pm 1 \text{ kV}_{\text{L-L}}$: 24–48 Vdc power supply $\pm 2 \text{ kV}_{\text{L-E}}$: 24–48 Vdc power supply $\pm 2 \text{ kV}_{\text{communication ports}}$ (except Ethernet)	Rate:
	Note: Cables connected to EIA-232 communications ports shall be less than 10 m in length for Zone B compliance.	Output For Note: Per I Common
Conducted Immunity:	IEC 61000-4-6:2013 20 V/m: (>35 V/m, 80% AM, 1 kHz)	Power Sy.
	Sweep: 150 kHz–80 MHz Spot: 27, 68 MHz	Event Repor
Power Frequency	IEC 61000-4-16:2015	Valatila M
Immunity (DC Inputs):	Differential: 150 V _{RMS}	Volatile Me
Power Frequency Magnetic	IEC 61000-4-8:2009	Nonvolatile
Field:	Level 5: 100 A/m: >60 seconds: 50/60 Hz	Resolution:
	1000 A/m 1 to 3 seconds; 50/60 Hz	Event Summ
	Note: $50G1P \ge 0.05$ (ESS = N, 1, 2) $50G1P \ge 0.1$ (ESS = 3, 4)	Storage:
Power Supply Immunity:	IEC 61000-4-11:2004	Breaker Hist
	IEC 61000-4-17:1999/A1:2001/A2:2008 IEC 61000-4-29:2000	Storage:
	AC Dips & Interruptions	Sequential E
	Ripple on DC Power Input DC Dips & Interruptions	Storage:
	Gradual Shutdown/Startup (DC only) Discharge of Capacitors Slow Ramp Down/Un	Resolution:
	Reverse Polarity (DC only)	Processin
Damped Oscillatory	IEC 61000-4-10:2016	
FMC Compatibility	100 A/m	8000 sampl
Product Standards:	IEC 60255 26-2013	Digital Filter
Emissions:	IEC 60255-26:2013 IEC 60255-26:2013, Section 7.1	Full-cycle o
	Class A 47 CFR Part 15B Class A	Protection a
Environmental	Canada ICES-001 (A) / NMB-001 (A)	8 times per Reclosing 1
	IEC (0255-27-2012	Control Poin
Cold Operational:	IEC 00233-27:2013 IEC 60068-2-1:2007	64 remote b
	Test Ad: 16 hours at -40°C	64 local con 32 latch bit
Cold, Storage:	IEC 60068-2-1:2007 Test Ad: 16 hours at -40°C	32 latch bit

ry Heat, Operational:	IEC 60068-2-2:2007 Test Bd: 16 hours at +85°C
ry Heat, Storage:	IEC 60068-2-2:2007 Test Bd: 16 hours at +85°C
amp Heat, Cyclic:	IEC 60068-2-30:2005 Test Db: +25 °C to +55 °C, 6 cycles (12 + 12-hour cycle), 95% RH
amp Heat, Steady State:	IEC 60068-2-78:2013 Severity: 93% RH, +40°C, 10 days
yclic Temperature:	IEC 60068-2-14:2009 Test Nb: -40°C to +80°C, 5 cycles
ibration Resistance:	IEC 60255-21-1:1988 Class 2 Endurance, Class 2 Response
hock Resistance:	IEC 60255-21-2:1988 Class 1 Shock Withstand, Class 1 Bump Withstand, Class 2 Shock Response
eismic:	IEC 60255-21-3:1993 Class 2 Quake Response
porting Functions	

High-Resolution Data	
Rate:	8000 samples/second 4000 samples/second 2000 samples/second 1000 samples/second
Output Format:	Binary COMTRADE
Note: Per IEEE C37.111- Common Format for Tra Power Systems.	1999 and C37.111-2013, <i>IEEE Standard</i> ansient Data Exchange (COMTRADE) for
Event Reports	
Length:	0.25–24 seconds (based on LER and SRATE settings)
Volatile Memory:	3 s of back-to-back event reports sampled at 8 kHz
Nonvolatile Memory:	At least 4 event reports of a 3 s duration sampled at 8 kHz
Resolution:	4 and 8 samples/cycle
Event Summary	
Storage:	100 summaries
Breaker History	
Storage:	128 histories
Sequential Events Record	ler
Storage:	1000 entries
Trigger Elements:	250 relay elements
Resolution:	0.5 ms for contact inputs 1/8 cycle for all elements
Processing Specifica	tions

and Current Inputs

les per second, 3 dB low-pass analog filter cut-off frequency Hz.

ring

cosine and half-cycle Fourier filters after low-pass analog and tering.

and Control Processing

power system cycle logic runs once per power system cycle

nts

bits ontrol bits ts in protection logic ts in automation logic

Relay Element Pickup Ranges and Accuracies

Mho Phase-Distance Elements

into i hase bistance Elenit	
Zones 1-5 Impedance Rea	ch
Setting Range	
5 A Model:	OFF, 0.05 to 64 Ω secondary, 0.01 Ω steps
1 A Model:	OFF, 0.25 to 320 Ω secondary, 0.01 Ω steps
Sensitivity	
5 A Model:	0.5 A _{P-P} secondary
1 A Model:	0.1 A _{P-P} secondary (Minimum sensitivity is controlled by the pickup of the supervising phase-to-phase overcurrent elements for each zone.)
Accuracy (Steady State):	\pm 3% of setting at line angle for SIR (source-to-line impedance ratio) < 30 \pm 5% of setting at line angle for 30 \leq SIR \leq 60
Zone 1 Transient Overreach:	< 5% of setting plus steady-state accuracy
Operating Time:	See <i>Figure 2</i> .
Quadrilateral Phase-Distar	nce Elements
Zones 1-5 Impedance Rea	ch
Ouadrilateral Reactance Re	each
5 A Model	OFF 0.05 to 64 O secondary 0.01 O steps
1 A Model:	OFF = 0.25 to 320 Q secondary $= 0.01$ Q steps
Quadrilateral Resistance R	each
Zones 1 2 and 3	
5 A Model	OFF 0.05 to 50 O secondary 0.01 O steps
1 A Model:	OFF = 0.25 to 250 O secondary 0.01 O steps
Zones 4 and 5	011, 0.20 to 200 12 secondary, 0.01 12 steps
5 A Model	OFF 0.05 to 150 O secondary 0.01 O steps
1 A Model:	OEE = 0.25 to 750 O secondary $0.01 O$ steps
Sensitivity	011, 0.20 to 750 12 secondary, 0.01 12 steps
5 A Model	0.5 A secondary
1 A Model:	0.1 A secondary
Accuracy (Steady State):	$\pm 3\%$ of setting at line angle for SIR < 30 $\pm 5\%$ of setting at line angle for $30 \le SIR \le 60$
Transient Overreach:	<5% of setting <i>plus</i> steady-state accuracy
Operating Time:	See Figure 2.
Mho Ground Distance Elem	ents
Zones 1-5 Impedance Rea	ch
Mho Element Reach	
5 A Model:	OFF, 0.05 to 64 Ω secondary, 0.01 Ω steps
1 A Model:	OFF, 0.25 to 320 Ω secondary, 0.01 Ω steps
Sensitivity	
5 A Model:	0.5 A secondary
l A Model:	0.1 A secondary (Minimum sensitivity is controlled by the pickup of the supervising phase and residual overcurrent elements for each zone.)
Accuracy (Steady State):	$\pm 3\%$ of setting at line angle for SIR < 30 $\pm 5\%$ of setting at line angle for $30 \le SIR \le 60$
Zone 1 Transient	
Overreach:	<5% of setting <i>plus</i> steady-state accuracy
Operating Time:	See Figure 2.

Quadrilateral Ground Distance Elements

Zones 1-5 Impedance Read	h	
Quadrilateral Reactance Rea	ach	
5 A Model:	OFF, 0.05 to 64 Ω secondary, 0.01 Ω steps	
1 A Model:	OFF, 0.25 to 320 Ω secondary, 0.01 Ω steps	
Quadrilateral Resistance Re	ach	
Zones 1, 2, and 3		
5 A Model:	OFF, 0.05 to 50 Ω secondary, 0.01 Ω steps	
1 A Model:	OFF, 0.25 to 250 Ω secondary, 0.01 Ω steps	
Zones 4 and 5		
5 A Model:	OFF, 0.05 to 150 Ω secondary, 0.01 Ω steps	
1 A Model:	OFF, 0.25 to 750 Ω secondary, 0.01 Ω steps	
Sensitivity		
5 A Model:	0.5 A secondary	
1 A Model:	0.1 A secondary (Minimum sensitivity is controlled by the pickup of the supervising phase and residual overcurrent elements for each zone.)	
Accuracy (Steady State):	$\pm 3\%$ of setting at line angle for SIR < 30 $\pm 5\%$ of setting at line angle for $30 \le SIR \le 60$	
Transient Overreach:	<5% of setting plus steady-state accuracy	
Operating Time:	See Figure 2.	
Instantaneous/Definite-Tim	e Overcurrent Elements	
Phase, Residual Ground, ar	nd Negative-Sequence	
Pickup Range		
5 A Model:	OFF, 0.25–100.00 A secondary, 0.01 A steps	
1 A Model:	OFF, 0.05–20.00 A secondary, 0.01 A steps	
Accuracy (Steady State)		
5 A Nominal:	± 0.05 A plus $\pm 3\%$ of setting	
1 A Nominal:	± 0.01 A plus $\pm 3\%$ of setting	
Transient Overreach:	<5% of pickup	
Time-Delay:	0.00-16000.00 cycles, 0.125 cycle steps	
Timer Accuracy:	± 0.125 cycle plus $\pm 0.1\%$ of setting	
Maximum Operating Time:	1.5 cycles	
High-Speed Directional Ove	rcurrent Elements	
Ground and Phase		
Pickup Range		
5 A Model:	OFF, 0.25–100 A secondary, 0.01 A steps	
1 A Model:	OFF, 0.05–20 A secondary, 0.01 A steps	
Transient Overreach:	5% of pickup	
Maximum Operating Time:	0.75 cycles	
Time-Overcurrent Elements	i	
Pickup Range		
5 A Model:	0.25-16.00 A secondary, 0.01 A steps	
1 A Model:	0.05–3.20 A secondary, 0.01 A steps	
Accuracy (Steady State)		
5 A Model:	± 0.05 A plus $\pm 3\%$ of setting	
1 A Model:	± 0.01 A plus $\pm 3\%$ of setting	
Time Dial Range		
US:	0.50-15.00, 0.01 steps	
IEC:	0.05–1.00, 0.01 steps	
Curve Timing Accuracy:	± 1.50 cycles plus $\pm 4\%$ of curve time (for current between 2 and 30 multiples of pickup)	

Reset:	1 power cycle or Electromechanical Reset	Maximum Pickup Time:	1.5 cycles
0 I.D. I. I.E.	Emulation time	Maximum Reset Time:	1 cycle
Ground Directional Elements		Timers Setting Range:	0–6000 cycles, 0.125 cycle steps
NegSeq. Directional Impedance Threshold (Z2F, Z2R)			(All but BFIDOn, BFISPn) 0–1000 cycles, 0.125 cycle steps (BFIDOn,
5 A Model:	$-64 \text{ to } 64 \Omega$		BFISPn)
1 A Model: -320 to 320Ω		Time Delay Accuracy:	0.125 cycle plus \pm 0.1% of setting
Zero-Seq. Directional Impedance Threshold (Z0F, Z0R)		Synchronism-Check Eleme	nts
5 A Model:	-64 to 64 Ω	Slip Frequency	
1 A Model:	-320 to 320 Ω	Pickup Range:	0.005-0.500 Hz, 0.001 Hz steps
Supervisory Overcurrent Pie	ckup 50FP, 50RP	Slip Frequency	
5 A Model:	0.25 to 5.00 A 310 secondary	Pickup Accuracy:	± 0.0025 Hz plus $\pm 2\%$ of setting
1 4 14. 1.1	0.25 to 5.00 A 312 secondary	Close Angle Range:	3–80°, 1° steps
I A Wodel:	0.05 to 1.00 A 312 secondary	Close Angle Accuracy:	±3 ⁻
Directional Power Elements	S.	Load-Encroachment Detec	tion
Pickup Range	-	Setting Range	
5 A Model:	-20000.00 to 20000 VA_0.01 VA steps	5 A Model:	0.05–64 Ω secondary, 0.01 Ω steps
1 A Model:	_4000 00 to 4000 VA 0.01 VA steps	1 A Model:	$0.25-320 \Omega$ secondary, 0.01Ω steps
Accuracy (Steady State):	+5 VA plus +3% of setting at nominal	Forward Load Angle:	-90° to $+90^{\circ}$
Accuracy (Steady State).	frequency and voltage	Reverse Load Angle:	$+90^{\circ}$ to $+270^{\circ}$
Time-Delay:	0.00-16000.00 cycles, 0.25 cycle steps	Accuracy	
Timer Accuracy:	± 0.25 cycle plus $\pm 0.1\%$ of setting	Impedance Measurement:	±3%
Undervoltage and Overvolt	age Elements	Angle Measurement:	±2°
Pickup Ranges		Out-of-Step Elements	
Phase Elements:	2-300 V secondary, 0.01 V steps	Blinders (R1) Parallel to th	e Line Angle
Phase-to-Phase	4 520 0 V secondary 0.01 V steps	5 A Model:	0.05 to 70 Ω secondary -0.05 to -70 Ω secondary
A courses (Steady State)	4-520.0 v secondary, 0.01 v steps	1 A Model:	0.25 to 350 Ω secondary
Accuracy (Steady State):	± 0.5 v plus $\pm 5\%$ of setting		-0.25 to -350Ω secondary
Inderfrequency and Overfu	<3% of pickup	Blinders (X1) Perpendicula	ar to the Line Angle
Underfrequency and Overfr	equency Liements	5 A Model:	0.05 to 96 Ω secondary
Pickup Range:	40.01–69.99 Hz, 0.01 Hz steps		-0.05 to -96Ω secondary
Accuracy, Steady State Plus Transient:	±0.005 Hz for frequencies between 40.00 and 70.00 Hz	I A Model:	-0.25 to -480Ω secondary -0.25 to -480Ω secondary
Maximum Pickup/Dropout Time:	3.0 cycles	Accuracy (Steady State):	$\pm 3\%$ of setting for SIR (source to line impedance ratio) < 30
Time-Delay Range:	0.04-400.0 s, 0.01 s increments	Transiant Overreach	$\pm 5\%$ of setting
Time-Delay Accuracy:	±0.1% ±0.0042 s	Desitive Sequence Oversu	< 5% of setting
Pickup Range,	20 200 X	Sotting Dense	
Undervoltage Blocking:	$20-200 V_{LN} (Wye)$	Setting Range	
Pickup Accuracy, Undervoltage Blocking:	$\pm 2\% \pm 0.5 \text{ V}$	5 A Model:	1.0-100.0 A, 0.01 A steps
Ontional RTD Flements		I A Model:	0.2–20.0 A, 0.01 A steps
(Models Compatible With S	SEL-2600 RTD Module)	Accuracy (Steady State)	
12 RTD Inputs Via SEL-26	00 RTD Module and SEL-2800 Fiber-Optic	5 A Model:	$\pm 3\%$ of setting plus ± 0.05 A
Transceiver		TA Model:	$\pm 3\%$ of setting plus ± 0.01 A
Monitor Ambient or Other Temperatures		Transient Overreach:	<5% of setting
PT 100, NI 100, NI 120, and Selectable	d CU 10 RTD-Types Supported, Field	Bay Control Breakers:	2 (control), 3rd indication
As long as 500 m Fiber-Optic Cable to SEL-2600 RTD Module		Disconnects (Isolators):	10 (maximum)
Breaker Failure Instantaneous Overcurrent		Timers Setting Range:	1–99999 cycles, 1-cycle steps
Setting Range		Time-Delay Accuracy:	$\pm 0.1\%$ of setting, ± 0.125 cycle
5 A Model:	0.50–50.0 A, 0.01 A steps	Timer Specifications	. ,
1 A Model:	0.10–10.0 A, 0.01 A steps		0.6000 meter 0.125 meters
Accuracy	-	Breaker Failure:	(All but BFIDOn, BFISPn)
5 A Model:	± 0.05 A plus $\pm 3\%$ of setting		0–1000 cycles, 0.125 cycle steps (BFIDO <i>n</i> ,
1 A Model:	± 0.01 A plus $\pm 3\%$ of setting		Бг15 <i>Рп</i>)

Communications-Assisted Tripping Schemes:

0.000–16000 cycles, 0.125 cycle steps

Transient Overreach:

<5% of setting

Out-of-Step Timers	
OSBD, OSTD:	0.500-8000 cycles, 0.125 cycle steps
UBD:	0.500-120 cycles, 0.125 cycle steps
Pole-Open Timer:	0.000-60 cycles, 0.125 cycle steps
Recloser:	1-99999 cycles, 1 cycle steps
Switch-Onto-Fault	
CLOEND, 52AEND:	OFF, 0.000–16000 cycles, 0.125 cycle steps
SOTFD:	0.50–16000 cycles, 0.125 cycle steps
Synchronism-Check Timer	s
TCLSBK1, TCLSBK2:	1.00-30.00 cycles, 0.25 cycle steps
Zone Time Delay:	0.000–16000 cycles, 0.125 cycle steps

Station DC Battery System Monitor Specifications

Rated Voltage:	24–250 Vdc
Operational Voltage Range:	0-300 Vdc
Sampling Rate:	DC1: 2 kHz DC2: 1 kHz
Processing Rate:	1/8 cycle
Operating Time:	<1.5 cycles (all elements except ac ripple) <1.5 seconds (ac ripple element)
Setting Range	
DC Settings:	1 Vdc steps (OFF, 15-300 Vdc)
AC Ripple Setting:	1 Vac steps (1-300 Vac)
Pickup Accuracy:	$\pm 3\% \pm 2$ Vdc (all elements except ac ripple) $\pm 10\% \pm 2$ Vac (ac ripple element)

Metering Accuracy

All metering accuracy is at 20°C, and nominal frequency unless otherwise noted.

Currents

Phase Curi	ent	Magnitude
------------	-----	-----------

5 A Model:	±0.2% plus ±4 mA (2.5–15 A sec)
1 A Model:	±0.2% plus ±0.8 mA (0.5–3.0 A sec)
Phase Current Angle	
All Models:	$\pm 0.2^\circ$ in the current range 0.5 \bullet I_{NOM} to 3.0 \bullet I_{NOM}
Sequence Current Magnitu	ude
5 A Model:	±0.3% plus ± 4 mA (2.5–15 A sec)
1 A Model:	±0.3% plus ± 0.8 mA (0.5–3 A sec)
Sequence Current Angle	
All Models:	$\pm 0.3^\circ$ in the current range 0.5 \bullet I_{NOM} to 3.0 \bullet I_{NOM}
Voltages	
Phase and Phase-to-Phase Voltage Magnitude:	$\pm 0.1\%$ (33.5–300 V _{L-N})
Phase and Phase-to-Phase Angle:	$\pm 0.5^{\circ} (33.5 - 300 \text{ V}_{L-N})$
Commence Valtage	

Magnitude:	$\pm 0.1\%$ (33.5–300 V _{L-N})
Sequence Voltage Angle:	$\pm 0.5^{\circ} (33.5 - 300 \text{ V}_{\text{L-N}})$

Frequency (Input 40-65 Hz)

Accuracy:

± 0.01 Hz

Power

MW (P), Per Phase (Wye), 3¢ (Wye or Delta) Per Terminal $\pm 1\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 1, 0.5 lead, lag (1 ϕ) $\pm 0.7\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 1, 0.5 lead, lag (3 ϕ) MVAr (Q), Per Phase (Wye), 3¢ (Wye or Delta) Per Terminal $\pm 1\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 0, 0.5 lead, lag (1 ϕ) $\pm 0.7\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 0, 0.5 lead, lag (3 ϕ) MVA (S), Per Phase (Wye), 3¢ (Wye or Delta) Per Terminal $\pm 1\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 1, 0.5 lead, lag (1 ϕ) $\pm 0.7\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 1, 0.5 lead, lag (3 ϕ) PF, Per Phase (Wye), 36 (Wye or Delta) Per Terminal $\pm 1\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 1, 0.5 lead, lag (1 ϕ) $\pm 0.7\%$ (0.1–1.2) • I_{NOM}, 33.5–300 Vac, PF = 1, 0.5 lead, lag (3 ϕ) Energy MWh (P), Per Phase (Wye), 36 (Wye or Delta) Synchrophasor Number of Synchrophasor Data Streams: 5 Number of Synchrophasors for Each Stream: 15 Phase Synchrophasors (6 Voltage and 9 Currents) 5 Positive-Sequence Synchrophasors (2 Voltage and 3 Currents) Number of User Analogs 16 (any analog quantity) for Each Stream: Number of User Digitals for Each Stream: 64 (any analog quantity) Synchrophasor Protocol: IEEE C37.118-2005, SEL Fast Message (Legacy) Synchrophasor Data Rate: as many as 60 messages per second Synchrophasor Accuracy ±1% Total Vector Error (TVE) Voltage Accuracy: Range 30-150 V, f_{NOM} ±5 Hz ±1% Total Vector Error (TVE) Current Accuracy: Range (0.1-2.0) • I_{NOM} A, f_{NOM} ±5 Hz Synchrophasor Data

 Records as much as 120 s
 IEEE C37.232-2011 File Naming Convention

Recording:

Technical Support

We appreciate your interest in SEL products and services. If you have questions or comments, please contact us at:

Schweitzer Engineering Laboratories, Inc. 2350 NE Hopkins Court Pullman, WA 99163-5603 U.S.A. Tel: +1.509.338.3838 Fax: +1.509.332.7990 Internet: selinc.com/support Email: info@selinc.com

Content subject to change without notice.

SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com • info@selinc.com

 $[\]textcircled{\sc s}$ 2000–2025 by Schweitzer Engineering Laboratories, Inc.

 $[\]label{eq:unless} Unless otherwise agreed in writing, all SEL product sales are subject to SEL's terms and conditions located here: https://selinc.com/company/termsandconditions/.$

 $[\]mathsf{EtherCAT}^{\textcircled{0}}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany