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Abstract—The use of 81 elements (over or under-frequency 
functions) necessitates the proper measurement of the local 
frequency. In many modern relays, the frequency measurement 
is based upon the voltage or current waveforms, the sampling of 
which is under the control of the technique known as adaptive 
sampling or frequency tracking. In this situation, the frequency 
measurement and the frequency tracking are tied together, 
resulting in undesirable frequency measurement transients. The 
purpose of this paper is to introduce techniques that will render 
frequency measurement and frequency tracking completely 
independent from each other, allow the frequency measurement 
to be free of any transient resulting from the adaptive sampling, 
and to exhibit an acceptable dynamic response. 

I.  INTRODUCTION 

In many digital protective relays or intelligent electronic 
devices (IEDs), an independent circuit separate from the 
microprocessor accomplishes frequency measurement for the 
purpose of implementing 81 elements (81O over or 81U 
under-frequency elements) Implementation of the protective 
functions and elements occurs within the microprocessor. One 
disadvantage of this solution is that we need additional 
hardware components to measure the frequency, and this 
degrades the overall reliability of the relay. 

With the advent of more powerful microprocessors and the 
proliferation of numerical algorithms to measure the signal 
(voltages and currents) frequency, it has become common to 
compute the local frequency in the same microprocessor or 
controller that implements the protective functions. 

Two sampling techniques are available to acquire the 
voltage and current instantaneous samples: fixed sampling 
frequency and adaptive sampling frequency. Existing 
literature describes scores of algorithms to measure the 
frequency using a fixed sampling frequency, and some of 
these algorithms have been applied in relays. This paper 
addresses only the seldom documented issue of calculating the 
frequency by using adaptive sampling. Assuming that we 
acquire the instantaneous samples of the signal at a rate of N 
samples-per-cycle of the signal’s frequency SIGFREQ, with 
an adaptive scheme, the sampling frequency SAMFREQ will 
vary depending upon the local network frequency and can be 
calculated in steady state as follows: 

 SIGFREQNSAMFREQ •=  (1) 

Based on this simple equation, one might be tempted to 
infer that a straightforward frequency measuring algorithm 

could be devised by simply dividing the sampling frequency 
by the number N as in the following equation: 

 
N

SAMFREQ
SIGFREQ =

 (2) 

This paper will demonstrate that although this conclusion is 
applicable in steady state, things become more complicated in 
transient state where the basic principle of (2) is no longer 
applicable. When the purpose of the frequency measurement 
is to implement 81 elements, special precautions are necessary 
to get a frequency measurement that will have an acceptable 
dynamic response in transient state. In this paper, we explain 
that the frequency measurement must comply with some basic 
dynamic requirements to yield acceptable frequency functions. 

II.  FREQUENCY TRACKING IN DIGITAL RELAYS 

A.  Principles of Digital Filtering of Waveforms in Numerical 
Relays 

A numerical protective relay, after it acquires voltage and 
current waveforms at some sampling frequency, processes 
these waveforms instantaneous samples through a digital filter 
for the purpose of extracting the waveform fundamental 
frequency phasor. Among the most popular digital filtering 
systems are the half- or full-cycle DFT filter or its offshoot, 
the half- or full-cycle Cosine filter [3]. The full-cycle DFT 
filter uses a data window of N samples according to the 
following equation to compute a waveform fundamental 
phasor: 
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A full-cycle Cosine filter calculates a waveform 
fundamental phasor following (4): 
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A particularity of these numerical filtering systems is that 
they have a magnitude and phase frequency response and that 
they will calculate the fundamental phasor properly only when 
the sampling frequency is a multiple of the signal frequency, 
the multiple being the number N equal to the number of 
samples in one cycle of the signal frequency. 

When applying (3) or (4), one gets a signal phasor that 
rotates counterclockwise in the complex plane with steps of 
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360/N degrees. The phasor can be made still or time-invariant 
in the complex plane by multiplying the rotating phasor by a 
unit phasor that rotates in the reverse direction (clockwise) 
with the same angular step [9]. 

We select a Cosine filter in relays because this filter 
exhibits a better rejection than the Fourier filter for any 
exponentially decaying component present in current signals 
during a fault. We can use a Cosine filter without a high-pass 
filter to reject a dc component, and the Cosine filter will be 
more immune to high-frequency noise than a Fourier filter ([3] 
[10]). 

Fig. 1 represents the normalized magnitude frequency 
response of a full-cycle Cosine filter. The filter exhibits a 
unity gain at the frequency corresponding to the sampling 
frequency divided by the number of instantaneous samples N 
in one cycle. As an example, if the sampling frequency is 
960 Hz and N = 16, unity gain occurs at 60 Hz. 
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Fig. 1.  Normalized magnitude frequency response of the Cosine filter 

For a particular signal, a filter data window is the number 
of instantaneous samples the filter must process to acquire a 
waveform phasor. We assume here that the waveform has 
constant magnitude, phase angle, and frequency. Assuming a 
sampling frequency of N = 16 samples per cycle, a full-cycle 
Fourier filter has a data window of 16 samples. A half-cycle 
Fourier filter data window has 8 samples. A half-cycle Cosine 
filter will have a data window of 12 samples, whereas the full-
cycle version of the same filter has a data window of 20 
samples. 

When we acquire a phasor by means of a Fourier or Cosine 
filter, there are two well-known situations where the phasor 
calculation creates a transient: a change in the waveform 
magnitude or a change in the phase angle. 

Transmission line voltage waveforms undergo a reduction 
in magnitude at the occurrence of a fault. During this time, we 
will assume that the frequency remains constant. Let us further 
assume that we use a Cosine filter with a sampling rate of 16 
samples per cycle. We need to have 20 samples in the 
waveform data window corresponding to the fault condition 
before the waveform phasor will be error-free and its 
magnitude and phase angle will equal the steady state of the 
fault condition. During the interval of time when some of the 
older samples in the data window correspond to the pre-fault 
condition, the calculated waveform will be in transient state  
(i.e., it will exhibit an error in magnitude and phase angle with 

respect to the final values corresponding to the fault 
conditions). 

The interval of time necessary to change all the samples in 
a waveform data window so that they correspond to a new 
condition is commonly called the filter nominal response time. 
A full-cycle Fourier filter has a response time of one cycle and 
a full-cycle Cosine filter has a response time of one and a 
quarter cycles. 

B.  Principles of Frequency Tracking Implementation in 
Digital Relays 

To allow a relay to compute voltage and current phasors on 
a broad enough frequency interval, protective and signal 
processing engineers have devised a technique commonly 
known as frequency tracking. Fig. 2 shows the basic 
implementation of the frequency tracking principle. It consists 
of the following: 

1. We calculate the necessary sampling frequency 
SAMFREQ by multiplying N times the measured 
signals frequency SIGFREQ.  

2. The IED or the relay controller calculates a preset 
count by dividing the system clock frequency C by the 
desired sampling frequency as follows: 

 
SAMFREQ

CClockSystem
PCountesetPr =  (5) 

The main component of the frequency tracking circuit 
is therefore a programmable interval generator. The 
interval generator is supplied with a clock at frequency 
C Hz. 

3. After the interval generator has been supplied with the 
proper preset count P, it will generate pulses at the 
frequency corresponding to the sampling frequency.  

4. We supply the sampling pulses to the sample-and-hold 
line of the circuit acquiring the analog waveforms. 
 

 Fig. 2 shows the acquisition of three voltage waveforms 
for the three phases, but the principle could be extended to any 
number of channels. 

As the preset count P changes to track the signal frequency, 
at the output of each sample-and-hold device, a waveform 
sampled at a frequency corresponding to N times the signal 
frequency SIGFREQ will be available for further processing 
through the multiplexer and analog-to-digital converter. 

C.  Phasor Transient State During a Change in Frequency 

We have already examined the situation where a change in 
the magnitude or the phase angle of a waveform creates a 
transient in the calculation of the corresponding phasor. A less 
known phenomenon that causes a transient in the phasor 
calculation is a change in the sampling frequency. 
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Fig. 2. Principle of frequency tracking circuitry 

Let us assume that we use the principle of frequency 
tracking to acquire the instantaneous samples of a waveform 
and that the waveform changes frequency before it settles to 
some final frequency. During the time the change is taking 
place, the filters will not acquire the waveform instantaneous 
samples in the corresponding data window with the sampling 
frequency corresponding to the final frequency value. 
Therefore, during that same time-interval, the calculated 
phasor will be in transient state (i.e., it will exhibit an error in 
magnitude and phase angle with respect to its steady-state 
value). 

D.  The Justification for Frequency Tracking in Digital Relays 

It is beyond the scope of this paper to review for each 
protective function all the problems encountered when a 
digital relay does not compensate for the phasors calculation 
of frequency excursions. Following some of the major 
blackouts that have occurred in North America in the recent 
past (the North-East US-Canadian blackout during August 
2003 in particular), we have witnessed a surge of interest  in 
this topic when protection engineers realized that many relays 
misoperated during large frequency excursions with high rate-
of-change of frequency. The topic of how modern digital 
relays behave has been consequently the object of some 
excellent reports ([5] [6] [7]). We will illustrate here two 
situations where frequency tracking is an absolute necessity: 
elements based on magnitude estimation and elements using a 
memory. 

Phasor magnitude estimation undergoes substantial 
distortion when the sampling frequency does not correspond 
to the signal frequency. Fig. 3 illustrates the magnitude 
acquisition by a Cosine filter of a unit sine-step at 70 Hz using 
a sampling frequency of 960 Hz (or 16 samples per cycle at 
60 Hz). The sampling frequency difference with respect to 
rated signal frequency is therefore Δf = 10 Hz. As indicated in 

[7], the magnitude oscillation will be proportional to sin(πΔf), 
and the oscillation frequency will be twice the signal 
frequency (or 2 times SIGFREQ in Hz). The magnitude that 

normally should be flat at level 1 reaches peaks of 1.15 and 
valleys at 0.9. The consequence of this is that some elements, 
such as an overvoltage element (59), could overreach. A 
classical example is a hydroelectric synchronous generator 
that will accelerate, practically without limit, following a loss 
of load. An overvoltage element could overreach if the phasor 
magnitude acquisition is not properly compensated [7]. 

Fig. 4 illustrates the acquisition of a 50 Hz sine-step by the 
same Cosine filter at the same sampling frequency of 960 Hz. 
The phasor magnitude that is also supposed to be flat at level 
1 reaches peaks now at 0.97 and valleys at 0.75. An 
overvoltage (59) element could now underreach when an 
undervoltage element (27) could overreach. 
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Fig. 3. Cosine-filter magnitude acquisition of a 70 Hz sine-step 
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Fig. 4. Cosine-filter magnitude acquisition of a 50 Hz sine-step 

Another situation that has drawn the attention of protection 
engineers recently ([5] [7]) is that of elements that incorporate 
memory action. As an example, assume implementation of a 
conventional impedance or distance element (21) with a mho 
characteristic by defining one operating vector and one 
polarizing vector as in the following: 

 
VpolSpol

Vr–IrZLmSop

=
••=

 (6) 

In this last equation, m is the element reach, ZL is the line 
positive-sequence impedance, Ir is the current at the input of 
the element, and Vr is the voltage at the input of the element. 

Conventional voltage polarizing quantities Vpol include 
self-polarization, cross-polarization, polarization by positive 
sequence phasor (PSP) voltage V1, and, finally, polarization 
by positive sequence voltage memory (V1M). 
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The element asserts when the scalar product between the 
operating quantity and the polarizing quantity is positive or 
when it satisfies (7): 

 )]V(conj•)Vr–Ir(•ZL•m[realP pol=  (7) 

In this last equation ‘real’ represents ‘real part of’, and 
‘conj’ stands for ‘conjugate of’. The scalar product is 
tantamount to implementing an angle comparator: if the angle 
between the polarizing quantity and the operating quantity 
becomes smaller than 90 degrees, the element asserts. 

An alternate solution to the scalar product of (7) is to 
calculate the reach m as follows: 

 
)]V(conj•Ir•ZL[real

)]V(conj•Vr[real
m

pol

pol
=  (8) 

and then to compare the calculated m value to some reach 
threshold [4]. The advantage of this alternate method is that m 
is calculated once and for all and is used to establish all the 
required zones. Another advantage is that, provided the fault 
resistance is small, m will equal a value close to the distance 
to the fault. 

It is a very well-known phenomenon that when two 
waveforms with a frequency difference Δf are sampled with 
the same sampling frequency (where the sampling frequency 
is a multiple of one of the two waveforms) the angle between 
the two corresponding phasors will rotate at a speed 
proportional to the frequency difference Δf. We observe the 
same phenomenon if the same waveform is sampled at two 
different sampling frequencies. When there is a memory in the 
polarizing voltage, this is precisely the phenomenon that takes 
place. When there is a frequency swing, the vector 
corresponding to the operating quantity and the vector 
corresponding to the polarizing quantity are not sampled at the 
same frequency because there is a proportion of the polarizing 
waveform that has been acquired earlier when the waveform 
had a different frequency. The angle between the two vectors 
(operating and polarizing) will start to shift from the steady-
state value. This occurs not because of a change in the power 
system conditions, but because of the mismatch in the 
sampling frequencies of the waveforms associated with the 
two vectors. Ultimately, as a result of the rotation between the 
two vectors, the angle between the two vectors could become 
less than 90 degrees and the mho element will misoperate. 

If there is no memory effect in the polarizing quantity, all 
waveforms in the operating and polarizing quantities are 
digitized using the same sampling frequency, and there is a 
reduced shift of the angle between the two operating and 
polarizing vectors. Therefore, self-polarized and cross-
polarized mho elements are less affected by frequency swings. 
Mho elements that include a percentage of memory in the 
polarizing quantity are affected by network frequency swings 
and could misoperate under certain conditions. 

The worst-case scenario corresponds to the combination of 
the follow conditions: 

• the mho element with the highest reach 
• a heavily loaded line (as load increases, the angle 

between Sop and Spol approaches 90 degrees or could 

becomes less than 90 degrees with a subsequent 
misoperation resulting from load) 

• a high proportion of memory in the polarizing quantity 
• a ramping network frequency with a high value of 

Hz/s 
To illustrate this phenomenon, let us consider among the 

six possible impedance loops the one covering the A-phase-to-
B-phase faults. For the element covering this fault type, Vr is 
equal to (VA – VB) and Ir is equal to (IA – IB). Let us assume 
that we use the voltage PSP memory for the polarization, so 
that we obtain the following: 

 °∠=
••=
30M1VSpol

)VB–VA(–)IB–IA(ZLmSop
 (9) 

The voltage PSP memory is calculated according to 
equations ([4] [7]): 

 V1M(t) = (1 – α) • V1M(t – Δt) + α • V1(t)  (10) 

Let us assume now that the three voltages and three 
currents take the next mathematical form: 

                      va(t) = Vsin(2π60t + θ(t)) 

                      vb(t) = Vsin(2π60t + θ(t) – 120°) 

                      vc(t) = Vsin(2π60t + θ(t) + 120°) 

 

)120)t(t602sin(I)t(ic

)120)t(t602sin(I)t(ib

))t(t602sin(I)t(ia

ϕ−°+θ+π=
ϕ−°−θ+π=

ϕ−θ+π=
 (11) 

V and I are secondary values. We obtain the secondary 
load impedance as according to the following: 

 ϕ∠=
I

V
ZLOAD  (12) 

For the purpose of the demonstration, let us set the variable 
as follows (secondary values): 

 

Ω°∠=•
=α

°=ϕ
=
=

8490ZLm

2.0

15

Amp2I

Volts69V

 (13) 

Remember that with these parameters, the combination of 
the load and the high reach value brings the angle between 
Vop and Spol to 91.6 degrees; this is close to misoperation. 
Note also the high percentage of voltage memory (80 percent). 

In the first experiment, we set θ(t) equal to zero, so that the 
signal frequency will be at exactly 60 Hz. In the second 
experiment, we set θ(t) equal to the next expression: 

 2t5.0)t( •−=θ  (14) 
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This time-variable phase angle θ(t) is equivalent to having 
a changing signal frequency with a rate of change equal to  
–1 Hz/s: 

 t1–60)t(frequency •=  (15) 

Fig. 5 illustrates the impact of the ramping frequency on 
the angle between the operating and polarizing vectors. With 
the signals frequencies at 60 Hz, the angle is stable at 91.6°. 
With the ramping frequency, the angle starts to oscillate and 
eventually drops below 90 degrees after about 0.6 s, with 
subsequent misoperation of the element. 

Fig. 6 illustrates the same phenomenon by looking at the 
time trajectory of the scalar product. When the frequency is 
fixed at 60 Hz, the scalar product is constant and negative, and 
the mho element will not operate. With no frequency tracking, 
and when the frequency is ramping at a rate of –1 Hz/s, the 
scalar product will start to oscillate and will become positive a 
little after 0.6 s. The mho element will misoperate then.  

Fig. 7 shows the variation of the A-phase voltage 
magnitude as the frequency ramps down to 59 Hz. In another 
section of this paper, we explain how frequency tracking will 
correct both situations: element misoperation and magnitude 
acquisition.  
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Fig. 5. Angle between operating and polarizing vectors at 60 Hz and 
ramping frequency without frequency tracking 
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Fig. 6. Mho element scalar product at 60 Hz and with ramping frequency 
without frequency tracking 

Bear in mind here that the same phenomenon would have 
taken place if, instead of the scalar product, we would have 

used the distance calculation of (3). Performing the m 
calculation of (3) is equivalent mathematically to performing 
the scalar product of (2). 

E.  The Practice of Frequency Tracking in Relays 

If we categorize relays based on frequency tracking, relays 
can be divided into two classes: transmission line and 
distribution relays on one side and synchronous generator and 
motor relays on the other side. 

The two classes of relays share an ability to operate with a 
sampling frequency corresponding to the rated frequency in 
the absence of input signals  

Transmission line and distribution relays will practically 
operate all the time with the network frequency close or equal 
to rated frequency. They will, however, undergo frequency 
excursions as a result of disturbances occurring on the 
network. For this reason, the interval of frequency tracking 
will be limited to a few hertz around the rated frequency. 
Typically, frequency tracking will cover a minimum interval 
of ±5 hertz around 60 Hz. 
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Fig. 7. Magnitude of VA voltage with ramping frequency without frequency 
tracking 

Synchronous generator relays must cope with a start-up 
and shut-down procedure that can vary from one turbine type 
to another. Before completing the synchronizing procedure 
that ties a generator to the network, the different protective 
functions have to be operational and relays must have 
acquired the voltage and current phasors properly. 
Furthermore, and as we already noted, some generators could 
be the object of substantial acceleration with rapid change of 
frequency as would happen with a hydroelectric unit following 
a total or partial loss of load. With rotating machinery, the 
interval of frequency tracking has to be therefore as broad as 
possible, typically spanning a minimum range of 20 to 70 Hz. 

Finally, whereas with a transmission line relay an increase 
or decrease of the sampling frequency will always occur 
around the rated frequency of 60 Hz, a generator relay will be 
the object of a brutal step-change in the sampling frequency 
during startup. In this situation, the relay must switch from the 
sampling frequency at rated frequency (corresponding to the 
absence of signal) to the low frequency of the minimum signal 
it can detect upon application of voltage to the field winding. 
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F.  Independent Frequency Tracking and Frequency 
Measurement in Relays 

Many relays incorporate a frequency tracking feature, but 
they offer a frequency measurement that the relay does not 
process digitally. In such a situation, frequency tracking and 
frequency measurement can be considered as completely 
independent. Fig. 8 presents an example of such an 
application. It has the following features: 

1. The frequency tracking is accomplished following the 
principles described previously. 

2. The three voltages waveforms are supplied to an 
analog circuit performing a linear combination of the 
three voltages. The linear combination ensures that if 
we lose one voltage, we can still use the remaining 
two phases to calculate the frequency. 

3. A low-pass filter follows the linear adder. 
4. A comparator and squarer generate a rectangular pulse 

corresponding to the waveform positive half cycle. 
The pulse width would be equal to 8.333 ms at 60 Hz. 
A more advanced version of the application could 
generate a pulse corresponding to the waveform 
negative cycle as well. The diagram does not show 
this. 

5. An AND gate controls the arrival of oscillator pulses 
to a counter. As an example, with an oscillator 
frequency equal to 7.2 MHz, the counter exhibits a 
count of 60000 at the end of the pulse with a width of 
8.333 ms. This count therefore corresponds to a 
frequency measurement of 60.000 Hz.  

The main advantage of this circuit is that we get a 
frequency measurement that is completely independent from 
the frequency tracking and which does not use the sampled 
values of the voltages for the purpose of computing the 
frequency. 

The drawback of the circuit is that it requires additional 
components and it does not benefit from the flexibility of a 
digital implementation. 

 

Fig. 8. Example of independent frequency tracking and frequency 
measurement 

III.  PRINCIPLES OF FREQUENCY MEASUREMENT 

CONCURRENTLY WITH FREQUENCY TRACKING 

A.  Frequency Measurement Using Adaptive Sampling 

Let us assume now that we want to compute the frequency 
digitally using the instantaneous samples of voltage or current 
waveforms that have undergone the process of an adaptive 
sampling rate. Let us assume further that we compute the 
three-phase voltage phasors (VA, VB, and VC) by means of a 
full-cycle Cosine filtering system. We obtain the voltage PSP 
from the following: 

 )VCaVBaVA(*)3/1(1V 2 •+•+=  (16) 
It has been established that if the sampling frequency 

corresponds exactly to N times the signal frequency, the 
voltage PSP will still be in the complex plane. If, however, 
there is a discrepancy between the sampling rate and the signal 
frequency, the voltage PSP will rotate in the complex plane at 
a rate proportional to the frequency deviation [8]. Let us 
assume that we measure the angular rotation Ψm (Fig. 9) of the 
voltage PSP during an interval of time tm. The difference in 
the signal frequency with respect to the sampling frequency 
can be computed as according to the following: 

 
m

m

t2
f

π
ψ

=Δ
 (17)

 

We can now calculate the signal frequency SIGFREQ: 

 
f

N

SAMFREQ
SIGFREQ Δ+=

 (18)
 

mψ

 

Fig. 9. Rotation of the voltage PSP 

Assume that we measure the angular displacement every 
quarter of a cycle. We can then obtain the frequency deviation 
from the following: 

 

SAMFREQ

4
2

f m

π

ψ
=Δ

 (19)

 

We can then calculate the angular rotation: 

 ⎥⎦

⎤
⎢⎣

⎡
−⎥⎦

⎤
⎢⎣

⎡
=ψ

)1V(real

)1V(imag
tana

)1V(real

)1V(imag
tana

start

start

end

end
m

 (20)
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We can then finally calculate: 

 

SAMFREQ

4
2

)X(real

)X(imag
tana

)X(real

)X(imag
tana

f
start

start

end

end

π

⎥⎦

⎤
⎢⎣

⎡
−⎥⎦

⎤
⎢⎣

⎡

=Δ

 (21) 

Combination of equations (18) and (19) provides the 
mathematical means for computing the signal frequency. 

B.   Concept of a Closed-Loop Feedback System to Establish 
Sampling Frequency 

Equations (17) and (18) have constituted the basis for a 
feedback closed-loop system to establish the sampling 
frequency in a relay or an IED. Combining the two equations 
and expressing Ψm as a function of SIGFREQ and SAMFREQ, 
we obtain the following: 

 ⎟
⎠
⎞

⎜
⎝
⎛

−•π=ψ
N

SAMFREQ
SIGFREQt2 mm  (22) 

When the angle Ψm equals zero, the sampling frequency 
corresponds to the signal frequency. When there is a 
discrepancy, the angle assumes some non-zero value. The 
angle Ψm, therefore, constitutes an error signal. This 
observation leads to the closed-loop feedback system of 
Fig. 10. At a regular interval, the system uses (20) to calculate 
the error or angle Ψm. The system then calculates the 
frequency deviation from (21). The system then integrates the 
frequency deviation to get a new value of the sampling 
frequency until the sampling frequency corresponds to the 
signal frequency. When this state is reached the feedback 
system locks and we will have the equality: 

 
N

SAMFREQ
SIGFREQ =  (23) 

mt•π2
mt•π2

1

s

K

N

tm•π2

mψε =

fΔ

 Fig. 10. Conceptual feedback system to establish the sampling frequency 

In reality, the model of the feedback system is more 
complex than the conceptual diagram of Fig. 10. First, we 
have neglected all the filtering involved in the calculation of 
the voltage PSP rotation angle Ψm.. Second, the calculation of 
the signal frequency will implement some filtering so that we 
will evaluate an averaged frequency measurement MESFREQ 
over a number of P samples as in the following: 

 ∑
=

=
P

1n
nSIGFREQ

P

1
MESFREQ  (24) 

Third and finally, the new sampling frequency will be 
calculated using an infinite impulse response filter (IIR) of the 
type [7]: 

N

SAMFREQ
)MN(MESFREQMSAMFREQ old

new •−+•=  (25) 

In this last equation, M is an integer number, the maximum 
value of which is (N – 1), which allows us to control the rate 
of change of the sampling frequency. The purpose of this 
filtering effect is to prevent an instantaneous change of the 
sampling frequency following the measurement of a frequency 
deviation. Obviously, the larger the value of M, the faster the 
change in the sampling frequency will take place. 

C.  The Concept of the Time Response to a Frequency Step of 
a Closed-Loop System 

As Fig. 10 shows, frequency tracking constitutes a control 
closed-loop system where the output variable is the sampling 
frequency SAMFREQ and the input or regulating variable is 
the network frequency SIGFREQ. At steady state, the 
sampling frequency is a multiple of the network frequency: 

 SIGFREQNSAMFREQ •=  (26) 

It is beyond the scope of this paper to revisit the basic 
principles of control theory as applied to feedback systems. 
We will concentrate on some essential basic notions that will 
help us define the best possible control loop. First of all, by 
looking at the simplified model of Fig. 10, we can infer that 
the system is basically stable because we only have a single 
integrator in the open-loop transfer-function. Second, we are 
interested in the transient response of the frequency 
measurement when a change occurs in the signal frequency. 
To evaluate this issue, we will use the concept of deadbeat 
performance as defined in control theory [1]. In this latest 
reference, page 118, we have the following definition: “By 
deadbeat performance is meant that a system responds to a 
stepwise input in the quickest manner without overshoot.” 

We have to apply this definition with some caution in the 
situation of a feedback system for the purpose of frequency 
tracking and frequency measurement, because we are not 
necessarily interested in a system with the quickest response. 
We do not want to be faster than the response time of the 
phasor filtering system, and we do not want to respond 
instantaneously to any spurious variation of the frequency that 
does not correspond to a real variation. We do, however, want 
to have the minimum possible overshoot. 

Some power or protection engineers might argue that a 
frequency step does not exist on a power system, because 
frequency is related to the rotation of the synchronous 
generators and a step-change cannot take place on a generator 
because of the inertia of the machine. That having been said, 
the fact remains that the step response is the best tool available 
to evaluate the dynamic and transient response of the closed-
loop system that we are using. 

Assume that there are no inputs to the relay or IED and that 
we apply the three-phase voltage waveforms with a frequency 
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of 61 Hz. In Fig. 11, we have represented hypothetical 
frequency time responses to the frequency-step. Let us assume 
that a desirable response time would be between two and six 
cycles. Here, the response time is the time it takes for the 
frequency time trajectory to reach the value of the step-input. 
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Fig. 11. Examples of response to step-input time trajectories 

Looking at the hypothetical response corresponding to 
trace 1, one can see that we do not have any overshoot, but the 
response time is a bit marginal and a little longer than six 
cycles. In classical control theory [2], trace 1 corresponds to 
what is called an over-damped system. Looking at trace 2, we 
have a substantial overshoot, but the response time is 
satisfactory. In classical control theory [2], trace 2 corresponds 
to what is called an under-damped system. As a preliminary 
conclusion, neither trace in Fig. 11 represents an acceptable 
transient response to a step function. 

In Fig. 12, we have represented what should be an ideal 
response to a frequency step-function. We have set the 
response time to three cycles, which falls inside the interval 
we want of between two to six cycles. The overshoot is 
negligible and ideally equal to zero. Finally, the rise to the 61 
Hz step-value is steady and linear. The question now is 
whether we can achieve this ideal response with the phase-
locked loop of Fig. 10? 

0

10

20

30

40

50

60

70

0 2 4 6 8 10

F
re

qu
e

nc
y 

(H
z)

Time (Cycles)

Interval of desirable 
response time

61 Hz Step

 

Fig. 12. Ideal response to a 61 Hz step-function 

IV.  CONCURRENT FREQUENCY TRACKING AND FREQUENCY 

MEASUREMENT: ISSUES 

Consider the feedback system of Fig. 10. We have a 
number of variables to control and adjust the dynamic and 
transient response of the frequency measurement. These 
variables are as follows: 

1. The rate of acquisition of the angle error. This rate is 
fixed at one quarter of a cycle. SIGFREQ could vary, 
so this rate could have different time width. 

2. The parameter P that is the number of frequency 
measurements as provided by (24) from which the 
system calculates the filtered frequency. 

3. The parameter M in (25) that controls the rate of 
change of the sampling frequency.  

Fig. 13 is the flowchart of the routine to calculate the 
variables SIGFREQ, MESFREQ, and SAMFREQ. The system 
calls the routine every quarter cycle. At the end of the routine, 
we proceed with the change of the sampling frequency. 

With P = 6 and M = 14, Fig. 14 shows the trajectory of the 
frequency measurement (MESFREQ) to a step-function of 
61.75 Hz. Fig. 15 shows the trajectory of the corresponding 
sampling frequency (SAMFREQ). Obviously, the response to 
the step is not satisfactory. We have a huge overshoot, and the 
response time is greater than 15 cycles. 
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Fig. 13. Calculation of sampling frequency every quarter of a cycle 



9 

 

60

61

62

63

64

65

0 5 10 15 20 25 30

F
re

qu
en

cy
 (

H
z)

Time (cycles)  

Fig. 14. Time trajectory of MESFREQ with a 61.75 Hz step (P = 6, M = 14) 
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Fig. 15. Time trajectory of SAMFREQ with a 61.75 Hz step (P = 6, M = 14) 

To remove the overshoot, we extended the averaging 
parameter P to 20 and set the M to 6. Fig. 16 shows the 
corresponding frequency time trajectory, and Fig. 17 shows 
the sampling frequency time trajectory. We have been able to 
reduce, but not eliminate, the overshoot, and the time response 
does not exhibit any improvement with respect to the previous 
example. 

By using the timing scheme corresponding to Fig. 13, and 
by playing with the various parameters, we have not been able 
to find time response to a frequency-step close to the ideal of 
Fig. 12. We discovered a basic shortcoming with this scheme 
and the next paragraph will describe the nature of the 
shortcoming along with a resolution. 
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Fig. 16. Time trajectory of MESFREQ with a 61.75 Hz step (P = 20, M = 6) 
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Fig. 17. Time trajectory of SAMFREQ with a 61.75 Hz step (P = 20, M = 6) 

V.  CONCURRENT FREQUENCY TRACKING AND FREQUENCY 

MEASUREMENT: SOLUTIONS 

There is a basic shortcoming with the timing scheme of 
Fig. 13. It has its origin with the fact that we are changing the 
sampling frequency at each quarter cycle following the 
calculation of a new frequency. The shortcoming is related to 
the introduction of a transient in the filtering system. As we 
already noted, when we use frequency tracking, there is a third 
way to create a transient in the phasor calculation. Such a 
transient could result from a change in the waveform 
frequency. 

That is exactly what is happening here when we change the 
sampling frequency following a new measurement of the 
frequency. As we change the sampling frequency every 
quarter cycle, we end up with a table of instantaneous values 
for a waveform where we could have five different sampling 
frequencies, as Fig. 18 illustrates. When we calculate the 
phasor based on this table, we introduce a transient state that 
will impact and introduce an error in the voltage PSP angle 
Ψm. This error in the angle will introduce an error in the 
calculation of Δf and, consequently, in the calculation of 
SIGFREQ, MESFREQ, and SAMFREQ. 

Sample 1

Sample 2

Sample 3

Sample 4

Sample 17

Sample 18

Sample 19

Sample 20

SAMFREQ(1)

SAMFREQ(5) 

 

Fig. 18. Cosine filter waveform data window during frequency tracking 

In view of the previous analysis, we devise a new timing 
scheme (patent pending) represented in Fig. 19. With this new 
timing scheme, we change the sampling frequency 
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SAMFREQ only at every 3 cycles or 12 quarters of a cycle. 
Following a change of the sampling frequency, we define a 
stabilization interval equal to 1.5 cycles or 6 quarters of a 
cycle during which no calculation of the angle Ψm or the 
frequency deviation Δf is performed. At the end of the 
stabilization period, we define an interval of frequency 
measurement equal to 6 quarters of a cycle. During this 
interval of frequency measurement, we resume the calculation 
of Ψm, Δf, SIGFREQ, and MESFREQ and we then perform 
six consecutive frequency measurements. 

Following a change in the sampling frequency, the 
stabilization period removes any transient in the phasor 
calculation resulting from the change in the sampling 
frequency. We are using a Cosine-type filtering system with a 
response time of one and a quarter cycles, so we set the 
stabilization period to one and a half cycles. Following the 
stabilization period, all the subsequent phasor calculations will 
be performed with instantaneous values of the waveforms 
sampled at the same sampling frequency. 

 

1 2 3 4 5 6 7 8 9 10 11 12 1 p =

4
SAMP_FREQ Change of the 

sampling frequency

Frequency Measurement 
Interval: 6

measurements

Stabilization Interval:
No frequency
measurement

Time=

 

Fig. 19. Second timing scheme 

If we apply the timing scheme of Fig. 19 with P = 6 and 
M = 6, and we inject in the relay a frequency step of 61.75 Hz, 
we obtain the time trajectory for MESFREQ of Fig. 20. We 
can see that we obtain the ideal response of Fig. 12. The 
response time is three cycles, and we have zero overshoot. 
Progression to the step-frequency value is linear. We have 
achieved our goal of an ideal response to a step-function.  

Fig. 21 represents the corresponding time trajectory of the 
sampling frequency SAMFREQ. A close examination of the 
variation of MESFREQ and SAMFREQ indicates that the two 
variables have become now completely independent.  When 
we apply the 61.75 Hz-step, it takes three cycles with a 
sampling frequency of 960 Hz to get to the proper frequency 
measurement MESFREQ of 61.75 Hz. Subsequently, when 
SAMFREQ slowly increases every three cycles, MESFREQ is 
not affected by these variations and remains at 61.75 Hz 
irrespective of the value of SAMFREQ. 

We can verify the same properties on Fig. 22, which 
represents the response to a frequency-step of 57 Hz. Here we 
have combined the trajectory of MESFREQ together with the 
time-trajectory of SAMFREQ divided by 16. Again, one can 
see that the measurement MESFREQ is independent from the 
sampling frequency SAMFREQ. 

When applying frequency steps on the relay, the absolute 
error in the frequency measurement was found to be better 
than ±0.005 Hz after the delay of three cycles elapsed. 
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Fig. 20. Frequency measurement  time response to a 61.75 Hz step 
(MESFREQ averaged over 1.5 cycles or M=6) 
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Fig. 21. Sampling frequency time response to a 61.75 Hz step 
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Fig. 22. MESFREQ and SAMFREQ time responses to a 57.00 Hz step 

VI.  FREQUENCY MEASUREMENT PERFORMANCE TESTING 

The frequency-step tests we just discussed have been 
convenient for evaluating the dynamics of the frequency 
measurement in conjunction with the one for the phase-locked 
loop that establishes the sampling frequency. On a real 
network, there are two types of frequency excursions that will 
occur and that could help to further evaluate the quality of the 
frequency measurement: frequency ramping and power swing.  

Frequency ramping occurs when there is an unbalance 
between generated power and load on a network. Positive 
ramping will occur when there is more generation than load 
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whereas negative ramping will take place when there is more 
load than generated power.  

Fig. 23 represents the frequency measurement with a signal 
ramping frequency of –0.5 Hz/s. The same plot represents the 
reference frequency and the sampling frequency. We can see 
that the delay in the frequency measurement never exceeds 
three cycles. Also noticeable is the delay between the 
establishment of the sampling frequency and the measured 
frequency.  

In Section II, we presented an example of a mho element 
misoperation resulting from a frequency excursion consisting 
of a ramp of –0.5 Hz/s. If for the same waveforms, the 
sampling frequency of Fig. 23 is applied, we obtain for the 
angle between the operating and the polarizing vectors shown 
in Fig. 24. One can see now that the angle never gets below 90 
degrees and the mho element remains stable. Fig. 25 shows 
the impact of the frequency tracking on the mho element and 
one can see that the scalar product, as expected, never crosses 
the line zero. Finally, in Fig. 26, we can see the impact of the 
frequency tracking on the A-phase voltage. The slight 
mismatch between the signal and the sampling frequencies is 
such that the error in the phasor calculation never exceeds 0.5 
percent. 
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Fig. 23. Frequency measurement and sampling frequency with a ramp of 
slope equal to –0.5 Hz/s 
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Fig. 24. Angle between operating and polarizing vectors at 60 Hz and with 
ramping accompanied by frequency tracking 
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Fig. 25. Scalar product of mho AB element with ramping frequency and 
frequency tracking 
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Fig. 26. Magnitude of VA voltage phasor with frequency tracking 

Power swings will develop on a network following a major 
disturbance like a short-circuit, the loss of a major load center, 
or a generator rejection. We can simulate power-swing-like 
waveforms by modulating the phase angle of a power source 
as shown in Annex I. As described in the Annex, we will use a 
sinewave to modulate the phase angle of one of the two 
sources of an elementary network. With the parameters 
selected as V = 100 V, k = 2 and ω = 2π rad/s (corresponding 
to 1 Hz), we obtain an A-phase waveform the phasor of which 
has the following time-varying magnitude at the swing-center 
voltage: 

 ))]t2cos(2cos(1[250VSCV π•+•=  (27) 

The phase A voltage phasor at the SCV has a time-varying 
phase angle equal to the following: 

 )t2cos(VSCV π=∠  (28) 

The signal frequency in Hertz of the SCV waveform is 
equal to the derivative of the instantaneous phase: 

 )t2sin(60)Hertz(frequency π−=  (29) 

When we apply the three-phase voltages to the relay with 
the frequency tracking operational, we obtain the frequency 
measurement shown in Fig. 27. The reference frequency 
corresponds simply to (29). Fig. 28 represents the trajectory of 
the sampling frequency divided by 16 together with the 
measured frequency. Finally, Fig. 29 represents the A-phase 
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time-voltage waveform together with the magnitude the 
Cosine filtering system acquired for this waveform. 

58

58.5

59

59.5

60

60.5

61

61.5

62

0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

cy
 (

H
z)

Time (s)

Reference 
Frequency

Measured
Frequency

 

Fig. 27. Power swing frequency measurement 
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Fig. 28. Power swing frequency and sampling frequency 
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Fig. 29. A-phase voltage during power swing test 

VII.  PRACTICAL IMPLEMENTATION OF 81 ELEMENTS IN A 

DIGITAL RELAY 

Once the filtered measurement of the frequency 
MESFREQ is available, and provided the frequency 
measurement complies with the basic requirements this paper 
already expressed, the implementation of 81 frequency 
elements is relatively simple. We review this implementation 
here for the sake of completeness.  

An overfrequency (81O) or underfrequency (81U) element 
is simply implemented by comparing the filtered frequency 

measurement to a threshold and then following the resulting 
Boolean variable with an adjustable definite time delay. 

Fig. 30 shows the logic of a frequency element that can 
serve either as an 81O or an 81U function. We have the 
following nomenclature: 

FNOM = rated frequency (60 or 50 Hz) 
MESFREQ = filtered frequency measurement 
81XnTP = frequency pickup value 
FREQTROK = frequency tracking okay signal (Boolean) 
81XnTD = timer pickup value delay 
81XnT = 81 element status (Boolean) 

The logic represents an overfrequency element if the 
pickup threshold is greater than the rated frequency FNOM. 
Alternatively, it represents an underfrequency element if the 
pickup threshold is smaller than the rated frequency FNOM. If 
set as an overfrequency function, the element will assert if the 
measured frequency is greater than the threshold 81XnTP and 
after the delay 81XnTD has elapsed. If set as an 
underfrequency function, the element will assert if the 
measured frequency is smaller than the threshold 81XnTP and 
after the delay 81XnTD has elapsed.  

Typically, a relay will have at least six elements of this 
type. 

 

Fig. 30. 81 element logic 

VIII.  CONCLUSION 

1. Many relays accomplish frequency measurement 
directly on the voltage input waveforms before 
waveforms are sampled. For these relays, frequency 
measurement and frequency tracking are intrinsically 
independent. 

2. For relays that use an adaptive principle to accomplish 
frequency measurement after sampling voltage and 
current waveforms, it is necessary to apply at least two 
basic rules in order to make the frequency 
measurement independent from the sampling 
frequency. 
a. No frequency measurement should be made 

following a change to the sampling frequency 
during an interval of time equal or greater than the 
response time of the filtering system using for the 
computation of the phasors. 

b. No sampling frequency change should be 
performed before the complete filtering interval 
required by the frequency measurement filtering 
is terminated. 
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3. The time-response trajectory to a frequency-step is a 
powerful test to determine the dynamics of the 
frequency measurement. 

4. For the purpose of implementing 81 elements in a 
relay, we want a time response of two to five cycles 
with a minimum (ideally zero) overshoot. 

5. The use of 81 elements requires a steady-state 
minimum absolute accuracy of 0.01 Hz. Some digital 
relays achieve accuracy better than 0.005 Hz. 

6. Step-response and steady-state accuracy tests should 
be supplemented with response to frequency ramping 
functions and power-swing waveforms as defined in 
the paper. 

IX.  APPENDIX: DERIVATION OF POWER SWING-LIKE 

WAVEFORMS 

 

Fig. 31. Elementary network for power swing simulation 

Consider the elementary network represented in Fig. 31 
and assume that the right-side voltage sources are fixed and 
provided as follows: 

                            VRA = V • cos(ω0 t) 

 
)120tcos(•VVRC

)120tcos(•VVRB

0

0

°+ω=
°−ω=

 (30) 

In (30), ω0 is the rated frequency. A sinewave modulates 
the phase for the left-side voltage sources so that we have the 
following: 

 [ ]
[ ] °+ω•+ω•=

°−ω•+ω•=
ω•+ω•=

120)tcos(ktcosVVLC

120)tcos(ktcosVVLB

)]tcos(ktcos[VVLA

0

0

0

 (31) 

In this last equation, ω is the phase angle modulation 
frequency. The following equation provides A-phase voltage 
at the swing center voltage (SCV): 

  (32) 

We then have the following: 

 [ ]{ })tcos()tcos(ktcos
2

V
V 00SCV ω+ω•+ω•=  (33) 

After a few manipulations, we express VSCV as: 
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(34) 

The VSCV phasor has a time-varying magnitude equal to: 

 [ ]))tcos(kcos(12
2

V
VSCV ω•+•=  (35) 

The VSCV phasor has a time-varying phase angle equal to: 

 
2

)tcos(k
VSCV

ω•
=∠  (36) 

The frequency of the SCV waveform is equal to the 
derivative of the instantaneous phase: 
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In units of Hertz, the frequency is given as: 

 
π

ω•ω•−ω
=

4

)tsin(k2
)Hertz(frequency 0  (38) 
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