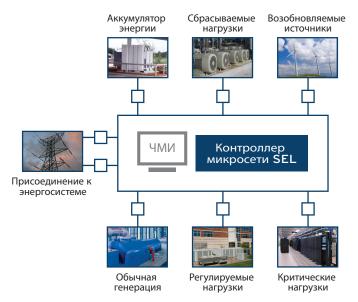
# Системы для микросетей SEL

Надежное и экономичное энергоснабжение



# Отказоустойчивость и надежность при любых условиях.

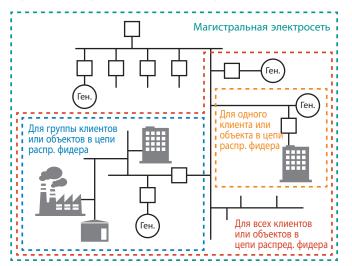
- Рациональный контроль, бесперебойное секционированние, и полноценное управление генерацией и нагрузкой.
- Наш опыт предварительного проектирования, разработки, тестирования и ввода в эксплуатацию гарантируют успех внедрения.
- Встроенная система оптимизации снижает затраты на электроэнергию и выбросы.
- Надежная многоуровневая кибербезопасность обеспечивает безопасную эксплуатацию.
- Масштабируемость системы управления сводит к минимуму затраты на разработку.




### Гарантия бесперебойного энергоснабжения вашей системы

Системы управления микросетями SEL представляют собой надежные и безопасные решения, обеспечивающие бесперебойное энергоснабжение. Они управляют и защищают многие формы распределенных источников энергии. Системы SEL позволяют переводить систему электроснабжения в режим автономной работы и обеспечивают непрерывное энергоснабжение после потери соединения с магистральной энергосистемой.

Микросети дают преимущества различным клиентским сегментам во множестве отраслей:


- Свет горит благодаря нам Элементы управления микросетью SEL позволяют беспрепятственно отделять (или изолировать) микросеть от центральной сети, что обеспечивает надежную и устойчивую подачу энергии независимо от ситуации.
- Снижение расходов для пользователя системы.
  Микросети SEL дают их владельцам возможность регулировать количество энергии, которое они вырабатывают локально или получают от энергосистемы.
- Упрощение интеграции возобновляемых источников энергии. Для обеспечения потребностей местного энергоснабжения владельцы микросетей SEL могут выбирать или определять приоритетную комбинацию локальных возобновляемых и невозобновляемых источников энергии.



**Объединение всех активов** — с помощью систем управления микросетями SEL можно защищать и контролировать различные типы распределенных энергоресурсов.

### Детерминированное управление

Решения компании SEL объединяют надежные вычислительные устройства и средства связи для обеспечения высокого качества управления микросетью, в том числе адаптивную ретрансляцию, синхрофазоры и кибербезопасность. Микросети имеют меньшую инерцию по сравнению с более крупными энергосетями. Это означает, что им требуются контроллеры микросетей SEL, работающие на скоростях реле. Чтобы сохранять баланс между нагрузкой и генерацией, поддерживать стабильность системы и обеспечивать высокое качество электроэнергии, алгоритмы управления и реагирования на спрос должны работать намного быстрее.



**Конфигурирование сегментирования** — внутри микросети элемент управления SEL позволяет обеспечивать электроснабжение критически важных нагрузок по одной или нескольким субмикросетям.

#### Интеллектуальный центр микросети

«Сердцем» каждой надежной микросети SEL является мощный контроллер, который способен реагировать на внешние данные, такие как тарифные сигналы в режиме реального времени и быстро меняющиеся динамические данные системы. Эта возможность позволяет контроллеру микросети оптимизировать конфигурацию системы на основе приоритетов пользователя системы и данных в режиме реального времени. Быстрый детерминированный контроллер может работать на скоростях подцикла, что позволяет ему надежно балансировать нагрузку на основе доступной генерируемой мощности.

Управление сбалансированным распределением энергии в микросети — одна из самых сложных задач для обеспечения надежной работы микросети. Поскольку контроллер SEL способен работать на скоростях реле, сбалансированное распределение реализуется без каких-либо проблем, то есть при секционировании и повторной синхронизации с сетью все процессы продолжают работать. Контроллеры и системы SEL дают возможность предприятию поддерживать непрерывность рабочих процессов, таким образом увеличивая время безотказной работы до максимума.

В системах управления микросетью SEL управление микросетью и автоматизация распределительной сети могут быть объединены в одном контроллере. Это значительно повышает экономическую ценность микросети. Интеграция этих функций в одном контроллере дает экономичное решение с низким уровнем риска для владельца системы. Интегрированные средства автоматизации распределения позволяют реализовывать конфигурацию сети внутри микросети, потому что условия, влияющие на магистральную сеть, также могут влиять на микросеть.

# Схемы адаптивной защиты для безопасной эксплуатации

Интеграция распределенных энергетических ресурсов и новых топологий, встроенных в микросети, снижает эффективность схем защиты в микросетях по сравнению с обычными распределительными системами. Интеграция распределенных энергетических ресурсов (РЭР) в микросетях может изменять токи короткого замыкания, изменять пути протекания тока короткого замыкания, приводить к двунаправленным потокам энергии и влиять на работу устройств защиты. В системы управления микросетями SEL интегрированы схемы адаптивной защиты, гарантирующие постоянную защиту персонала и оборудования, независимо от конфигурации сети. Адаптивные схемы позволяют оптимизировать защиту посредством использования разных настроек для одного и того же реле.

# Синхрофазорные измерения для более эффективного управления

SEL интегрирует в микросети технологию синхрофазорных измерений с высоким разрешением в реальном времени, что обеспечивает более эффективное управление системой и ее работу.

Преимущества использования синхрофазоров:

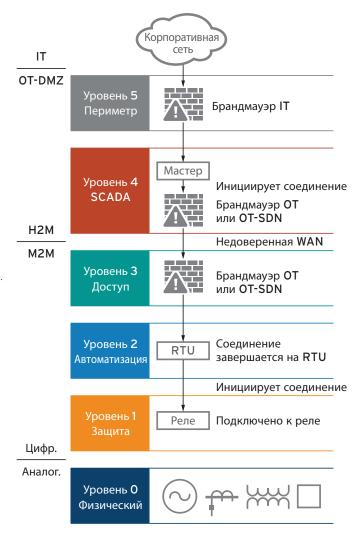
- Быстрый и надежный переход к автономной работе (определение условий секционирования)
- Плавная повторная синхронизация с энергосетью
- Измерения в реальном времени для более эффективного управления
- Лучшее представление о работе системы благодаря прямым векторным измерениям

#### Поддержание стабильной работы энергосети

Ключевые преимущества микросетей связаны с их способностью обеспечивать сбалансированную работу процессов и гибкость эксплуатации и компенсировать спрос на электроэнергию в пиковые периоды. Системы управления микросетями SEL обеспечивают комплексное управление генерацией и нагрузками.

#### Функции контроля генерации

- Благодаря автоматическому управлению генерацией сбалансированная выработка энергии и номинальная частота сети поддерживаются при всех сценариях работы.
- С помощью функции динамического расчета кривой производительности постоянно отслеживается максимальная производительность распределенной генерации.
- Функция контроля напряжения балансирует реактивную мощность и поддерживает напряжение системы при любых условиях эксплуатации.


#### Управление нагрузкой

- Функция приоритетного быстродействующего аварийного и частотного сброса нагрузки обеспечивает сброс нагрузки, реагируя на конфигурацию и работу системы.
- Ограничение максимума нагрузки уменьшает количество энергии, покупаемой в часы пик, когда тарифы самые высокие.
- Перенос нагрузки устраняет пики спроса путем предварительного накопления энергии в системах управления энергопотреблением или предварительного охлаждения здания для снижения ожидаемых расходов.

### Надежная кибербезопасность

Надежная работа очень важна, потому что микросети используются во время сложных погодных условий или чрезвычайных ситуаций. Структура кибербезопасности в системах управления микросетями SEL обеспечивает отказоустойчивое питание критически важных объектов и защищает не только от злонамеренных атак. Этот функционал предоставляет возможность контролировать доступ пользователей к различной информации по всей системе. Угрозы могут возникать как в связи с внешними злонамеренными атаками, так и из-за случайных внутренних ошибок.

Наш многоуровневый подход к кибербезопасности максимизирует надежность и минимизирует вмешательство средств управления в существующие критические процессы. В дополнение к средствам физической безопасности, в системах SEL реализованы четыре цифровые зоны защиты.



**Обзор Системы Безопасности**—В системах микросетей SEL используется глубокоэшелонированный подход, гарантирующий защиту информации и надежную работу.

### Гарантия успешного внедрения

Помимо выбора компонентов, есть и другие факторы, которые необходимо учитывать при внедрении микросети. Помимо разработки, проектирования и внедрения микросетей, SEL предлагает различные виды дополнительных услуг. Эти услуги повышают рентабельность инвестиций в проект и гарантируют его успешную реализацию.

#### Определение системных требований

Предварительное проектирование (FEED) — важный этап разработки проектов микросетей. Цель FEED — установить и определить технические требования, применимые стандарты и ключевые принципы проекта. При разработке проектов микросетей такая задача может заключать в себе сложности, поскольку отраслевых стандартов и нормативов для микросетей мало; однако SEL имеет многолетний опыт проектирования и внедрения микросетей и является надежным поставщиком решений для многих энергосистем. В ходе нашего процесса предварительного проектирования мы анализируем специфические для проекта требования заказчика с целью предотвратить внесение серьезных изменений в проект впоследствии, снизить риски и учесть обязательства по использованию ресурсов на этапе реализации.



Заводские приемочные испытания — перед отгрузкой все системы управления микросетями тщательно тестируются и конфигурируются с использованием метода программно-аппаратное моделирования.

#### Анализ показателей работы системы

SEL предлагает заказчикам детальные характеристики работы системы и моделирование электромагнитных переходных процессов (EMTP), что может облегчить принятие решений о характеристиках микросети. Такие исследования и моделирование могут использоваться для проектирования новой микросети, анализа и улучшения существующей микросети или изучения уязвимости конкретной системы. SEL предлагает:

- Моделирование переходных процессов и динамики работы системы
- Анализ взаимодействия оборудования
- Моделирование бросков тока
- Анализ потока энергии

#### Передача знаний

В целях успешного внедрения SEL проводит комплексное обучение конечных пользователей, включающее проводимое на месте обучение персонала, а также предоставление полного комплекта материалов и документации. Для управления системами и конфигурациями также проводится углубленное обучение инженерным аспектам работы системы. По единому номеру телефона службы поддержки SEL можно получить техническую поддержку круглосуточно.

## **Комплексное тестирование для сокращения** времени простоя

Все системы управления микросетями SEL на этапах проектирования и тестирования проверяются методом программно-аппаратного моделирования. Это гарантирует, что перед поставкой устройства, которые фактически будут использоваться в сети, проверяются в контролируемой среде и предварительно настраиваются для интеграции с системой. Таким образом уменьшается количество работ на месте эксплуатации, что ведет к сокращению сроков ввода в эксплуатацию.



Повышение безопасности, надежности и экономичности использования электроэнергии +1.509.332.1890 | sel eurasia@selinc.com | selinc.com/ru

