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Tutorial on the Impact of the Synchronous 
Generator Model on Protection Studies 

Normann Fischer, Gabriel Benmouyal, and Satish Samineni, Schweitzer Engineering Laboratories, Inc. 

Abstract—The classical theory of representation of power 
swings in the impedance plane is based on the representation of 
synchronous generators as constant voltage sources. The classical 
model of a synchronous generator represents the machine as a 
constant voltage source behind the transient reactance in the 
direct axis. The classical model of synchronous generators is 
based on the assumption that the rotor flux linkage will not 
change during a short period of time following a major 
disturbance. In reality, with constant excitation voltage, the rotor 
flux linkage will decrease and the internal generator voltage will 
decrease accordingly. The addition of an automatic voltage 
regulator (AVR) boosts the excitation voltage following a 
disturbance so that the rotor flux linkage will be sustained and 
the generator internal voltage will be prevented from collapsing. 
The purpose of this paper is to show how power swing 
representation in the impedance plane will depart from the 
classical theory when complex AVRs are used on modern 
generators. 

I.  BASIC SYNCHRONOUS GENERATOR PHYSICAL PRINCIPLES 
This paper is not intended to be an exhaustive review of 

synchronous generator physical and engineering principles, 
but rather an overview of fundamental and essential facts. It is 
assumed here that the reader is familiar with the two-axis 
model representation of synchronous machines [1]. 
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Fig. 1. Synchronous generator basic mechanical and electrical structure 

Fig. 1 represents a two-pole synchronous generator. The 
rotor winding is supplied with a dc exciter voltage Vf. A dc 
current If flows in the rotor winding to create a flux ψf in the 
generator direct axis. When the primary mover drives the 
generator and the generator rotates at synchronous speed, the 
flux will induce a voltage in the three-phase stator windings. 
When the generator is unloaded, we can measure an excitation 
or generator internal voltage at the terminals. This internal 
voltage, Eq in Fig. 1, is proportional to the current If and lies in 
the quadrature axis 90 degrees ψf. Eq is given by (1). 
 q f fE M I= ω  (1) 

In steady state, the current flowing in the rotor winding is 
equal to the exciter voltage divided by the winding resistance: 

 f
f

f

V
I

r
=  (2) 

The field winding has a self-inductance Lff. A fundamental 
characteristic of a synchronous generator is the direct-axis 
open-circuit transient time constant T'd0, the ratio of the field 
self inductance over its dc resistance: 

 ' ff
d0

f

L
T

r
=  (3) 

The order of magnitude of this time constant, which is 
typically a few seconds, indicates that the voltage at the 
synchronous generator terminals cannot be changed 
instantaneously; in other words, the current in the field 
winding varies according to the field open-circuit time 
constant. 

When the generator is loaded, the three-phase currents will 
create a flux, represented in Fig. 2 as ψia+ib+ic. This flux is 
known as the armature reaction. The vectorial addition of the 
field flux and the armature reaction is the air-gap flux, which 
is represented as ψag. 
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Fig. 2. Armature reaction 

The projection of the air-gap flux on the direct and 
quadrature axis, as in Fig. 3, defines the fluxes in the direct 
and quadrature axes as ψd and ψq. 

The fluxes in the direct and quadrature axes create the 
corresponding voltages vd and va along the same axes. We can 
demonstrate [1] these voltages with: 

 d
d a d q

d
v r i

dt
ψ

= + − ωψ  (4) 

and 
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 q
q a q d

d
v r i

dt
ψ

= + + ωψ  (5) 
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Fig. 3. Fluxes in the direct and quadrature axis 

A.  The Synchronous Generator in the Steady State 
In steady state, we can express the voltage phasor at the 

generator terminals in terms of the phasors in the direct and 
quadrature axes as follows: 
 t d qV V jV= +  (6) 

In the same fashion, we can express the current phasor after 
it has been projected on the two axes as follows: 
 t d qI I jI= +  (7) 

In steady state, (8) provides the vectors’ relation linking the 
excitation voltage to the terminal voltage and current for a 
salient-pole machine. 
 q t a t d d q qE V r I jx I jx I= + + +  (8) 

Fig. 4 shows the corresponding generator vector diagram. 
In this figure, δ is the internal angle between the excitation 
voltage and the generator terminal voltage. In the same figure, 
φ is the angle between the generator terminal voltage and 
current that determines the power factor. 
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Fig. 4. Salient-pole generator vector diagram in steady state 

B.  The Synchronous Generator in the Transient State 
Based on the relations between the different vectors in the 

steady state as in Fig. 4, the fundamental theorem of the flux 
linkage provides some insight about the behavior of a 
generator in transient state. The theorem of flux linkage states 
that “the flux linkage of any closed circuit of finite resistance 
and finite e.m.f. cannot change instantly” [1]. In reality, the 
flux linkage will vary according to the circuit time constants. 
Applying this principle to a synchronous generator, one could 
state that the field flux does not change during a disturbance 

or, if it changes, it will change slowly because of the long time 
constant associated with the rotor. 

Consider the exciter voltage we obtain from (9): 

 f
f f f

d
E v R i

dt
ψ′ = = +  (9) 

A new exciter voltage referred to the armature is defined in 
(10): 

 f ex
ex

f

M E
E

R
′ω

=  (10) 

This new exciter voltage will have a value of 1 pu when the 
generator is open circuited and its terminal voltage is 1 pu. If 
we assume that the field flux does not vary following a 
disturbance, we can define a new fictitious voltage 
proportional to ψf that also does not vary in (11) [1]: 

 f
q f

ff

M
E

L
ω′ = ψ  (11) 

We can then relate the new fictitious voltage to the 
excitation voltage with (12) [1]: 
 q q d d dE E (x x )i′ ′= − −  (12) 

Fig. 5 shows a salient pole generator vector diagram in 
transient state by indicating the relation between Eq and E'q.  

In the transient state and following a disturbance, if we 
assume that the internal voltage E'q remains constant, we can 
show the next relation between the internal voltage E'q and the 
generator terminal voltage Vt with (13): 
 q t d d q qE V jX I jX I′ ′ ′= + +  (13) 

If we assume that the saliency is removed, in other words, 
X'd = X'q, we can define a new constant voltage internal E'i 
that is equal to (14): 
 i t d tE V jX I′ ′= +  (14) 

This last voltage can represent a generator as a constant 
voltage source behind transient reactance, as in Fig. 6. We can 
therefore represent a generator as a constant voltage source 
behind the transient impedance if the following assumptions 
are in effect: 

• The rotor flux linkage remains constant. 
• Saliency is removed. In other words, there exists only 

one reactance that is X′d. 
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Fig. 5. Salient-pole generator vector diagram in transient state 
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Fig. 6. Representation of a synchronous generator as a constant voltage 
source behind transient reactance 

If we assume that E′q is not constant, a relation exists that 
provides the rate of change of this fictitious voltage with (15) 
[1]: 

 q ex q

d0

dE E E
dt T

′ −
=

′
 (15) 

When we do not assume a constant flux linkage following 
a disturbance, the rate of change of the voltage proportional to 
the rotor flux linkage is as in (15): a function of the exciter 
voltage Eex, the excitation voltage Eq, and the generator rotor 
open circuit transient time constant T′d0. Note that as the rotor 
time constant T′d0 increases, the rate of change of E′q 
decreases. 

To illustrate the impact of exciter voltage Eex on Eq and E′q 

following a disturbance close to the generator, consider the 
example of an unloaded generator, with unit terminal voltage, 
subjected to a three-phase short circuit at its terminals. The 
generator impedances are as in (16): 
 d d q qX 1.15,X 0.37,X X 0.75′ ′= = = =  (16) 

Because the generator is unloaded, the identities in (17) are 
applicable prior to the short circuit: 

 t ex q q

t

V E E E 1.0

I 0

′= = = =

=
 (17) 

If we follow the methodology indicated in [1], Fig. 7 shows 
the variation in time of the excitation voltage Eq when the 
short circuit is applied with different exciter voltages. At the 
moment the short circuit is applied, Eq will jump from 1.0 to 
3.29 because of the fault current. Eq will then vary according 
to the exciter voltage applied. In manual mode (Eex = 1.0), the 
excitation voltage will start dropping linearly. With a voltage 
regulator, as the exciter voltage jumps to its ceiling value (see 
Section II), the rate of change of the internal voltage drop 
decreases. The figure shows the variation of Eq with two 
regulator ceiling voltages: 2 and 3.5 pu. There exists a value 
for the exciter voltage (slightly smaller than 3.5 pu for the 
example) where the excitation system will sustain Eq. Above 
this value, Eq will increase linearly during the short circuit.  

Fig. 8 uses the same example during the three-phase short 
circuit to illustrate the variation of E′q. Following the 
application of the short circuit, E′q does not change, because of 
the constant flux linkage principle. As for Eq, E′q will drop 
linearly with low values of the exciter voltage Eex. For Eq, 
there is a threshold value for Eex where E′q will remain 
unchanged during the short circuit. Above the threshold, E′q 
will start increasing linearly rather than decreasing. 

This example illustrates the impact of an autoregulator on 
generator internal voltage during a disturbance. An auto-
regulator can increase the generator internal voltages during a 
disturbance. This capacity is directly related to improving the 
generator transient stability, as this paper explains later.  
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Fig. 7. Eq variation with different excitation voltages Eex 
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Fig. 8. E′q variation with different excitation voltages Eex 

C.  The Notions of Synchronizing and Damping Torques 
Consider the simple network model of Fig. 9, where a 

generator represented as a constant voltage source behind the 
transient reactance supplies an infinite bus through an 
impedance Xe. This generator model is the classical model of 
a generator. 

VtX′d Xe

XT

Es ∠ 0δ∠′iE

  

 
Fig. 9. Elementary power network with classical representation of generator 

We define the following: 
∆Tm is the variation of the mechanical power input 

to the generator in per unit (pu). 
H is the inertia constant in seconds. 
M is the inertia coefficient = 2H in seconds. 

ω0 is the base rotor electrical speed in radians per 
second (377 rad/s). 

The control block diagram that Fig. 10 represents allows us 
to use the technique of small-signal analysis [2] [5] to study 
the dynamics of the elementary network in Fig. 9. 
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The total electrical torque that opposes the mechanical 
power input the synchronous machine produces is the sum of 
two synchronous and damping torques and is equal to (18): 
 e sync damp 1 DT T T K K∆ = ∆ + ∆ = ∆δ + ∆ω  (18) 

The synchronous torque is proportional to the machine 
internal angle variation in (19): 
 sync 1T K∆ = ∆δ  (19) 

The damping torque is proportional to the machine speed 
variation in (20): 
 damp DT K∆ = ∆ω  (20) 

For the system in Fig. 9, we can demonstrate that K1 is 
equal to (21) [2]: 

 i s
1 0

T

E E
K cos

X
′ 

= δ 
 

 (21) 

For the generator belonging to the network in Fig. 9 to be 
stable, both the synchronous and damping torques have to be 
positive. A lack of either of the two torques will render the 
generator unstable. 
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Fig. 10. Control block diagram of an elementary power network 

II.  SYNCHRONOUS GENERATOR EXCITATION SYSTEMS 

A.  The Manual and Automatic Voltage Regulator (AVR) 
The primary function of a synchronous generator excitation 

system is to regulate the voltage at the generator output. This 
paper focuses on present-day excitation static systems such as 
the one in Fig. 11. 

In these systems, the input power for the static exciter is 
commonly derived from the machine terminals. A step-down 
transformer (excitation transformer PPT) feeds a three-phase 
controlled rectifier bridge that converts ac voltage into dc 
voltage. The dc output is connected to the machine field 
winding by brushes and collector rings. 

In manual mode, either the level of the generator output 
voltage or the field current level (as in Fig. 11) is under the 
manual control of the operator. Although manual control of 
the excitation system still occurs on some old machines, 
organizations such as the North American Electric Reliability 
Corporation (NERC) recommend against this practice today 
because of the drawbacks and shortcomings that this mode of 
operation entails.  

In automatic mode, a voltage set point is introduced in the 
summing point of the AVR. The excitation system compares 
this voltage set point to the generator output voltage 
measurement, and the comparison produces an error signal 
that adjusts the timing of the firing of the silicon-controlled 
rectifiers until the output voltage Vt equals the voltage set 
point. In steady state, the generator output voltage is therefore 
equal to the voltage set point. 
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Fig. 11. AVR principle with self-exciting generator 

Fig. 12 represents the generic model of a static excitation 
as provided among others by [10]. Such models are intended 
as guidelines for stability studies. Vref is the voltage setting, 
and VC is the voltage measurement from the generator 
terminals. The difference between these two quantities 
constitutes the basic error signal. These models provide for 
additional error signals at the AVR summing point. VS is the 
error signal from a power system stabilizer (PSS). VUEL is the 
error signal from an under excitation limiter, which we 
describe later. In the excitation system of Fig. 12, an auction 
occurs between some signals; in other words, a high-voltage 
(HV) gate will pick out the input signal that has the highest 
level when a low-voltage (LV) gate picks out the signal that 
has the smaller one. This auctioneering action, when it occurs, 
allows some signals to take control of the AVR loop. As an 
example, following the AVR summing point, if the error 
signal from the UEL circuit is larger than the error signal from 
the summing point, the system gives priority to the UEL 
signal that takes control of the AVR loop. The output of the 
AVR is the voltage supplied to the field circuit. This voltage is 
bound and is of primary importance. The maximum voltage 
the excitation system supplies is commonly called the AVR 
ceiling. During a severe disturbance, such as a short circuit 
close to the generator terminals, the system will most likely 
apply this exciter ceiling voltage as the field voltage to 
counteract decreasing generator output voltage. Section I 
provides an example to demonstrate how the voltage regulator 
can sustain the generator internal voltage during a short circuit 
at the generator terminals. 
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Fig. 12. IEEE type ST1A excitation system

Fig. 13 represents a simplified model of an AVR by a gain 
KA, again, with a time constant. 
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Fig. 13. Simplified representation of a static excitation system 

B.  The Power System Stabilizer 
One negative effect of an AVR installed on a generator is 

that it decreases the internal damping torque when its gain KA 
is increased (the synchronizing torque is, however, increased). 
Because of this, the regulator gain must be limited to some 
value between 15 and 25 in most situations [4], and this 
limitation then reduces the dynamic stability of the generator. 
Two solutions exist for this AVR gain limitation: 1) limit the 
AVR gain or 2) supplement the AVR with a PSS. 

The PSS basic principle, as Fig. 15 shows, consists of 
measuring the change with respect to synchronous speed and 
sending a signal derived from this speed variation to the 
summing point of the AVR [2]. The net effect of the PSS 
action is to increase the generator damping torque in both 
steady and transient state. Another result of using the PSS is 
being able to increase the AVR gain KA without affecting the 
overall generator stability. 
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Fig. 14. Principle of a PSS 

C.  The Underexcitation Limiter 
The purpose of an underexcitation limiter (UEL) is to 

prevent a generator from being operated in steady state in a 
determined underexcited region. 

Consider the UEL model (type UEL2) in Fig. 15. This 
model comes from the recommended models in [11]. We can 
determine the UEL static or steady-state characteristic by 
setting the Laplacian operator “s” to zero and by looking at the 
condition when the error signal from the UEL circuit will be 
zero [1]. Equation (22) provides this condition: 

 k1 k2 k1
t t tP E KUP E KUV Q E KUQ 0− −− − =  (22) 

Expressing Q as a function of P, we obtain (23): 

 (k1 k2)
t

KUP KUVQ P E
KUQ KUQ

+= −  (23) 

Equation (23) describes a straight line, as shown in Fig. 16, 
and represents the UEL characteristic in the P-Q plane. When 
the generator operating point falls below the line segment, the 
UEL produces a positive error that the system supplies to the 
AVR summing point. This positive error, in turn, has the 
effect of increasing the voltage setting or AVR voltage 
reference so that the generator terminal voltage increases until 
the generator operating point goes above the UEL limit 
straight-line characteristic [3] [5]. 
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Fig. 15. Example of a type UEL2 straight line UEL 
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Fig. 16. Type UEL2 straight line characteristic 

Reference [11] describes two additional UEL 
characteristics, one circular (type UEL1) and one 
multisegment straight line (type UEL3), that work on the same 
principles as type UEL2. 

Keep in mind that, while the AVR and the PSS will 
improve the dynamic stability of a generator, the purpose of a 
UEL is to help prevent the generator from undergoing steady-
state instability resulting from its operation in the 
underexcited region. 

D.  High-Speed, High-Ceiling Voltage Excitation Systems 
A network disturbance resulting from a fault close to a 

generator reduces the generator’s terminal voltage. If the 
generator excitation system is operated in manual mode, its 
internal voltage will decrease according to (15). 

If the generator excitation system is under the control of an 
AVR, the voltage the AVR imposes on the field winding 
during the fault will depend upon the AVR speed, gain, and 
ceiling voltage. Consequently, the amount of boost that the 
generator internal voltage will receive depends upon these 
three factors. 

It is generally recognized that a high-speed, high-gain, and 
high-ceiling AVR supplemented with a PSS is presently one 
of the best means to improve generator transient stability [2]. 

III.  REVIEW OF CLASSICAL STEADY-STATE  
AND TRANSIENT STABILITY METHODS 

A.  Steady-State Stability 
We can define the steady-state stability limit (SSSL) of a 

particular circuit of a power system as the maximum power at 
the receiving end of the circuit that we can transmit without 
loss of synchronism if we increase the load in very small steps 
and if we change the field currents after each increment so as 
to restore normal operating conditions [1]. 

Consider the elementary system of Fig. 17, which consists 
of a generator with constant internal voltage Eq that supplies 
an infinite bus through an impedance Xe. The conventional 
formula in (24) provides the steady-state power transfer 
equation for a salient-pole machine: 

 

q s d q2
s

d e d e q e

E E X X
P sin E sin 2

X X 2(X X )(X X )
−

= δ + δ
+ + +  (24) 

In (24), δ is the angle between Eq and Es, as in Fig. 18. 

Xd, Xq
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Xe

EsVt  
Fig. 17. Elementary generator system 
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Fig. 18. Vector diagram of network in Fig. 17 

Equation (24) allows us to determine the maximum power 
that we can transfer from the generator before reaching 
steady-state instability. We can also plot the stability limit in 
the P-Q plane. With manual operation, and if we assume that 
saliency has been removed, the classical SSSL is a circle with 
center and radius as in Fig. 19 [3] [5]. 
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P (pu)

Center = jVt
2

2
1
Xe

1
Xd

–
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2

2
1
Xe

1
Xd
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Fig. 19. SSSL with manual operation 

Reference [5] introduced a technique that allows plotting of 
the SSSL when an AVR or an AVR-PSS combination is 
active in the system. Fig. 20 shows the various SSSLs 
(manual, AVR, and AVR-PSS) for a system corresponding to 
Fig. 17 with the characteristic values in Fig. 17. The following 
comments are worth mentioning: 

• All three stability limits go through the point  
–1/Xd. 

• The AVR stability limit expands the manual limit, 
provided the AVR gain is limited. Beyond a gain 
threshold, the SSSL with an AVR will infringe into 
the stability area of the manual case [5]. 

• The AVR-PSS combination allows an increased gain 
of the AVR to a higher value (100 in the example). 
The SSSL of the AVR-PSS combination goes much 
lower in the underexcitation region than the two other 
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limits (manual and AVR). The SSSL has, therefore, 
been substantially improved. 
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Fig. 20. Various SSSLs depending upon the nature of the exciter 

B.  Transient Stability 
Transient stability is the ability of the power system to 

maintain synchronism when subjected to a severe transient 
disturbance such as a fault on a transmission line, loss of 
generation, or loss of a large load [2]. 

Modern techniques allow us to use such tools as transient 
stability programs or electromagnetic transients programs 
(EMTPs) to study power network transient stability. These 
two program types introduce extensive models of generators. 
Classical methods to study transient stability have used the 
equal-area criterion and have necessitated a power transfer 
equation in the transient state. 

We can obtain a formula for the power transfer equation in 
transient stability by replacing Eq with E′q and Xd with X′d in 
(24): 

 q s d q2
s

d e d e q e

E E X X
P sin E sin 2

X X 2(X X )(X X )

′ ′ −
= δ + δ

′ ′+ + +
 (25) 

We can simplify the equation further by removing the 
saliency and replacing E′q with E′i so that we get: 

 i s

d e

E E
P sin

X X
′

= δ
′ +

 (26) 

As an example, consider the case of a generator operated at 
unit terminal voltage and unit current with a power factor of 
0.91. Equation (27) shows the generator impedances in pu 
values: 
 d d q qX 1.15,X 0.37, x X 0.75′ ′= = = =  (27) 

Equation (28) shows the external impedance: 
 eX 0.2=  (28) 

For this condition of operation, we can compute the 
generator internal and infinite bus voltages in Fig. 18. 

 

q

q

i

s

E 1.793

E 1.179

E 1.345

E 0.935

=

′ =

′ =

=

 (29) 

Fig. 21 shows the three power transfer curves: one for the 
steady state and corresponding to (24) and two for the 
transient state corresponding to (25) and (26). In transient 
state, we can apply the equal-area criterion on the two 
transient state curves. One can see that the two curves in the 
transient state exhibit a much higher peak value, so we can 
expect a better transient stability if we were to use the curve in 
steady state. 
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Fig. 21. Generator power angle curves in steady and transient states 
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IV.  CLASSICAL SWING IMPEDANCE CHARACTERISTIC 

A.  Classical Model of Generators 
The classical swing impedance theory determines the 

impedance trajectory in the complex plane when the generator 
is represented as a constant voltage source, the angle of which 
varies with respect to an infinite bus (Fig. 22). This model of a 
generator is the same as the classical model shown in Fig. 9. 
In Fig. 22, we assumed that Xtr between the generator and the 
infinite bus represents the impedance of the step-up 
transformer and that Ze corresponds to the series impedance of 
a transmission line. 

VtX′d Ze

ZT

Xtr

E′i∠δ Es∠0

 
Fig. 22. Generator classical model 

B.  Basic Theory of Swing Impedance 
For the network model corresponding to Fig. 22, the 

classical theory of swing impedance allows us to determine 
the swing impedance characteristics in Fig. 23. The swing 
impedance characteristic depends primarily on the ratio n of 
the two source magnitudes: 

 i

s

E
n

E
′

=  (30) 

When the two source magnitudes are equal (n = 1), the 
swing trajectory is a straight line perpendicular to the total 
impedance ZT segment. The trajectory crosses the ZT segment 
at its middle point when the phase angle δ between the two 
sources is 180 degrees. This point is called the swing center. 

When ratio n is greater than one, the swing impedance is a 
circle in the upper part of the impedance plane. When n is 
smaller than one, the swing impedance trajectory will also be 
a circle, but it will be in the lower part of the impedance plane. 

Fig. 24 shows a family of circles with different ratios n 
corresponding to the generator and network impedances in 
that figure. 

As ratio n becomes increasingly greater or smaller than 
one, the circles become smaller. 

C.  Divergence From the Basic Theory 
After a disturbance, the assumption that the generator is a 

constant voltage source is only valid for a short time, 
compared to T′d0. In reality, the type and the characteristics of 
the excitation system in the generator determine the generator 
internal voltage and, therefore, ratio n. 

With manual operation or constant voltage excitation, one 
might assume that the generator internal voltage will decrease 
after a disturbance. As a result, ratio n will become smaller 
than one; therefore, the impedance trajectory will follow 
circles in the lower part of the plane with radii that could 
eventually become smaller and smaller. 

However, if the excitation system is an AVR, the excitation 
will sustain, and may boost, the generator internal voltage so 
that ratio n becomes greater than one. The change of the 
generator internal voltage depends upon the AVR 
characteristics: a slow-acting AVR could limit the rise of the 
internal voltage, but a fast-acting AVR could contribute to a 
rapid buildup of the internal voltage [3]. After the internal 
voltage builds up and ratio n becomes greater than one, the 
trajectory circles will move to the upper part of the impedance 
plane, with the circles decreasing as n increases (as shown in 
Fig. 24). 

R

X

X′d

Xtr

Ze

A

B

Pδ

ZT

Electrical 
Center

E′j > Es

E′i > Es

E′i > Es

δ = 180°

 
Fig. 23. Loss-of-synchronism characteristic in the impedance plane 
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Fig. 24. Family of loss-of-synchronism impedance characteristics 

V.  CASE STUDIES USING AN EMTP 
This section demonstrates how a generator responds after a 

disturbance when the generator excitation system is controlled 
in any of the following ways: 

• Manually 
• Via an AVR 
• Via an AVR plus a PSS (AVR + PSS) 
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The generator used in the Real Time Digital Simulator 
(RTDS®) represents a set of 4 x 555 MVA generators (in the 
model, we consider them as a single 2220 MVA generator). 
Fig. 25 is a high-level representation of how the generator 
excitation system will be controlled in the RTDS. 

VGT

AVR

0

1

2

PSS = Y

PSS

Man

AVR = Auto

Ef

If

 Man

TM

Gen

VGT

ω

 
Fig. 25. A high-level representation of the generator AVR and PSS 
controllers used in the case studies 

We use a static excitation model as the AVR because of the 
rapid response of this type of excitation system. The model 
does not include a governor model because of the slow 
response of the governor compared to the exciter (AVR). The 
mechanical torque applied to the generator is kept constant 
(torque prefault = torque post-fault).  

We obtained the power system used in this test from [2], 
Chapter 12, and show this system in Fig. 26. 

Infinite
 Bus

Line 1

Line 2

VGT

Ef

TM

Gen

VRated = 24 kV
SRated = 2220 MVA
H := 3.5 MWs/MVA
Xd = 1.81
Xd′ = 0.3     Td0′  =  8.00
Xd′′ = 0.23    Td0′′ = 0.03
Xq = 1.76

24/345 kV
Srated = 2220 MVA

Z% = 15

TGen

Z1 = 31.2 ∠ 84.4°

Z1 = 31.2 ∠ 84.4°

 
Fig. 26. Representation of the model power system used for these case 
studies 

We apply a three-phase fault to the system; after 85 ms, the 
fault is cleared. Switching the faulted line out of service clears 
the fault. The line is switched back into service after a 
predetermined dead time. Once the fault is cleared, the power 
system experiences a power swing. The aim of these 
simulations is to show how different excitation systems will 
affect the stability of the generator and that of the power 
system after a system disturbance. 

A.  Examples of Swings With Manual Excitation. 
In the first case, the fault is cleared after 85 ms and the line 

reclosed after 500 ms. The system remains stable. Fig. 27 
shows the voltages and currents as measured by a protection 
device in Line 2. 

 
Fig. 27. Voltage and current profiles for a three-phase fault with 
autoreclosing after 500 ms 

The voltages and currents shown in Fig. 27 are the 
secondary voltages and currents; the CT and PT ratios are 400 
and 3,000, respectively. By using the voltages and currents 
from Fig. 27, we can obtain the positive-sequence impedance 
and plot this in the impedance plane. Fig. 28 is a plot of the 
positive-sequence impedance after the breaker is closed 
(faulted line switched back into service). 

 
Fig. 28. Positive-sequence impedance for the first case study 

Using the data from Fig. 27, we can calculate the positive-
sequence impedance magnitude. Fig. 29 is a plot of the 
positive-sequence magnitude. This plot shows how the 
positive-sequence impedance varies during a stable swing 
condition. The plot also shows that the rate of change of the 
impedance (dZ/dt) is not constant during a swing condition. 
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Fig. 29. Positive-sequence impedance magnitude for the manual excitation 
case where the generator maintains synchronism 

Fig. 30 shows the generator speed, active power, and 
reactive power for this case. 

 
Fig. 30. Response of the generator speed, active power, and reactive power 
outputs before, during, and after the applied fault 

Remember that there are two power lines in this system, so 
even with one line out of service the generator is still 
connected to the power system and can export power. We 
confirm this by examining the current in the second line 
(Line 2 in Fig. 31). 

 
Fig. 31. A plot of the current in the adjacent unfaulted line before, during, 
and after the fault 

The current, and subsequently the power, through the 
second line increases. The reason for this increase is twofold: 

• When the fault is cleared, the system experiences a 
power swing because the kinetic energy stored in the 
rotor increases the rotor speed. 

• The generator is being supplied with its predisturbance 
mechanical power of 1,960 MW. 

The machine wants to export its stored mechanical energy 
as well as the input mechanical energy. The effect of this is 
that the current through the unfaulted, in-service line 
increases. This affects the generator terminal voltage because 
increasing current through the line results in decreasing 
terminal voltage. The terminal voltage decreases because of 
the increase in the internal voltage drop (jXd′It) of the 
generator. Because the excitation voltage is fixed, Ex = 
constant, the generator EMF Eq does not increase. As a result, 
the terminal voltage Vt decreases, which means that the 
machine cannot export its input and stored energy unless the 
current increases. For this case of manual excitation, the 
generator has enough synchronizing torques available to 
remain in synchronism with the system when the faulted line 
is returned to service after a dead time of 500 ms. 

In the second case of the manual excitation mode, we apply 
the same fault; the fault is again cleared after 85 ms, but the 
line is reclosed (returned to service) after one second. This 
time, however, the system (generator) does not experience a 
stable swing but becomes unstable. Fig. 32 is a plot of the 
voltages and currents a protective device would see for this 
instance. 

 
Fig. 32. The voltage and current profile for the three-phase fault whereby 
the faulted line is reclosed after 1 second (unstable swing case) 

If we use the data from Fig. 31, calculate the positive-
sequence impedance, and plot this impedance in the 
impedance plane, we get the curves we would expect from the 
theory. Fig. 33 demonstrates use of this theory. 
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Fig. 33. A plot of the positive-sequence impedance, in the impedance plane, 
derived from the voltage and current signal in Fig. 32 

Also notice that in Fig. 32, as the terminal voltage 
decreases, jXd′Id increases and the value of n decreases, which 
means that the diameter of the swing circle decreases for each 
consecutive swing. Note that when Line 1 reclosed (see 
Fig. 32), the machine voltage was lower than the system 
voltage (infinite bus) or, stated another way, n < 1.0. 
Therefore, the power swing is in the lower-left-hand side of 
the impedance plane. This agrees with the theory presented. 

 
Fig. 34. An enlarged plot of the positive sequence impedance 

Close examination of Fig. 33 reveals an anomaly in the 
curves; they are not perfect, concentric circles, but seem to 
have a flat spot. Based on the voltage and current graphs of 
Fig. 32, it appears that the machine may become stable after 
the breaker has closed and the pole has slipped. For 
approximately three cycles, both lines carry nominal current 
and the terminal voltage seems stable. However, after three 
cycles, the voltage collapses and the machine becomes 
unstable. 

Fig. 35 shows the variation in the positive-sequence 
impedance for the different swings. After the pole slip, the 
system seems to stabilize when the impedance stabilizes. This 
agrees with what we observed in Fig. 34.  

 
Fig. 35. A plot of the positive-sequence impedance magnitude for the case 
when the generator becomes unstable 

Examining the generator speed, active power, and reactive 
power, as in Fig. 35, one can see that the generator becomes 
unstable (has zero synchronizing torque) before the circuit 
breaker closes. This instability occurs because the huge drop 
in interval voltage inside the generator leaves the voltage at 
the terminal Vt so low that the generator cannot export power. 
Therefore, the generator electrical output does not match the 
mechanical input power. The imbalance between the 
mechanical power and electrical power causes energy to be 
stored in the rotor in the form of kinetic energy, resulting in 
rotor acceleration. This is one of the major drawbacks of a 
manually controlled exciter: it cannot boost excitation voltage 
after the fault is cleared. If the generator internal voltage Ei 
can increase, thereby reducing the internal voltage drop, the 
terminal voltage Vt increases because the internal voltage drop 
(jXd′It) decreases as a result of the reduced current. 

For this case, the critical reclosing time of Line 1 is 
600 ms, or 36 cycles. At this time, the machine synchronizing 
torque equals zero. We can see that the machine speed begins 
to increase and continues increasing, even when the breaker is 
reclosed. In practice, overspeed, overcurrent, or pole-slip 
protection would have probably tripped the generator/ 
machine. 

 
Fig. 36. Plot of the generator speed, active power, and reactive power when 
the generator experiences an unstable power swing 



12 

 

Another factor to consider when using manual excitation 
on a generator is the reclosing time of critical lines. As shown 
in the second case, manual excitation can lead to the generator 
becoming unstable after a system disturbance.  

B.  Examples of Swings With AVR Enabled 
For this case study, the AVR is enabled and we subject the 

system to the same fault and reclosing time that caused the 
manually excited system to become unstable. This study will 
help demonstrate the effect of the AVR. 

Fig. 37 is a plot of the voltage and current waveforms for 
the protected line. 

 
Fig. 37. A plot of the voltage and current with the AVR enabled for the case 
that caused instability in the manually excited generator 

From the voltage and current plot, we can see that the 
system experiences a stable power swing after the line is 
reclosed. What is different about the plot in Fig. 37 compared 
to the plots in Fig. 27 and Fig. 32 is that the voltage in Fig. 37 
does not begin to collapse when the fault is cleared. This has a 
very important effect because the terminal voltage stays high, 
even though the voltage drop (jXd′It) in the machine is 
approximately the same as in the manually excited case. This 
means the machine can export the same amount of electrical 
power as it receives in mechanical input power. Therefore, no 
uncontrolled acceleration occurs. Terminal voltage maintains 
its prefault value because the AVR boosts the generator 
internal voltage. Using the data from Fig. 37, we can calculate 
the positive-sequence impedance after the line comes back 
into service. This is the impedance such as a distance relay 
protecting the line would see.  

Fig. 38 is a plot of the positive-sequence impedance in the 
impedance plane. The plot has a time frame of approximately 
100 cycles (1.67 seconds) and begins when the breaker 
recloses. After approximately 15 seconds, the positive-
sequence impedance reaches its value, which is identical to its 
prefault value, indicated as “Load” in Fig. 38.   

 
Fig. 38. A plot of the positive-sequence impedance in the impedance plane 
for the case where the AVR is enabled 

The impedance plot in Fig. 38 is further proof that the 
swing is stable. Note, however, that the trajectory of this plot 
is not as smooth as that of the manual excitation case in 
Fig. 28. Instead, this trajectory has discontinuity in its 
derivative because the AVR tries to keep the terminal voltage 
within defined limits. When the AVR tries to maintain the 
voltage within these limits, it regulates the reactive power the 
generator exports or imports. This is reflected in the 
impedance plane in terms of the reactive component (X). This 
anomaly is not visible in the positive-sequence impedance 
magnitude plot in Fig. 39, because Fig. 39 reflects the 
magnitude changes caused by the active power decreasing (R 
is increasing), while the reactive power remains almost 
constant (X remains constant). 

 
Fig. 39. A plot of the positive-sequence magnitude for the case where the 
AVR is enabled 
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Fig. 40 is the response of the generator for the applied 
conditions. Initially, the speed, active power, and reactive 
power are at a constant level (prefault condition). During the 
fault, the machine speed increases. This is to be expected 
because the amount of electrical active power the generator 
exports is not the same as the amount of mechanical power it 
imports. Also, during the fault the active power export 
decreases and the reactive power export increases, which 
agrees with the theory. Once the fault clears, the machine 
speed begins to stabilize and the machine begins to export 
more active power (MWs) than it did during the prefault 
condition. This is because the machine has stored up kinetic 
energy in the rotor during the fault, energy that is now also 
being exported to the power system. Because the machine is 
exporting more electrical power than it is receiving 
mechanical power, the rotor speed begins to decrease as the 
generator uses up the stored kinetic energy. Up to this point 
(±27 cycles after fault clearance [450 ms]), the machine 
behaves almost identically for the manually excited and the 
automatically excited case. Moving forward, however, 
differences begin to appear. In the manually excited case, the 
generator active power export begins to decrease, which 
results in increasing speed. This downward spiral continues 
until the machine slips a pole and becomes unstable. The 
instability occurs because the increased voltage drop inside the 
generator collapses the terminal voltage, preventing the 
generator from exporting the electrical active power that it is 
receiving in the form of mechanical energy. When the AVR is 
enabled, it keeps the terminal voltage at a more or less 
constant level after the fault is cleared. 

 

Fig. 40. A plot of the generator speed, active power, and reactive power for 
the case where the AVR is enabled 

From Fig. 40, we can see that the generator does not settle 
back to its prefault condition rapidly after the fault is cleared. 
As mentioned before, the generator achieves its prefault state 
after about 15 seconds. 

Fig. 41 shows the response of the AVR. The three-phase 
fault on the line reduces the terminal voltage to near zero 
during this fault, and the AVR tries to compensate for the low 
terminal voltage by boosting the generator internal voltage 
(Ei). During the fault, the AVR reaches the voltage maximum 
limit (see Fig. 12).  

 

Fig. 41. Output of the AVR 

This boost in internal voltage helps maintain generator 
stability during the time the faulted line breaker is open, 
allowing the generator to export the same amount of active 
power as the amount of mechanical power it imports. As 
mentioned before, the current the generator exports for the 
first 27 cycles after the fault is cleared is almost similar for 
both cases (see Fig. 42), but after this point, the manually 
excited generator current continues to increase because the 
machine is trying to export real power. So, even though 
reactive power is linked to voltage, voltage is necessary to 
export active power from a generator. Thus, the boost in 
internal voltage resulting from the AVR gives the generator 
the synchronizing torque to maintain synchronism with the 
system. 

 
Fig. 42. A comparison of the line current in the unfaulted lines for the case 
with and without the AVR enabled 
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C.  Examples of Swings With AVR and PSS Enabled 
For this third and final case, both the AVR and the PSS 

will be enabled, and we will subject the system to the same 
condition as previously mentioned. Fig. 43 is a voltage and 
current plot for the applied fault and the reclose. 

 
Fig. 43. A plot of the voltage and current with the AVR and PSS in service 

The voltage and current plot shows that the generator 
remains stable during the open interval time and when the 
breaker recloses. If we now plot the positive-sequence 
impedance (see Fig. 43 and Fig. 44), we see that the swing is 
more damped and the impedance does not traverse a large 
section of the impedance plane, as was the case when only the 
AVR was enabled. 

 
Fig. 44. A plot of the positive-sequence impedance in the impedance plane 
for the case where the AVR and PSS are enabled 

If we enlarge Fig. 44, we see that the impedance variation 
after each swing decreases more (see Fig. 45) than for the case 
with only the AVR. The plot in Fig. 45 occurs over the same 
time frame, 3 seconds or 180 cycles, as the one in Fig. 38. 
From this plot, we can clearly see the effect of the PSS. The 
PSS results in the impedance returning more rapidly to its 
prefault state. 

 
Fig. 45. Enlarged plot of Fig. 44 to better show the trajectory of the positive-
sequence impedance after the line is reclosed 

If we examine the positive-sequence magnitude plot (see 
Fig. 46), we see that the rate of change of impedance |dZ|/dt, is 
initially as large (for the first swing) as for the plot without the 
PSS. However, we can see that this is no longer the case for 
subsequent swings, and these oscillations are damped out 
more rapidly than in the plot without the PSS. Therefore, we 
can see that the PSS damps out the oscillations. 

 
Fig. 46. A plot of the positive-sequence impedance magnitude for the case 
where AVR and PSS are enabled 

If we now examine the generator speed, active power, and 
reactive power (Fig. 47), we can see that the machine returns 
to its prefault value more rapidly with the PSS also enabled 
than for the same case with only the AVR enabled. 
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Fig. 47. A plot of the machine speed, active power, and reactive power 
when the AVR and PSS are both enabled 

Fig. 48 shows the output of the PSS and the AVR for the 
above condition. At fault inception, the machine initially loses 
speed and then gains speed. This initial drop in speed results 
in the PSS issuing a negative gain in the excitation. After this 
initial decrease in speed, the machine speed increases and the 
PSS and AVR both drive the AVR to its upper limit. It is 
interesting that the PSS causes the AVR to be driven to the 
upper and lower limits more often than when only the AVR is 
enabled. This occurs because the PSS wants to drive the 
change in speed of the machine to zero.  

 
Fig. 48. A plot of the signals that are input and output from the AVR for the 
case with the AVR and PSS enabled 

Note that the PSS can damp out the change in speed by 
regulating the power the machine exports. This is because the 
PSS can control the generator terminal voltage, and the 
machine power is regulated so that the oscillation of the 
machine cancels out (absorbs) the power system oscillations. 

VI.  CONCLUSIONS 
1. For short-circuit studies, where only the fault current 

magnitude is of concern, we can use a constant voltage 
source instead of a complete generator model, reducing 
the complexity of the system model. 

2. Generators with manual excitation experience a decrease 
of the generator internal voltage (Ei) following a system 
disturbance, such as a fault, close to the generator 
terminals. This decrease in internal voltage significantly 
reduces the generator’s synchronizing ability after the 
disturbance. 

3. An AVR significantly improves generator steady-state 
stability, provided that the gain of the AVR is limited and 
that the AVR is not operating at its limits before the 
disturbance. The AVR boosts the generator internal 
voltage during a system disturbance; this boost increases 
the generator synchronizing torque, allowing the 
generator to return to synchronism after the disturbance. 

4. An AVR will help increase the synchronizing torque of a 
generator but will reduce the damping torque. Because of 
this, the AVR gain will have to be limited in most cases. 

5. A PSS increases the damping torque of a generator and 
allows increasing the AVR gain without compromising 
the generator’s dynamic stability. A PSS therefore 
improves the dynamic stability of the generator more than 
an AVR alone. 

6. In transient stability studies, generators modeled with 
constant excitation will constitute the worst-case scenario 
with respect to system stability following a disturbance. 
AVRs and PSSs in the generators should substantially 
improve system stability. 

VII.  APPENDIX A:  NOMENCLATURE 
The nomenclature used for generator mathematical model 

symbols corresponds to the convention of [1]. 
Eq: excitation voltage or steady-state internal voltage 
E′q: quadrature component of transient internal voltage 
E′ex: exciter voltage 
Eex: exciter voltage referred to the armature 
Id: direct-axis component of the output current 
Iq: quadrature-axis component of the output current 
Lff: field circuit self-inductance 
Rf: field circuit resistance 
Mf: mutual inductance between the field and any armature 

phase 
ra: armature phase resistance 
T′d0: direct-axis transient open-circuit time constant 
T′d: direct-axis transient short-circuit time constant 
Vd: direct-axis component of the terminal voltage 
Vq: quadrature-axis component of the terminal voltage 
Xd: direct-axis synchronous reactance 
Xq: quadrature-axis synchronous reactance 
X′d: direct-axis transient reactance 
ψf: field circuit flux linkage 
ψd: direct-axis component of the air-gap flux 
ψq: quadrature-axis component of the air-gap flux 
ω: generator speed in rad per second 
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VIII.  APPENDIX B  
In general, the per unit system is well understood; the 

apparatus MVA rating is used as the base MVA and the 
nominal voltage is used as the base voltage. From these, then, 
we can calculate the base impedance and currents. 

For a generator, the situation is more complicated in that 
we have a field winding (excitation winding on the rotor) and 
an armature winding (on the stator). The field winding is 
excited from an excitation system/circuit. The excitation 
system has a per unit value based on the field current required 
to produce one per unit voltage on the stator along the air-gap 
line. The generator per unit system is based on its apparent 
power rating (MVA) and its nominal rating (kV) [base2]. 
However, we need to match the exciter with the generator, and 
this leads to a dilemma: what per unit system do we use when 
modeling a generator system? 

We find that the generator has two per unit systems: 
• Reciprocal per unit system: Used for modeling the 

generator armature (main machine) and the system, 
based on the generator MVA rating and nominal 
terminal voltage. 

• Nonreciprocal per unit system: Used to model the 
generator excitation system. One per unit exciter 
voltage (field voltage) is equal to one per unit 
armature voltage (terminal voltage) along the air-gap 
line. 

OCC

Air GapVt (pu)

Slope = Mfu

1.0

(1.0) I′p , (If)1
Mfu  

Fig. 49. Synchronous machine open circuit characteristic 

Let us determine a relationship between the current and 
voltage in nonreciprocal and reciprocal per unit systems. To 
do this, let us examine an unloaded (open circuited) generator, 
where id = iq = 0. 

We know the following: 

 d q q qe : L • i 0= −ψ = =  (iq = 0) 
 q d d d f f f de : L • i M i M • i= ψ = + ⋅ =  (id = 0) 

If we now look at Fig. 49, we see that the field current 
needed to produce one per unit of terminal voltage (Et) on the 
air-gap line is given by: 

 '
t q fu pV : e • M • I 1.0 pu= = ω =   

but ω = 1, so 

 '
q fu pe M • I=  

For the reciprocal per unit system, we can calculate the 
field current, I′p, required to generate the rated stator voltage 
as follows: 

 f
fu

1I : (pu)
M

′ =  

This generates the corresponding field current: 

 f
ex f p

fu

R
E R • I

M′ ′= =  

By definition, we know that corresponding exciter output 
current If is 1.0 pu.  

Therefore, If := Mfu • I'f with a corresponding exciter 
voltage output: 

 fu
f ex

f

M
E : • E

R ′=  

Remember that, physically, the exciter output voltage and 
current are the same as the generator-field current and voltage. 
The exciter is connected via slip rings to the generator’s field 
winding. We only make the distinction in the per unit system 
to allow the independent selection of a per unit system, thus 
allowing for modeling of the generator excitation system and 
the main generator. Fig. 50 is a simple sketch illustrating how 
to convert from the reciprocal per unit system to the non-
reciprocal per unit system and vice versa. 

Nonreciprocal Reciprocal

Generator 
Model

Eex′

I′f

Physical Unit 
Conversion 

f
ex ex

fu

RE • E
M′ ′=

f
f

fu

II
M

′ =

Exciter Model
Eex′
If

 

Fig. 50. Per unit conversion between excitation system and synchronous 
machine 

However, to refer physical units (actual values) from one 
system to the other, we have to use a different approach. We 
know the following: 

 q f fE : • M • I= ω  and f
f

f

E
I

R
=  

 f
q f

f

M
E : • • E

R
= ω  and let f

f

M
R

γ = ω  

We can now relate Ef to Eq via γ, which is similar to 
relating the voltage of one winding of a transformer to that of 
another winding: 

 1
1 2

2

n
E • E

n
 

= 
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The following sketch illustrates how to move from the non-
reciprocal system to the reciprocal system and vice versa. 

Nonreciprocal Reciprocal

Generator 
Model

Eex′

I′f

Exciter Model
Eex′
If

Physical Unit 
Conversion 

f
ex f

f

ME • E
R′ = ω

f fu fI M • I′ =

 

Fig. 51. Physical unit conversion between excitation system and 
synchronous machine 

A.  Transient State Analysis 
Let us now examine the excitation circuit when the 

generator is subjected to a system transient such as a power 
system fault or a switching operation: 

 f
ex f f

d
E R • I

dt′
ψ′= +  (nonreciprocal base) (31) 

 f
ex ex

f

M
E • E

R′ ′= ω  (reciprocal base) (32) 

 f f f f
ex f f

f f f

M M M d
• E • R • I •

R R R dt′
ψ′ϖ = ω + ω  (33) 

 [converting (31) to a reciprocal base] 
We know the following: 

  q f fE • M • I′= ω  (34) 

 ff
do '

f

L
T

R
=  (35) 

During a fast change of armature current (fast compared to 
transient decrement, but not faster than the subtransient 
decrement), the flux linkage, ψfd, of the field remains 
substantially constant (i.e., dψfd/dt ≈ 0). This nearly constant 
flux linkage results in a new fictitious internal armature 
voltage proportional to the field flux linkage: 

 f
q ' f

ff

M
E • •

L
= ω ψ  (36) 

When we substitute (35) and (36) into Part C of (33), we 
get the following: 

 f f ff f
f do q

f f ff

M • L M
• • • • T • E

R R L ′ ′
ψ

ω = ω ψ =  

Substituting (32) into Part A and (34) into Part B of (33), 
we obtain the following: 

 q '
ex q do

E
E E T ' •

dt′= +  

 q ' ex q

do '

E E E
dt T

′ −
=  (37) 

Now let us revisit some generator flux equations: 
 d f f d dM • I L • i′ψ = −  (38a) 

 q q qL • iψ = −  (38b) 

 f ff f f d
3L • I • M • i
2

′ψ = −  (38c) 

Let us examine the difference between the quadrature axis 
voltages, Eq and Eq: 

 f
q q ' f f f

ff

M
E E • M • I • •

L
′− = ω − ω ψ

 
 [using (34) and (36)] 
  (39) 

If we substitute (38c) into (39), we get the following: 

f
q q ' f f ff f f d

ff

• M 3E E • M • I • L • I • M • i
L 2

ω  ′ ′− = ω − − 
 

 

 

2
f f

f f ff f d
ff ff

2
f

d
ff

• M • M3• M • I • L •I • • i
L 2 L

• M3 • • i
2 L

ω ω′ ′= ω − +

ω
=

 (40) 

If we know that the field is closed but not energized  
(ψf = 0), and we apply this to (38c), we get the following: 

 f
f d

ff

M3I • i
2 L

′ =  (41) 

Substituting (41) into (38a), we get the following: 

 f
d f d d

ff

M3M • • • id L • i
2 L

ψ = −  

 
2

d f
d

d ff

M3L •
i 2 L

ψ
= −

−
 

 dL '=  (for a generator, for a motor, d d dL • iψ = ) 

 
2

f
d d

ff

M3 • L L '
2 L

= −  (42) 

Substituting (42) into (40), we get the following: 
 ( )q q ' d d dE E • L L ' • i− = ω −  

 ( )q q ' d d dE E x x ' • i− = −  (43) 
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If we now wrap all of this into a phasor diagram, we get the 
following: 

Quadrature 
Axis

Direct 
Axis

EqEq′

IId

Iq

Vt
rI

xd′I
Ei′

E′

xd′Id
xq′Iq

Ed′

xdId

xqIq

EEd

Φ

δ

(xd – xd′)Id

 
Fig. 52. Phasor diagram of a synchronous machine during the transient state 
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