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Fundamentals of Short-Circuit 
Protection for Transformers 

Bogdan Kasztenny, Michael Thompson, and Normann Fischer, Schweitzer Engineering Laboratories, Inc. 

Abstract—This paper reviews principles of protection against 
internal short circuits in transformers of various constructions. 
Transformer fundamentals are reviewed as pertaining to 
protection. In particular, the electromagnetic circuit of a 
transformer is reviewed that links the terminal currents, winding 
currents, fluxes, and ampere-turns (ATs) in a set of balance 
equations for a given transformer. These balance equations are 
used to explain the sensitivity of protection to various types of 
transformer faults. The paper shows that the classical 
transformer differential compensation rules have roots in the 
first principles—they reflect the AT balance of the protected 
transformer. The rule of building transformer differential 
protection equations following the AT balance is used in this 
paper to derive differential equations for autotransformers; 
power zig-zag, Scott-T, and Le-Blanc transformers; and phase 
shifters. The restricted earth fault (REF) and negative-sequence 
transformer differential (87TQ) functions are explained as a 
means to detect ground faults near the neutral and turn-to-turn 
faults, respectively. 

I.  INTRODUCTION 
The differential protection principle applied to power 

transformers requires accounting for transformer winding 
connections. With reference to transformers of standard 
winding connections, these protection rules are commonly 
referred to as ratio matching, vector group compensation, and 
zero-sequence removal. 

Many protection engineers face difficulties applying these 
principles to transformers of nonstandard or unusual 
connections (e.g., phase shifters, Scott-T transformers, power 
zig-zag transformers) under unusual locations or connections 
of current transformers (CTs) or under special configurations, 
such as a tertiary delta winding not accounted for in the 
differential scheme. When offered a choice of CT locations in 
a nonstandard transformer, an engineer may lack the expertise 
to select an optimum location, given the targeted protection 
sensitivity and the intended protection method. 

In addition, it is typically challenging for some 
practitioners to analyze the coverage and sensitivity of a given 
short-circuit protection scheme. For example: Is the buried 
tertiary covered by differential protection? Is the restricted 
earth fault (REF) sensitive to interwinding faults? Do the 
sensitivity and coverage of a given differential scheme depend 
on the type of transformer core (three leg versus five leg) or 
the grounding method for wye-connected windings? 

This paper explains principles of short-circuit protection 
for transformers and autotransformers by deriving proper 
balance equations for differential protection from the ampere-
turn (AT) equations of a healthy transformer. A number of 
standard and nonstandard winding configurations are 
considered, assuming different core types, as well as locations 

and connections of CTs. This enables an in-depth 
understanding of the known current differential compensation 
rules for standard transformers and teaches how to develop 
proper protection equations for any arbitrary transformer. 

II.  TRANSFORMER FUNDAMENTALS 
It is good to go back to basic principles to refresh ourselves 

on how a transformer works before discussing protection 
concepts. To maintain a high level of focus, we will limit the 
discussion to sinusoidal alternating current. 

A.  Refresher on Transformer Theory 
In its most basic form, a transformer is two or more coils of 

conductor in close proximity to each other, such that the 
magnetic fields generated by the current in each coil are 
linked. Almost universally, a magnetic core is included to 
maximize the coupling of the fields between the coils. 

But let us step back one more level. Faraday’s law tells us 
that a voltage (electromotive force) is created when either a 
conductor is moved through a magnetic field or a magnetic 
field is varied through the conductor. Equation (1) gives the 
special case of sinusoidal current: 

 ( ) ( )v t n • • • cos • tω ω= − Φ  (1) 

where: 
n = number of turns in the coil. 
ω = angular velocity of the sinusoidal function. 
Φ = magnetic flux.  

The amount of magnetic flux, Φ, in (1) is given by (2): 

 n • i
Φ =

ℜ
 (2) 

where: 
i = current. 
ℜ  = reluctance in the magnetic path. 

In (2), n • i  is the magnetomotive force (mmf) that drives 
the flux and is measured in ATs. Equation (2) is the magnetic 
circuit corollary to Ohm’s law for electric circuits. 

An inductor is a single conductor arranged in a coil, such 
that the magnetic field generated by current in each turn 
results in magnetic flux cutting the other turns in the coil. In 
an air core inductor, the reluctance is relatively high, so the 
magnetic flux is relatively low for a given current level. The 
result is a relatively low induced voltage in the coil that 
opposes the current flow [note the minus sign in (1)]. Because 
this opposing voltage is proportional to the current flowing in 
the coil, we characterize this as impedance. 
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Now, if we introduce a magnetic core for the coil that 
creates a low-reluctance path for the magnetic flux, the 
amount of flux per ampere is high, and therefore the voltage 
opposing the current flow per ampere is high. The coil now 
appears as an almost open circuit. The current that flows in 
this case is the so-called magnetizing current that we often 
neglect in our calculations. 

Next, let us introduce a second coil on the magnetic core. 
This creates our basic two-winding transformer. Because the 
two coils are on the same core, the flux cutting them is nearly 
the same. Also, because of the concentrating effect of the 
magnetic core, the volts per turn in both coils are nearly the 
same. We use this characteristic to create the familiar 
transformer, which provides different voltage levels at the coil 
terminals by the ratio of the number of turns in each coil. 

This is a good time to introduce the concepts of mutual flux 
(ΦM) and leakage flux (ΦL). The coupling between the coils is 
never perfect. In Fig. 1, the flux shown as ΦPL, generated by 
nP • iP, does not couple to the secondary coil. Similarly, the 
flux shown as ΦSL, generated by nS • iS, does not couple with 
the primary coil. This flux is called leakage flux, and it results 
in a voltage being induced in each coil that opposes the flow 
of current, per (1). This is represented as the leakage 
impedance in the equivalent circuit of the transformer. 

ΦSM

ΦPM

vP

vS

iP

iS

nP

nS
 

Fig. 1. Fluxes in a transformer. 

B.  Magnetic Circuit Parameters 
It is also useful to review magnetic circuits before going 

on. One way to help electrical engineers understand the 
magnetic circuit is to equate its basic parameters to its 
equivalent electrical circuit parameters. Referring to (2): 

• The flux, Φ, in a magnetic circuit is equivalent to the 
current in an electric circuit. 

• The AT quantity, n • i , in a magnetic circuit is 
equivalent to the voltage in an electric circuit. 

• An unsaturated magnetic core has low reluctance, ℜ , 
so it is like a conductor (reluctance is the magnetic 
equivalent of resistance in an electric circuit). 

• Air has high reluctance, ℜ , so it is like an open 
circuit. 

Fig. 2 is an electrical analogy to the magnetic circuit shown 
in Fig. 1. P P Pn • i AT=  is analogous to a voltage source in 
Fig. 2. Similarly, S S Sn • i AT=  is also analogous to a voltage 
source in Fig. 2. The right core leg in Fig. 1 is a low-
reluctance path that shorts the top and bottom of the magnetic 

circuit together. According to Kirchhoff’s voltage law, the 
analogy in Fig. 2 is that the two voltage sources must sum to 
zero around the voltage loop. Similarly, ATP and ATS must 
sum to zero in the magnetic circuit along the closed loop core 
path. 

Φ

ATP

ATS

Short Circuit

–
–

+

+  

Fig. 2. Electrical analogy to Fig. 1. 

Now, let us close the electrical circuit on the secondary 
terminals in Fig. 1 through a load impedance. Because there is 
a voltage across the secondary terminals, current iS flows 
through the load impedance, and iP flows in the primary coil, 
such that the ATs sum to zero in the core leg (neglecting the 
magnetizing current, which sets up the mutual flux). This 
allows a power transfer between the windings through the 
magnetic core. 

C.  Three-Phase Systems 
Most of the systems that we deal with are three-phase 

systems. Similar to electrical systems that can be built as 
three-wire delta or four-wire wye (star) systems, the magnetic 
circuit of a three-phase transformer can be built as a three-
legged core or with a low-reluctance return path. Examples of 
this type of core include four-legged, five-legged, shell type, 
and three single-phase cores. To help maintain the familiar 
concepts of three-wire versus four-wire systems, we will refer 
to all core construction that provides a low-reluctance return 
path as a four-legged core. As discussed in Section II, 
Subsection B, a return (fourth) core leg acts as a magnetic 
short circuit that forces the AT to sum to zero on each core 
leg, neglecting the leakage flux:  

 1 2 3AT AT AT 0= = =  (3) 

where: 
AT = the sum of ampere-turns in all coils on the same 
core leg. 
1, 2, 3 = the three core legs with coils. 

A three-legged core requires further analysis. We use 
symmetrical component theory to analyze unbalanced three-
phase electrical systems. This technique is useful in 
understanding the differences between a three-legged and 
four-legged core. Symmetrical components let us break down 
a set of three-phase currents into the following components: 

• Positive sequence 
• Negative sequence 
• Zero sequence 

The positive- and negative-sequence components of the 
current are balanced and sum to zero. The AT and resulting 
flux from these components of the current flowing in the coils 
of the transformer also sum to zero, so there is no need for a 
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return path for flux. Thus, there is no difference between a 
three-legged and four-legged core for the positive- and 
negative-sequence components of the phase currents. 

On the other hand, zero-sequence currents are in phase with 
each other and equal in magnitude. Recall that 1xI0 flows in 
each phase per symmetrical component theory. Because the 
zero-sequence currents do not sum to zero, they require a 
return path to flow. This zero-sequence return path must exist 
for the currents in the electrical circuit and for the fluxes in the 
magnetic circuit, or the zero-sequence current cannot flow. As 
we might expect, the difference between a three-legged and 
four-legged core lies in what happens during zero-sequence 
unbalances on the power system. 

If the zero-sequence current in all windings provides 
balancing ATs (i.e., if there is equal 1xI0 AT in each of the 
three primary coils versus each of the three secondary coils), 
the fluxes sum to zero on each core leg, and there is no need 
for the fourth core leg. For example, in many cases, a delta 
winding is included. A delta winding appears as an electrical 
short circuit to zero-sequence voltage on the associated wye-
connected winding. Thus, for any zero-sequence current 
flowing in the wye-connected windings, there is an easy path 
for compensating ATs to flow in the delta winding. In other 
words, a circulating current in the delta winding provides the 
zero-sequence flux that balances the flux along each core leg 
to zero. In this case, the AT on each core leg cancels by 
nature, and there is little flux that needs a return path. 

But, in some cases, there will be zero-sequence ATs 
developed in one three-phase set of coils that are not 
completely compensated by zero-sequence current in the other 
three-phase set of coils. The flux that is driven by these ATs, 
per (2), closes through the high-reluctance path outside the 
magnetic core (i.e., the insulating oil and transformer tank). 
Going back to (1), a coil with a high-reluctance path, such as 
air, results in relatively low levels of flux. Low levels of flux 
in the coil result in relatively low electrical impedance for that 
coil. This low electrical impedance is only associated with 
zero-sequence unbalance. The phenomenon of zero-sequence 
current flowing in wye-connected windings of a three-legged 
core transformer without a compensating delta winding is 
commonly referred to as a phantom delta, phantom tertiary, or 
tank delta. 

To summarize, a three-legged core transformer with wye 
and delta windings is a low-impedance path for zero-sequence 
current because of the electrical short circuit of the delta 
winding. A three-legged core transformer without a delta 
winding becomes a low-impedance path for zero-sequence 
current flow because of the low magnetizing impedance of the 
oil/air path outside the transformer core. 

This seems counterintuitive, because oil and air have low 
relative permeability. However, it is this low permeability of 
oil and air that results in a high-reluctance path. A high-
reluctance path yields a low flux value from the zero-sequence 
current flow. A low flux value means a low opposing voltage 
is induced and therefore a low-inductance value. From a zero-
sequence current point of view, the transformer windings have 
a low impedance. 

D.  AT Equations for Three-Legged Core Transformers 
It is desirable to be able to ignore the core construction 

when designing transformer protection. To do this, we can 
sum the ATs around the three magnetic circuit loops created 
by the three core legs. Two sets of equations are possible for 
the transformer shown in Fig. 3. Creating the loops around a 
pair of core legs in a clockwise direction yields: 

 

( ) ( )
( ) ( )
( ) ( )

P1 S1 P2 S2 1 2

P2 S2 P3 S3 2 3

P3 S3 P1 S1 3 1

AT AT – AT AT 0 AT – AT

AT AT – AT AT 0 AT – AT

AT AT – AT AT 0 AT – AT

+ + = =

+ + = =

+ + = =

 (4) 

Creating the loops around a pair of core legs in a 
counterclockwise direction yields: 

 

( ) ( )
( ) ( )
( ) ( )

P1 S1 P3 S3 1 3

P2 S2 P1 S1 2 1

P3 S3 P2 S2 3 2

AT AT – AT AT 0 AT – AT

AT AT – AT AT 0 AT – AT

AT AT – AT AT 0 AT – AT

+ + = =

+ + = =

+ + = =

 (5) 

In any case, ATs on any pair of core legs are equal at all 
times for three- and four-legged cores, as well as for 
transformers built from single-phase units. 

 

Fig. 3. ATs on a three-legged core. 

III.  SHORT CIRCUITS IN TRANSFORMERS 
Now that we have refreshed our knowledge on transformer 

theory, let us consider various faults a transformer may 
experience. As we can see from Fig. 4, transformer faults can 
be divided into three basic categories—winding-to-ground 
faults (1, 4, 8), winding-to-winding faults (2, 5), and turn-to-
turn faults on the same winding (3, 6, 7). Examining each of 
these categories separately, we will discuss the magnitude of 
the fault current, the method for detecting the fault, and the 
sensitivity of each method. 

 

Fig. 4. Internal transformer faults. 
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A.  Characteristics of Partial Winding Faults 
With reference to Fig. 5, consider a turn-to-turn fault (S1 

closed, S2 opened) or a winding-to-ground fault close to the 
grounded neutral (S1 opened, S2 closed). The H winding has a 
short circuit on the leg labeled 1; the X winding represents the 
healthy winding(s), k is the fractional number of shorted turns 
(few percent), and iF is the fault current. No assumption is 
made regarding the winding connection or core type. 

 

Fig. 5.  A general model of a partial winding fault. 

The difference in ATs on the affected core leg before and 
during the fault amounts to the ATs produced by the fault 
current (iF) flowing through the number of shortened turns, 
(k • nH). As explained in Section II, the ATs are equal between 
all three legs, meaning the fault current produces equal ATs 
across the other two legs of the core.  

As explained later in Section IV, transformer differential 
protection monitors ATs of an unfaulted transformer. 
Therefore, the differential current reflects the unmonitored 
extra ATs produced by a partial winding fault, which is: 

 DIF H Fi ~ k • n • i  (6) 

However, the exact level of the fault current (and thus the 
level of the differential current) is a complex function 
depending on the resistance and inductance of the shorted 
portion of the winding, distribution of fluxes due to the 
winding location with respect to other windings on the 
magnetic core, and possible local saturation of the core. These 
factors are beyond the scope of this paper. 

B.  Winding-to-Ground Faults 
Winding-to-ground faults can be subdivided into two 

categories—namely faults farther away from the neutral point 
(faults that have a greater driving voltage) and faults close to 
the neutral point. 

Winding-to-ground faults farther from the neutral point 
have lower fault current in the faulted loop but result in 
greater change in phase currents on the windings that are on 
the same core as the faulted winding. The large change in 
phase current is due to the increase in the voltage driving the 
fault current. The end result is that protection elements using 
phase currents as operating quantities, such as phase 
differential, can readily detect this type of fault and speedily 
isolate the transformer, thereby limiting damage. 

Winding-to-ground faults close to the transformer neutral 
(see Section III, Subsection A) are associated with a low 
driving voltage. The result of this is that the increase in 

differential current is small, as per (6), but the current in the 
faulted loop is large. If not isolated in a timely manner, this 
current will create considerable damage.  

As seen in Fig. 5, the current in the faulted loop circulates 
(returns) via the transformer neutral, and if we measure this 
loop current, we could reliably detect this type of fault. One 
method uses the neutral current in conjunction with zero-
sequence current calculated from phase currents to create a 
zero-sequence differential element. This is known as the REF 
method and is explained in Section VII. 

C.  Turn-to-Turn Faults 
Turn-to-turn faults also produce a relatively small change 

in differential current, while fault current in the loop is 
relatively large and can cause significant damage if not 
detected and isolated rapidly (see Section III, Subsection A).  

These faults are detectable via a negative-sequence 
differential function, as described in Section VI. 

D.  Winding-to-Winding Faults 
Winding-to-winding faults produce a large change in the 

phase currents of windings that are involved in the fault. This 
means protection elements using phase currents as operating 
quantities can readily detect these faults. Typically, phase 
differential elements are used to detect and isolate these types 
of faults. 

IV.  TRANSFORMER DIFFERENTIAL PROTECTION 
This section makes a connection between the well-known 

current compensation rules for transformer differential 
protection and AT balance equations of the protected 
transformer. It also explains why a differential function that 
follows the practical current compensation rules ensures 
detection of internal transformer short circuits. 

Going back to first principles and balancing the ATs allow 
for the development of current compensation rules for 
nonstandard transformer connections, as illustrated in 
Section V. 

Consider the wye-delta power transformer in Fig. 6. 

iHA
*

iHB

iHC

*
iXA

iXB

iXC

iX1

1

2

3

4
Magnetic 
Circuit

nH nX

iX2

iX3

VHA

VHB

VHC

11*30°

VHA

VXAVXB

VXC

 

Fig. 6. Sample wye-delta transformer. 
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Neglecting the magnetizing branch of the core, we can 
write the following AT equations for the three legs of the core: 

 
1 H HA X X1

2 H HB X X2

3 H HC X X3

AT n • i n • i
AT n • i n • i
AT n • i n • i

= +
= +
= +

 (7) 

Kirchhoff’s current law allows writing the current balance 
equations for the nodes of the delta winding: 

 
XA X1 X3

XB X2 X1

XC X3 X2

i – i i 0
i – i i 0
i – i i 0

+ =
+ =
+ =

 (8) 

Note that we cannot solve for the delta-winding currents, 
because any common component in these currents cancels and 
cannot be measured at the transformer bushings. Instead, we 
eliminate the delta-winding currents in the equations from (8) 
using the AT equations in (7). This yields the following: 

 

( ) ( )
( ) ( )
( ) ( )

X XA H HA HC 1 3

X XB H HB HA 2 1

X XC H HC HB 3 2

n • i n • i – i – AT – AT 0

n • i n • i – i – AT – AT 0

n • i n • i – i – AT – AT 0

+ =

+ =

+ =

 (9) 

As explained in Section II, ATs on any leg pair are equal 
regardless of the core type. By pairing core legs, we can write 
AT balance equations around the resulting magnetic circuit 
loops, similar to the way we would around an electrical circuit 
loop using Kirchhoff’s voltage law. 

Given the equations from (5), the balance equations in (9) 
for the transformer in Fig. 6 become: 

 

( )
( )
( )

X XA H HA HC

X XB H HB HA

X XC H HC HB

n • i n • i – i 0

n • i n • i – i 0

n • i n • i – i 0

+ =

+ =

+ =

 (10) 

Note that H H

X X

n V
n 3 • V

=  and therefore: 

 

( )

( )

( )

H
XA HA HC

X

H
XB HB HA

X

H
XC HC HB

X

V 1i • i – i 0
V 3
V 1i • i – i 0
V 3
V 1i • i – i 0
V 3

+ =

+ =

+ =

 (11) 

Equations in (11) hold true as long as the transformer 
conforms to the assumed model in Fig. 6. Departures from this 
model, including turn-to-turn faults, interwinding faults, 
ground faults, or tap changer operation altering the turn ratio, 
will cause an unbalance. Therefore, expressions in (11) are 
used as operating signals of a transformer differential 
protection element: 

 

( ) ( )

( ) ( )

( ) ( )

H
XA HA HCDIF 1

X

H
XB HB HADIF 2

X

H
XC HC HBDIF 3

X

V 1i i • i – i
V 3

V 1i i • i – i
V 3

V 1i i • i – i
V 3

= +

= +

= +

 (12) 

where: | | denotes magnitude estimation (filtering).  
The restraining signal matches the differential signal but 

responds to the sum of magnitudes rather than the sum of 
vectors: 

 

( )

( )

( )

H
XA HA HCRST 1

X

H
XB HB HARST 2

X

H
XC HC HBRST 3

X

V 1i i • i – i
V 3
V 1i i • i – i
V 3
V 1i i • i – i
V 3

= +

= +

= +

 (13) 

The equations in (12) and (13) have been used for decades 
for the protection of wye-delta transformers. Protective relays 
are connected to CTs, which can be connected either in wye or 
delta. Using phase-to-phase currents (delta-connected CTs) in 
the wye winding and phase currents (wye-connected CTs) in 
the delta winding is commonly referred to as vector 
compensation, a phase shift, or delta compensation. 
Furthermore, using the phase-to-phase current (delta-
connected CTs) in the wye winding also removes the zero-
sequence current component and is therefore commonly 
referred to as zero-sequence removal. The application of the 
voltage ratio is referred to as ratio matching or tap 
compensation. 

Considering the vector diagram in Fig. 6, these rules of 
transformer current compensation yield the diagram in Fig. 7 
for applications with electromechanical relays. In applications 
with microprocessor-based relays, these rules lead to selection 
of the following compensation matrices: 

 H X

1 0 –1 1 0 0
1T • –1 1 0 ,  T 0 1 0
3 0 –1 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (14) 
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Fig. 7. Application with external CT compensation. 

Regardless of the relay technology (electromechanical, 
static, microprocessor-based), the rules of phase shifting, zero-
sequence removal, and ratio matching have roots in matching 
ATs between pairs of the magnetic core legs. As such, the 
resulting differential currents signify the physical balance in 
the protected transformer, and when out of balance, they point 
to an internal short circuit. This creates a solid foundation of 
dependability of transformer differential protection beyond the 
security-oriented view of balancing the transformer currents 
for different phase shifts and ratios. 

Development of the balance equations neglects the 
magnetizing current. The magnetizing current during inrush 
and overexcitation demonstrates itself as the differential signal 
and requires a separate treatment, typically in the form of 
harmonic blocking or restraining. 

V.  TRANSFORMER DIFFERENTIAL PROTECTION BEYOND THE 
COMMON WYE OR DELTA CONNECTIONS 

This section considers transformer connections beyond the 
standard wye or delta windings and progresses from 
autotransformers, through power zig-zag, Scott-T, and 
Le-Blanc transformers, to extended delta phase shifters in 
order to illustrate the derivation of proper transformer 
differential protection equations. 

A.  Autotransformers 
Consider the autotransformer in Fig. 8 with the series (S) 

and common (C) windings. The ATs on each of the core legs 
equal: 

 

( )
( )
( )

1 S HA C HA XA

2 S HB C HB XB

3 S HC C HC XC

AT n • i n • i i

AT n • i n • i i

AT n • i n • i i

= + +

= + +

= + +

 (15) 

or 

 

( )
( )
( )

1 S C HA C XA

2 S C HB C XB

3 S C HC C XC

AT n n • i n • i

AT n n • i n • i

AT n n • i n • i

= + +

= + +

= + +

 (16) 

iHA

1

nS

nC

2 3

iHB iHC

iXA

iXB

iXC

 

Fig. 8. An autotransformer connection. 

Equations from (16) explain the benefits of 
autotransformers compared with two-winding transformers—
the transformation ratio is increased by the common turns 
without adding extra turns in the series winding. This reduces 
both the copper and iron requirements and yields a more 
economical design with reduced losses, size, and weight. 

Balancing the ATs per (5) leads to the following 
differential protection equations: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

H
XA XC HA HCDIF 1

X

H
XB XA HB HADIF 2

X

H
XC XB HC HBDIF 3

X

V
i i – i • i – i

V

V
i i – i • i – i

V

V
i i – i • i – i

V

= +

= +

= +

 (17) 

where: SH

X C

nV
1

V n
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. 

Note that the differential protection equations for 
autotransformers follow the same current compensation rules 
as a wye-wye transformer. The appropriate compensation 
matrices in a microprocessor-based relay are: 

 H X

1 0 –1
1T T • –1 1 0
3 0 –1 1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (18) 

Consider an autotransformer built with three single-phase 
banks or on a four-legged core. Such an autotransformer can 
be protected on a per-phase basis, taking advantage of the 
observation that ATs in each single-phase core equal zero, per 
(3): 

 

( )

( )

( )

H
XA HADIF 1

X

H
XB HBDIF 2

X

H
XC HCDIF 3

X

V
i i • i

V

V
i i • i

V

V
i i • i

V

= +

= +

= +

 (19) 
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The appropriate compensation matrices in a 
microprocessor-based relay are: 

 H X

1 0 0
T T 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (20) 

In some applications, CTs are available at the neutral side 
of the low-voltage winding. In such cases, we may apply a 
bus-like protection zone between the H, X, and neutral CTs 
because of the metallic connection between the windings. 
These zones monitor the electric circuit only, and therefore 
they are blind to turn-to-turn faults. In order to detect turn 
faults, the differential function must effectively monitor both 
the electric and magnetic circuits of the transformer. 

Next, consider an autotransformer with a tertiary delta 
winding, as shown in Fig. 9. 

*
*

*

 

Fig. 9. An autotransformer connection with a tertiary delta winding. 

The electromagnetic balance for this transformer is: 

 

( )
( )
( )

1 S C HA C XA Y Y1

2 S C HB C XB Y Y2

3 S C HC C XC Y Y3

AT n n • i n • i n • i

AT n n • i n • i n • i

AT n n • i n • i n • i

= + + +

= + + +

= + + +

 (21) 

Following the example of a wye-delta transformer in 
Section IV, we eliminate the winding currents and obtain the 
following equations for the differential function: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

H Y
XA XC HA HC YADIF 1

X X

H Y
XB XA HB HA YBDIF 2

X X

H Y
XC XB HC HB YCDIF 3

X X

V V
i i – i • i – i 3 • i

V V

V V
i i – i • i – i 3 • i

V V

V V
i i – i • i – i 3 • i

V V

= + +

= + +

= + +

 (22) 

The appropriate compensation matrices in a 
microprocessor-based relay are: 

 H X Y

1 0 –1 1 0 0
1T T • –1 1 0 ,  T 0 1 0
3 0 –1 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (23) 

If the tertiary delta winding is not brought out (buried), the 
equations in (22) simplify to (17) as if the transformer were a 
two-winding transformer. The buried delta winding is still 
protected to a degree, because it takes part in the magnetic 
circuit of the transformer. The case of a buried delta is 
equivalent to the case of a power delta winding with the 
breaker opened. However, the degree of protection is limited 
by the fact that the power rating of the tertiary delta in 
autotransformers is often much less than the full rating of the 
transformer. This results in a small fault current when 
reflected from the delta winding to the high- and low-voltage 
windings of the autotransformer. 

Also, ground faults on an ungrounded, buried delta 
winding cannot be detected based on current signals. 

Let us go back to a single-phase or a four-legged core 
design in the context of a buried delta winding. Quite often, 
the winding currents in the delta winding are measured to 
polarize directional line protective relays [iY1, iY2, and iY3 in 
(21)]. With the inside delta currents available, the 
autotransformer can be protected as a three-winding 
transformer, balancing the phase currents per (21), (20), and 
(19): 

 

( )

( )

( )

H H
XA HA Y1DIF 1

X Y

H H
XB HB Y2DIF 2

X Y

H H
XC HC Y3DIF 3

X Y

V V
i i • i 3 • • i

V V

V V
i i • i 3 • • i

V V

V V
i i • i 3 • • i

V V

= + +

= + +

= + +

 (24) 

B.  Power Zig-Zag Transformers 
Consider the wye/zig-zag connection in Fig. 10. 

iHA *

iHB

iHC

1

2

3

nH

VXC

VHA

VHB

VHC

11*30°

**
iXA

iXB

iXC

0.5nX 0.5nX

VHA

VXAVXB

 

Fig. 10. Wye/zig-zag power transformer connection. 
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The ATs on each of the core legs equal: 

 

( )

( )

( )

X
1 H HA XA XB

X
2 H HB XB XC

X
3 H HC XC XA

n
AT n • i • i – i

2
n

AT n • i • i – i
2

n
AT n • i • i – i

2

= +

= +

= +

 (25) 

Comparing the ATs on core leg pair 1 and 3 per (5) yields: 

( ) ( )X
1 3 H HA HC XA XB XC

n
AT – AT n • i – i • 2 • i – i – i

2
= +  (26) 

Considering that H
H

V
n ~

3
 and X

X
Vn ~ 2•
3

, we obtain: 

( ) ( )X
1 3 HA HC XA XB XC

H

V1 1AT – AT i – i • • 2 • i – i – i
V 33

= +  (27) 

which yields the following differential signal: 

( ) ( ) ( )X
HA HC XA XB XCDIF 1

H

V1 1i i – i • • 2 • i – i – i
V 33

= +  (28) 

For the other two relay elements, we use (28) and rotate the 
subscript indices: 

( ) ( ) ( )X
HB HA XB XC XADIF 2

H

V1 1i i – i • • 2 • i – i – i
V 33

= +  (29) 

( ) ( ) ( )X
HC HB XC XA XBDIF 3

H

V1 1i i – i • • 2 • i – i – i
V 33

= +  (30) 

The appropriate compensation matrices in a 
microprocessor-based relay are: 

 H X

1 0 –1 2 –1 –1
1 1T • –1 1 0 ,  T • –1 2 –1

33 0 –1 1 –1 –1 2

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (31) 

C.  Summary of Compensation Matrices for Wye, Delta, and 
Zig-Zag Windings 

The TX matrix in (31) is often referred to as a double-delta 
connection, because it is equivalent to connecting the main 
CTs in delta and their secondary circuits in delta again when 
applying external compensation for electromechanical relays. 
The TH matrix in (31) is referred to as a single-delta 
connection. The TY matrix in (23) is referred to as a wye 
connection. In general, transformer delta windings require a 
wye compensation matrix, wye windings require a single-delta 
compensation matrix, and zig-zag windings require a double-
delta compensation matrix. 

D.  Scott-T Transformers 
The Scott-T transformers shown in Fig. 11 historically 

have been used to connect two- and three-phase systems. They 
are still used in applications with two-phase motors, such as in 
mining or railway systems and, recently, in power electronics. 

* *
*

* *

0.5nH 0.5nH

nX

nX

iHA iHB iHC

iXQ

iXD

VA

VB

VC

VD

VQ

H
3 n
2

90°

 

Fig. 11. A Scott-T transformer connection. 

The transformer is made of two independent cores. We 
write AT balance equations for each core separately: 

 ( )H
HA HC X XD

n
i – i n • i 0

2
+ =  (32) 

 H
HB X XQ

3 • n
• i n • i 0

2
+ =  (33) 

By replacing the turn counts with nominal voltages and 
introducing the differential currents, we obtain: 

 ( ) ( )H
HA HC XDDIF 1

X

V
i • i – i i

2 • V
= +  (34) 

 ( )
H

HB XQDIF 2
X

3 • V
i • i i

2 • V
= +  (35) 

where:  
VH = the nominal voltage in the three-phase system 
(phase to phase). 
VX = the nominal winding voltage in the two-phase 
system (phase to ground). 

The two differential currents can be created in a standard 
four-winding transformer relay using wye compensation 
matrices applied to the following four currents (windings): 

 
D A C

Q B

i i –i 0
i ,  0 ,  0 ,  i
0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (36) 

The above currents are created by appropriately wiring the 
five currents of the Scott-T transformer to four current 
terminals of the relay. Three tap compensation factors are 
required for the first (Tap 1), fourth (Tap 2), and second and 
third (Tap 3) windings in (36), as per the scaling factors in 
(34) and (35). 

Alternatively, we can create the A-phase minus C-phase 
currents by connecting secondaries of the main CTs and using 
the following three windings in a standard transformer relay: 

 
D A C

Q B

i i – i 0
i ,  0 ,  i
0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (37) 
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E.  Le-Blanc Transformers 
Le-Blanc transformers also serve the purpose of feeding 

two-phase loads from three-phase systems but are built using a 
three-legged core, as shown in Fig. 12. 

*
*

*

( )− X3 1 • n( )− X3 1 • n

 

Fig. 12. Le-Blanc transformer connection. 

The AT balance equations are: 

 

( )

( )

1 H H1 X XQ X XD

2 H H2 X XQ

3 H H3 X XQ X XD

AT n • i – 3 –1 • n • i n • i

AT n • i n • i

AT n • i – 3 –1 • n • i – n • i

= +

= +

=

 (38) 

Comparing the ATs in pairs of core legs per (5) allows 
eliminating the winding currents in the delta winding based on 
(8) and writing the differential protection equations. We 
further use nominal voltages defined for the Scott-T 
transformer above to eliminate the turn counts: 

 ( )
X

HA XDDIF 1
H

2 • V
i i i

3 • V
= +  (39) 

 ( ) ( )X
HB XQ XDDIF 2

H

V
i i 3i – i

3 • V
= +  (40) 

 ( ) ( )X
HC XQ XDDIF 3

H

V
i i – 3i i

3 • V
= +  (41) 

In order to simplify implementation in a standard 
transformer relay, we can consider combining the second and 
third differential terms by subtracting (40) and (41) as follows: 

 ( )
X

HB HC XQDIF 23
H

2 • V
i i – i i

V
= +  (42) 

A multiwinding standard transformer differential relay with 
wye compensation matrices can be used to implement (39) 
through (41) or (39) and (42), as similarly explained for the 
Scott-T transformer above. 

F.  Extended Delta Phase-Shifting Transformers  
Consider the extended delta phase-shifting transformer 

(PST) in Fig. 13 with the series (S) and exciting (E) windings. 
The AT equations are: 

 

S S
1 SA LA E E1

S S
2 SB LB E E2

S S
3 SC LC E E3

n n
AT D • • i – D • • i n • i

2 2
n n

AT D • • i – D • • i n • i
2 2

n n
AT D • • i – D • • i n • i

2 2

= +

= +

= +

 (43) 

In (43), the source current works with half of the series 
windings multiplied by the tap changer position; the load 
current works with half of the series windings multiplied by 
the tap position but in the opposite direction; and the 
excitation current works with the number of excitation 
winding turns. The source, load, and excitation currents are 
tied together with Kirchhoff’s current equations as follows: 

 
SA LA E3 E2

SB LB E1 E3

SC LC E2 E1

i i i – i
i i i – i
i i i – i

+ =

+ =

+ =

 (44) 

*

*

 

Fig. 13. Extended delta phase-shifting transformer (where S is source side, 
L is load side, D = 0 is neutral control, D = +1 is full advance control, and 
D = –1 is full retard control). 

Comparing the ATs on each pair of core legs in (5) and 
substituting the excitation currents with the source and load 
currents per (44) yields: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

S SA LA SC LC E SB LBDIF 1

S SB LB SA LA E SC LCDIF 2

S SC LC SB LB E SA LADIF 3

Di n i – i – i – i n i i
2
Di n i – i – i – i n i i
2
Di n i – i – i – i n i i
2

= + +

= + +

= + +

 (45) 

As expected, the transformer differential protection 
equations are dependent on the position of the tap changer, D. 
Note that the protection method in (45) does not require 
measuring the excitation currents. 
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A standard multiwinding transformer relay can be used to 
implement equations from (45). First, let us rewrite (45) to a 
more convenient form: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

S SA SC LC LA E SB LBDIF 1

S SB SA LA LB E SC LCDIF 2

S SC SB LB LC E SA LADIF 3

Di n i – i i – i n i i
2
Di n i – i i – i n i i
2
Di n i – i i – i n i i
2

= + + +

= + + +

= + + +

 (46) 

The six currents can be wired to four relay current 
terminals (windings) as follows: 

 
SA LA SB LB

SB LB SC LC

SC LC SA LA

i –i i i
i ,  –i ,  i ,  i
i –i i i

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (47) 

The first two windings use the following compensation 
matrix: 

 
1 0 –1

1 • –1 1 0
3 0 –1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (48) 

The latter two windings use the following matrix: 

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (49) 

Alternatively, external CT summation can be arranged, and 
a two-winding transformer relay can be used with the 
following currents: 

 
SA LA SB LB

SB LB SC LC

SC LC SA LA

i – i i i
i – i ,  i i
i – i i i

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (50) 

and matrices (48) and (49), respectively. 
The challenge is to implement a variable tap coefficient 

dependent on D for the first two windings in (47) or the first 
winding in (50). This variability can be accommodated with a 
coarse granularity via multiple settings groups. We need to 
remember that D can be negative (retard versus advance 
control). 

VI.  NEGATIVE-SEQUENCE DIFFERENTIAL 
As described in Section III, when a turn-to-turn fault 

occurs, the magnitudes of the phase currents of the associated 
winding do not change significantly. However, as a result of 
the fault, the symmetry of the phase currents on both the 
primary and secondary sides of the transformer (or any other 
piece of equipment) is disturbed. The change in symmetry 
during this type of fault favors using negative-sequence 
currents to detect it. 

But before we examine the negative-sequence differential 
element, let us understand how the symmetrical components 
in the terminal currents transform into the differential currents 

of the standard phase differential element, limiting its ability 
to detect these types of faults. As explained in Section IV and 
commonly used in microprocessor-based relays, the phase 
differential function applies matrix compensation to 
transformer terminal currents: 

 
A A

B B

C CC

I I
I T • I
I I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (51) 

We can use (51) to examine how the sequence components 
(zero = 0, positive = 1, negative = Q) in the terminal currents 
are converted into sequence components of the compensated 
currents. 

 
0 0

–1 2
1 1

2
Q QC

1 1 1I I
1I A • T • A • I ,  A 1 a a
3

I I 1 a a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (52) 

For example, the transformation matrix TH in (14), when 
expressed for symmetrical components, is: 

 
0

0

– j30

j30

0 0 0

0 e 0

0 0 e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (53) 

Generally, the compensation matrix for a symmetrical 
component of any three-phase transformer is: 

 j

– j

0 /1 0 0

0 e 0

0 0 e

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (54) 

and can be interpreted as follows: 
• δ is the nameplate phase shift of the transformer. 
• The positive sequence in the terminal current shifted 

by the vector group angle transforms into the positive 
sequence in the compensated current ( je δ ). 

• The negative sequence in the terminal current shifted 
by the minus vector group angle transforms into the 
negative sequence in the compensated current ( – je δ ). 

• The zero sequence is normally removed (value 0), 
except when the unity transformation matrix (49) is 
used as applicable to delta windings (value 1). 

• The three sequence components are decoupled [the 
off-diagonal elements in (54) are zeros]. 

The phase-restraining signal is a sum of the magnitudes of 
the compensated phase currents. Considering (54), this means 
that both the positive- and negative-sequence components in 
the terminal currents produce restraint for the phase 
differential function. 

For a balanced system, the differential current is 
approximately zero, and the restraining signal is proportional 
to the positive-sequence current (load). This means that the 
sensitivity of the element is directly impacted by the load 
current. 
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With this in mind, let us return to the turn-to-turn fault. We 
know that this type of fault creates a disturbance of the 
symmetry of both primary- and secondary-side phase currents, 
which manifests itself as a negative-sequence current. If the 
transformer is lightly loaded (i.e., the restraint current is 
small), then this element has good sensitivity and may detect 
turn-to-turn faults. However, as the load increases, the 
sensitivity of the phase differential element is reduced, and the 
ability to detect turn-to-turn faults is diminished. 

If we use pure negative-sequence current to build a 
differential element, we have the advantage of making the 
element highly sensitive and relatively independent from load. 

In this respect, note that the compensated currents are 
summed to form the phase differential current. Considering 
(54), this means that the sequence components in the 
differential currents are sums of appropriately shifted and 
ratio-matched sequence components in the terminal currents. 
For example, in the case of the wye-delta transformer in 
Section IV, the negative-sequence component in the 
differential current is: 

 ( ) ( ) ( )
0j30H

DIF Q X Q H Q
X

V
I I • e • I

V
= +  (55) 

Note that (55) is nothing more than a component of the 
phase differential signals in (12). As such, it does not by itself 
bring any significant gain in sensitivity. 

Sensitivity is enhanced because we eliminate the impact of 
load current (positive sequence) and restrain (55) only with 
the negative-sequence current: 

 ( ) ( ) ( )
H

RST Q X Q H Q
X

V
I I • I

V
= +  (56) 

A negative-sequence differential element defined by (55) 
and (56) is considerably more sensitive compared with the 
phase differential element, not because the operating signal 
(55) is higher but because the restraining signal (56) is load-
independent and therefore considerably lower during turn-to-
turn faults. 

The wye-delta transformer example used above can be 
extended to any three-phase transformer, including 
autotransformers, multiwinding transformers, and phase 
shifters. The extension is possible because of the way the 
sequence components in the terminal currents blend into the 
sequence components in the phase differential currents from 
(54). 

To demonstrate, consider the PST in Section V with the 
differential currents defined by (46). The negative-sequence 
differential current is: 

 ( ) ( )
( )

( )
j D

DIF Q S Q L QI I e • IΘ= +  (57) 

where: 

 ( )
S

E

S

E

nDj – 3 • •
2 n

D angle
nDj 3 • •

2 n

⎛ ⎞
⎜ ⎟
⎜ ⎟Θ =
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (58) 

In summary, a negative-sequence differential element can 
be applied to any three-phase transformer as follows: 

• The differential current is a vector sum of ratio-
matched, negative-sequence terminal currents. 

• Prior to adding to the negative-sequence differential 
current, the terminal negative-sequence currents are 
phase-shifted by the negative vector group angle. 

• The restraining signal is a sum of the ratio-matched 
magnitudes of the terminal negative-sequence currents 
(other combinations are also possible, such as the 
“maximum of” approach). 

• In the case of PSTs, angle shift is variable, but the 
operation of shifting the negative sequence is still a 
simple multiplication by a complex number (but 
variable depending on the tap changer position). 

The above “recipe” for the transformer negative-sequence 
differential element may appear heuristic, but as demonstrated 
in this section, it is well-founded in the physics of a three-
phase transformer. It is based on exactly the same principle of 
balancing ATs in the core of the transformer. The gain in 
sensitivity is possible because the matching through-fault 
negative-sequence current is used as a restraint. 

Equation (55) can be implemented as a negative-sequence 
transformation of the phase differential currents, a sum of the 
negative-sequence components in the ratio-matched and 
compensated terminal currents [1], or a ratio-matched and 
phase-shifted sum of the negative-sequence components in the 
terminal currents [2]. Regardless of the method, the outcome 
is mathematically identical as long as the phasors are extracted 
using linear filters. 

As is often the case, this advantage is also a weakness of 
the element in that false negative-sequence currents are also 
generated during through faults with CT saturation. However, 
external fault detection guards this sensitive protection 
function very well, allowing for secure, fast, and sensitive 
operation. 

VII.  REF PROTECTION 

A.  Common REF Schemes 
REF protection is intended to detect partial winding faults 

to ground near the neutral terminal of a grounded wye or zig-
zag connected winding, or of an autotransformer. For these 
faults, the phase currents measured at the terminals of the 
transformer can be quite low, while the current in the shorted 
turns can be very high, quickly damaging the transformer (see 
Section III, Subsection A). REF schemes are also 
recommended for impedance-grounded systems where the 
ground fault current is limited to a much lower level than the 
phase fault currents. An REF scheme can provide much higher 
sensitivity than the phase differential elements to detect these 
low-level ground faults. 

REF protection schemes take advantage of the fact that the 
current in the fault loop can be measured directly by the 
neutral terminal bushing CT. In a solidly grounded system, the 
ground current can be quite high, even when the phase 
currents are small. 
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Fig. 14 and Fig. 15 show the two main schemes used for 
REF protection, using the application example of an 
autotransformer [3][4]: 

• Current-polarized directional ground element. 
• High-impedance REF differential element. 

H1

X1

H2

X2

H3

X3

H0X0
32

3I0 3I0

High current for partial 
winding fault to ground

Single H0X0 CT eliminates possibility of false 
3I0 in neutral terminal for external fault

Simple directional element
Currents all scaled to primary units

 

Fig. 14. Current-polarized directional REF scheme. 

 

Fig. 15. High-impedance REF scheme. 

Both of these schemes work on the principle of Kirchhoff’s 
current law, similar to a bus differential zone, and sum the 
zero-sequence currents in the transformer zone. Current must 
flow from a winding to ground in order for these schemes to 
detect the fault. They do not match ATs in the transformer 
cores and therefore cannot detect turn-to-turn faults. REF also 
cannot detect winding-to-winding (phase-to-phase) faults. 

It is common to apply a similar current summation (bus-
like) differential zone with some uncommon transformers, 
such as PSTs, either in addition to or instead of transformer 
differential protection. For example, because of the difficulty 
in incorporating factor D from (46) in the transformer 
differential protection system, the PST in Fig. 13 may be 
protected by six current summation zones around each 
individual winding. To accomplish this, CTs would be 
required on each end of the delta excitation windings. Because 
this scheme does not monitor the magnetic circuit, it will not 
detect turn-to-turn faults. When using this differential 
protection approach, it is necessary to rely on sudden pressure 
relaying to detect turn-to-turn faults. 

B.  Security and Dependability Issues With REF Schemes 
The zero-sequence current at the terminals of the 

transformer is formed by the summation of three-phase 
currents and therefore can include false zero-sequence current 
when one of the phase CTs saturates. This is particularly 
relevant in dual-breaker transformer terminations when the 
maximum external fault current is not limited by transformer 
impedance and when the external fault current does not 

include a genuine zero-sequence component (line-to-line and 
three-phase faults). Sensitive REF schemes must be designed 
to be secure for this condition. The high-impedance scheme in 
Fig. 15 is inherently immune to CT saturation by nature of its 
operation principle. 

The current-polarized directional element in Fig. 14 
requires additional logic for security. Security from false zero-
sequence current is obtained by requiring that current be 
present above a threshold in the neutral of the transformer. 
Because zero-sequence current at the neutral of the 
transformer is measured by a single CT, it is not possible to 
have a false zero-sequence current in this signal. 

The current-polarized directional scheme also requires 
additional logic for dependability. In a delta-wye transformer, 
the transformer can be energized from the delta winding with 
the wye-winding terminal open. In this case, no zero-sequence 
current can flow at the boundary of the zone, so a directional 
decision cannot be made. In this case, a bypass logic path 
allows tripping when there is zero-sequence current in the 
neutral and none present in the terminals of the transformer. 

VIII.  DISCUSSION 
Differential protection of transformers against internal 

short circuits is accomplished using differential current 
equations that effectively emulate the AT equations of the 
transformer and, by doing so, monitor both the electric and 
magnetic circuits of the transformers. Changes in the 
monitored electromagnetic circuits, such as turn-to-turn faults, 
ground faults, winding faults, and some open circuits, are 
therefore detected by the said protection equations within 
sensitivity limits of a given implementation. 

For standard transformer connections, including wye, delta, 
and zig-zag windings, as well as autotransformers, the said 
transformer protection equations can be created using the 
known protection engineering principles of vector group 
compensation, ratio matching, and zero-sequence removal. 
Various heuristic rules are available to quickly select the 
proper compensation rules. When in doubt, the AT equations 
can be consulted to check or confirm the proper compensation 
rules. 

For nonstandard transformer connections, such as PSTs, 
the AT balance allows developing proper transformer current 
differential equations. The resulting equations are always 
linear but different compared with what is required for the 
wye, delta, and zig-zag windings. Microprocessor-based 
relays can be used to implement these equations with some 
accuracy and sensitivity. 

Traditional transformer differential protection faces 
sensitivity limits for turn-to-turn faults and ground faults near 
the neutral terminal in a grounded winding. Theoretically, 
these faults upset the AT balance, but because of the 
autotransformer effect, the differential current unbalance can 
be small if a small percentage of the coil is shorted. At the 
same time, a given relay needs to maintain security in light of 
possible CT errors or an on-load tap changer, typically by 
means of restraining, resulting in less sensitive protection. 
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REF provides sensitive protection for ground faults near 
the neutral. This function monitors the electric circuit of the 
protected winding for currents leaking to ground, and 
therefore it responds to ground faults only. 

Negative-sequence differential protection increases 
sensitivity to turn-to-turn faults. This method is based on the 
AT balance, but instead of monitoring three balance equations 
between the three-phase currents, it monitors a single 
composite current, known as the negative sequence. This is 
derived from the phase differential currents. Using the 
composite signal does not increase the operating signal, but it 
redefines the restraining signal, allowing for more sensitive 
operation. Similar to REF, this function is susceptible to CT 
errors and therefore benefits from external fault detector 
algorithms or similar security measures often made available 
in microprocessor-based relays. 

Nonstandard transformers invite applications with bus-like 
differential zones. Like REF, these zones do not monitor the 
electromagnetic circuit of the transformer and therefore will 
not detect turn-to-turn faults and other faults that do not divert 
the current outside of the monitored bus-like zones. 

Phase transformer differential protection supplemented 
with REF and negative-sequence functions provides good 
sensitivity to transformer faults based on current 
measurements. Sudden pressure protection complements the 
electrical protection when larger transformers are used or 
when the electrical functions cannot provide good sensitivity. 

IX.  CONCLUSIONS 
Differential protection of a transformer follows the AT 

balance of the unfaulted transformer. The AT balance brings 
the currents from the galvanically isolated winding networks 
to a common equivalent circuit, allowing application of 
Kirchhoff’s current law to form a differential scheme. 

The classical rules of current compensation for transformer 
differential protection (vector group compensation, ratio 
matching, zero-sequence removal) replicate the AT balance of 
the unfaulted transformer. 

Following the rule of AT balance allows us to analyze 
sensitivity and limitations of a given protection method, as 
well as derive proper differential protection equations for 
nonstandard transformers (i.e., Scott-T, Le-Blanc, phase 
shifters). 

REF protection complements the traditional phase 
differential scheme, providing good sensitivity to ground 
faults near the neutral point of grounded wye or zig-zag 
windings. 

Similarly, the negative-sequence differential element 
supplements the phase differential by providing sensitive 
protection to turn-to-turn faults, particularly during heavy load 
conditions. 

A combination of phase differential, REF, and negative-
sequence differential allows electrical (current-based) 
protection of transformers without sensitivity gaps as 
compared with sudden pressure relays. 
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