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Analysis of Complex Power System Faults 
and Operating Conditions 

Demetrios Tziouvaras, Schweitzer Engineering Laboratories, Inc.

Abstract—Short-circuit calculations are extremely important 
in the application and settings of protective relays and in the 
analysis of system operations. Short-circuit programs provide the 
bus voltages and line currents, in the sequence and phase 
domain, for simple balanced and unbalanced short circuits in the 
network under study. Frequently, protection engineers have to 
analyze faults that are more complex than simple shunt faults. In 
many cases, they have to analyze simultaneous shunt and/or 
series faults, study systems with unbalanced network elements, 
and calculate equivalent impedances required to study the 
stability of a network during system faults and during open-
phase conditions in single-phase tripping applications. 

This paper is a tutorial on the calculation of complex short-
circuit faults, intended to help new protection engineers analyze 
complex system faults and system operating conditions. 

I.  INTRODUCTION 

Protection engineers should be well versed in symmetrical 
component theory and analysis of faulted power systems to 
calculate appropriate relay settings and to analyze system 
operations. In this paper, we make extensive use of 
symmetrical components for short-circuit analysis [1]. 

Significant advances in short-circuit computations in the 
last 30 years have resulted in new short-circuit computer 
programs that handle different fault types and very large 
networks [2]–[8]. Often, standard short-circuit programs do 
not handle most complex faults, such as simultaneous shunt 
and/or series-faults. Engineers must then resort to complex 
hand calculations or to more advanced programs such as the 
Electromagnetic Transient Program (EMTP) to solve 
protection problems. 

New protection engineers often have difficulty solving 
complex faults and operating conditions because the methods 
for studying these situations are not taught in most four-year 
electrical engineering curricula. 

The application examples in this paper provide the 
protection engineer with information for calculating proper 
relay settings and for investigating relay operations that cannot 
be studied using typical short-circuit or load-flow programs. 
In addition, this paper demonstrates the importance of hand 
calculations in solving complex power system protection 
problems. 

We discuss formulating the bus admittance and impedance 
matrices and calculating single and two-port Thevenin 
equivalents necessary for calculating simultaneous faults in 
different parts of the network. We also present several 
application examples that illustrate these methods in real 
system studies. These examples help explain complex fault 
analysis and help provide protection engineers with tools for 
studying similar or more advanced power system phenomena. 

One example is an analysis of an unbalanced transformer 
bank consisting of three single-phase units with one of the 
phases having impedance and an MVA rating that are 
different from those of the other two phases. This situation 
occurs in power systems when a single-phase transformer fails 
and a system spare serves customers until the failed 
transformer is repaired or replaced. This example provides 
answers to both an operation-related question regarding 
permissible transformer bank loading, and a protection-related 
question on the level of circulating zero-sequence current in 
the transformer tertiary windings that may impact relay 
settings. 

Another example explains how to calculate the appropriate 
impedances for studying the stability of the network during 
open-phase conditions in single-phase tripping applications. 

II.  SHORT-CIRCUIT ANALYSIS 

A short-circuit analysis is a steady-state simulation in 
which the power system is modeled as a linear network driven 
by constant excitation. The network is assumed to be a 
balanced three-phase system with the exception of small 
localized changes in topology, which are referred to as faults. 
Short-circuit analysis provides the faulted network voltages 
and currents used for selecting power system equipment 
ratings and for setting and coordinating protective relays. 

This section is a brief review of short-circuit analysis. It is 
not intended to show how modern short-circuit programs 
compute the postfault voltages and currents of large power 
system networks. Several IEEE Transactions papers cover the 
short-circuit analysis problem in greater detail [2]–[8]. In 
addition, Anderson has an excellent book on analyzing faulted 
power systems [9]. 

A.  Classical Short-Circuit Analysis 

The classical short-circuit method models the power 
system network using the bus impedance matrix, ZBus. The 
steps required to calculate the short-circuit voltages and 
currents are as follows: 

1. Compute the sequence network bus impedance 
matrices. 

2. Extract the sequence network single-port Thevenin 
equivalent impedances of the faulted bus, given by the 
diagonal terms, Zii, of the respective sequence network 
ZBus matrices, where i is the index of the faulted bus. 

3. Use the sequence equivalent networks to compute the 
sequence fault currents at the faulted bus. 

4. Use the computed sequence fault currents as 
compensating currents to calculate the network 
postfault voltages and currents.  
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Fig. 1 shows the single-port sequence impedance Thevenin 
equivalent networks used in the classic short-circuit 
calculation method. Elements Zii(1), Zii(2), and Zii(0) are the 
positive-, negative, and zero-sequence network Thevenin 
equivalent impedances of Bus i or the sequence network 
driving point impedances of Bus i. 

 

Fig. 1 Sequence network Thevenin equivalent circuits 

For a single-phase-to-ground fault, we connect the 
positive-, negative-, and zero-sequence networks in series. For 
a phase-to-phase-to-ground fault, we connect the positive-, 
negative-, and zero-sequence networks in parallel. For a 
phase-to-phase fault, we connect the positive- and negative-
sequence networks in parallel, and for three-phase faults, we 
use only the positive-sequence network. 

B.  Example of Classic Short-Circuit Calculations 

Calculate the sequence currents for a solid A-phase-to-
ground fault at Bus 2 for the system model shown in Fig. 2. 
All quantities are in pu. 

Connect the positive-, negative-, and zero-sequence 
networks in series to model the A-phase-to-ground fault at 
Bus 2. We connect the sequence networks in series to satisfy 
the boundary conditions at the fault point, namely, ܸܽ ൌ0 and Ib = Ic = 0. Compute the sequence network fault 
currents. 

 

Fig. 2. Sequence network system model 

Fig. 3 shows the sequence network connection for the 
A-phase-to-ground fault at Bus 2 and the resulting sequence 
network fault currents. 

 

Fig. 3. A-phase-to-ground fault at Bus 2 
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Calculate the change in the sequence bus voltages by 
injecting the sequence network fault currents from Fig. 3 into 
the unmodified sequence networks. Network compensation is 
a powerful concept that allows us to model the changes in 
network topology by injecting appropriate compensating 
currents into the unmodified sequence networks. 

Fig. 4 shows the sequence network compensation currents 
for the A-phase-to-ground fault at Bus 2. 
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Fig. 4. Compensation currents for a single-phase-to-ground fault at Bus 2 

III.  FORMULATION OF BUS ADMITTANCE AND  
BUS IMPEDANCE MATRICES 

The impedance matrix is an excellent network description 
to use in solving faulted networks. We can calculate the total 
fault current at the faulted bus and the network branch currents 
from the bus impedance matrix elements. The bus impedance 
matrix contains the driving point impedances of every network 
bus with respect to the reference bus, which is the common 
bus behind the generator transient or subtransient reactances. 
The diagonal elements of the bus impedance matrix represent 
these driving point impedances. 

The bus impedance matrix also contains the transfer 
impedances between the buses. The off-diagonal elements of 
the bus impedance matrix represent the transfer impedances 
between buses. We determine the transfer impedance from 
Bus i to Bus j, for example, by injecting 1 pu current at Bus i 
and computing the voltage at Bus j.  

For us to calculate the sequence currents at the faulted bus, 
the bus injection currents, the bus voltage changes and the line 
currents we must first compute the bus impedance matrix 
elements of the sequence networks. 

There are several methods to calculate the bus impedance 
matrix elements. In this paper, we calculate the bus impedance 

matrix by inverting the bus admittance matrix, even though 
this is not the method used in short-circuit programs that 
handle large networks. We use this approach because the 
network examples in the paper consist of only a few buses. 
We intend to illustrate the calculation of complex fault 
analysis methods by using the elements of the bus impedance 
matrix. We do not demonstrate the most efficient algorithms 
used in commercial short-circuit programs. 

The bus admittance matrix is a square matrix of dimension 
n x n, where n is the number of network buses or nodes. The 
bus admittance matrix is sparse because each bus is only 
connected to a few nearby buses. In most cases, more than 
95 percent of the matrix elements equal zero. The bus 
admittance matrix is a complex and symmetric matrix, but it is 
much simpler to build and modify than the bus impedance 
matrix. The zero-sequence mutual coupling is incorporated 
directly without any approximations. We demonstrate this 
with an example in Section III-C. In Section III-B, we discuss 
the formulation of the bus admittance matrix in networks with 
mutual coupling.  

We will discuss two methods to calculate the bus 
admittance matrix. The first method consists of a few simple 
steps and is applicable to networks that do not have mutual 
coupling between lines or branches. The second method uses 
the primitive branch admittance matrix and the bus incidence 
matrix. The second method is applicable to networks that have 
mutual coupling between lines or brances. 

A.  Networks Without Mutual Coupling 

We use the following steps to calculate the bus admittance 
matrix elements: 

1. The diagonal entries of the YBus matrix, Yii, are the sum 
of the primitive admittances of all lines and ties to the 
reference at Bus i. 

2. The off-diagonal entries of the YBus matrix, Yij, are the 
negatives of the admittances of lines between Buses i 
and j. If there is no line between Buses i and j, this 
entry is zero. 

B.  Networks With Mutual Coupling 

We use the following steps to calculate the bus admittance 
matrix elements for networks with mutual coupling: 

1. Form the primitive impedance matrix Zp. This is a b x b 
matrix, where b is the number of network branches. 
The diagonal elements of the Zp matrix are the primitive 
impedances of the network branches. The off-diagonal 
elements are typically zero, unless there is mutual 
coupling between branches. 

2. Invert Zp to obtain the primitive admittance matrix Yp. 
3. Build the bus incidence matrix A. This matrix defines 

the network branch connections and the direction of the 
branch currents. To build the bus incidence matrix A, 
we begin with an n x b array of zeroes, where n is the 
number of network buses and b is the number of 
network branches. We always take the positive 
direction of the branch current from the smaller bus 
number to the larger bus number. We then use the 
following rule to make nonzero entries for each column 
in rows corresponding to the two buses to which that 
branch is connected: 
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 apq = +1 if current in Branch q is leaving Bus p. 
 apq = –1 if current in Branch q is entering Bus p. 
 apq = 0 if Branch q is not connected to Bus p. 
 apq are the elements of the bus incidence matrix 

where p = 1 … n and q = 1 … b. 
We use (1) to calculate the bus admittance matrix. 

 ஻ܻ௨௦ ൌ ܣ • ௣ܻ • ்ܣ  (1) 

We then calculate the bus impedance matrix by inverting the 
bus admittance matrix. 

 ܼ஻௨௦ ൌ ஻ܻ௨௦ିଵ  (2) 

C.  Example: Bus Impedance Matrix Formulation 

Calculate the sequence network bus impedance matrices 
for the system shown in Fig. 5. 

 

Fig. 5. Impedance diagram of a four-bus network 

Table I lists the positive-sequence and the zero-sequence 
source, line, and mutual coupling impedance data. 

TABLE I 
SEQUENCE NETWORK IMPEDANCE DATA 

Line 
Starting 

Bus 
Terminating 

Bus 

Self Reactance Mutual 
Coupling 
Reactance Pos. Seq. Zero Seq.

a 0 1 0.03 0.10 d – e = 0.10 

d – f = 0.20 b 0 2 0.10 0.50 

c 0 3 0.15 0.50 

d 1 2 0.12 0.40 

e 1 4 0.08 0.20 

f 3 4 0.10 0.30 

First, we use the method outlined in Section III-B to 
formulate the sequence network primitive impedance 
matrices. We assume the negative-sequence network primitive 
impedance matrix to be equal to the positive-sequence 
network primitive impedance matrix. The positive- and zero-
sequence network primitive impedance matrices are as 
follows: 

 





























1.000000

008.00000

0012.0000

00015.000

00001.00

0000003.0

)1( jZp  (3) 

 

 

 































3.002.0000

02.01.0000

2.0–1.04.0000

0005.000

00005.00

000001.0

)0( jZp  (4) 

 

Note that the primitive impedance matrices are of 
dimension 6 x 6 because there are six branches in the example 
network. In addition, the rows and columns of the primitive 
impedance matrices are in ascending alphabetical order of the 
network branches, in other words, a to f. Note also that the 
zero-sequence primitive impedance matrix has off-diagonal 
elements representing the mutual coupling of branches d-e and 
d-f. In the primitive zero-sequence impedance matrix the d-f 
mutual coupling impedance has a negative value because the 
positive direction of the currents in Branches d and f have 
opposite direction from each other. 

The bus incidence matrix for the network in Fig. 5 is as 
follows: 

 





















1–1–0000

1001–00

001–01–0

011001–

A  (5) 

 
 

We use (6) and (7) to calculate the positive-sequence bus 
impedance matrix: 

 ஻ܻ௨௦_ଵ ൌ ܣ • ௣ܻሺଵሻିଵ •  (6) ்ܣ

 ܼ஻௨௦_ଵ ൌ ܼሺଵሻ ൌ ஻ܻ௨௦_ଵିଵ  (7) 

 





















07464.004478.000842.001852.0

04478.008687.000505.001111.0

00842.000505.00596.001111.0

01852.001111.001111.002444.0

)1( jZ  (8) 

 

Similarly, we use (9) and (10) to calculate the zero-
sequence bus impedance matrix: 

 ஻ܻ௨௦_଴ ൌ ܣ • ௣ܻሺ଴ሻିଵ •  (9) ்ܣ
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 ܼ஻௨௦_଴ ൌ ܼሺ଴ሻ ൌ ஻ܻ௨௦_଴ିଵ  (10) 

 





















20851.011702.005319.006596.0

11702.023404.010638.003191.0

05319.010638.020745.003723.0

06596.003191.003723.008617.0

)0( jZ  (11) 

 

IV.  SIMULTANEOUS FAULT CALCULATIONS  
USING TWO-PORT NETWORK THEORY 

Some of the most difficult problems in the solution of 
faulted networks are those that involve two or more 
simultaneous faults. Simultaneous faults do not occur very 
often in power system networks. However, when they occur, 
they can cause relay misoperations. Understanding relay 
behavior during simultaneous faults requires a good 
knowledge of symmetrical components and short-circuit 
calculations. 

Before we further analyze simultaneous faults, we will 
briefly review the theory of two-port networks. In our brief 
treatment of two-port networks, we intend only to cover the 
parts necessary for studying complex network faults and 
operating conditions. References [9] and [10] are excellent 
resources on this subject. 

A.  Two-Port Networks 

A two-port network has two pairs of terminals, as shown in 
Fig. 6. In a two-port network the current that leaves one 
terminal (the bottom terminal) must enter the other terminal 
(the top terminal). This is not a restriction on the network 
itself, but on the external connections made to the network. 
This current requirement must always be preserved no matter 
how complicated the connections are among a group of two-
port networks. We often guarantee this by placing 1:1 
isolation transformers on the ports before making any external 
connections. 

 

Fig. 6. A two-port network 

Passive two-port networks are typically specified in terms 
of the network parameters showing the relationship between 
pairs of variables, as listed below: 

 Impedance parameters Z: 

 ൤ ଵܸܸଶ൨ ൌ ൤ܼଵଵ ܼଵଶܼଶଵ ܼଶଶ൨ ൤ܫଵܫଶ൨ (12) 

 Admittance parameters Y: 

 ൤ܫଵܫଶ൨ ൌ ൤ ଵܻଵ ଵܻଶଶܻଵ ଶܻଶ൨ ൤ ଵܸܸଶ൨ (13) 

 Hybrid parameters H: 

 ൤ ଵܸܫଶ ൨ ൌ ൤ܪଵଵ ଶଵܪଵଶܪ ଶଶ൨ܪ ൤ܫଵܸଶ൨ (14) 

We will not discuss the remaining two-port network 
parameters, such as the inverse hybrid parameters, 
transmission parameters, and inverse transmission parameters, 
because we will not be using them in studying simultaneous 
faults. 

To obtain the two-port impedance parameters of a passive 
network, we inject current I1 = 1 pu at Port 1 with I2 = 0 and 
measure the voltages at Ports 1 and 2. Next, we inject current 
I2 = 1 pu at Port 2 with I1 = 0 and measure the voltages at 
Ports 1 and 2. The impedance parameters are sometimes called 
the open circuit Z parameters. From these two tests, we obtain 
the two-port impedance parameters as shown below: ܼଵଵ ൌ ሺ ଵܸ ⁄ଵܫ ሻூమసబ , ܼଶଵ ൌ ሺ ଶܸ ⁄ଵܫ ሻூమసబ and  ܼଶଶ ൌ ሺ ଶܸ ⁄ଶܫ ሻூభసబ , ܼଵଶ ൌ ሺ ଵܸ ⁄ଶܫ ሻூభసబ 

The two-port impedance parameters above are the two-port 
Thevenin equivalent impedances. In general, the two-port 
Thevenin equivalent impedance is given by (15): 

 ்ܼு ൌ ൥ ௜ܷି௝௜ି௝ ௞ܷି௠௜ି௝
௜ܷି௝௞ି௠ ௞ܷି௠௞ି௠൩ ൌ ൥ ܼ௜ି௝௜ି௝ ܼ௞ି௠௜ି௝ܼ௜ି௝௞ି௠ ܼ௞ି௠௞ି௠൩ (15) 

where: 

 ௜ܷି௝௞ି௠ ൌ ݁௜௞ି௠ െ ௝݁௞ି௠ ൌ ܼ௜ି௝௞ି௠ (16) 

and 

 ܼ௜ି௝௞ି௠ ൌ ܼ௜௞ െ ܼ௜௠ െ ௝ܼ௞ ൅ ௝ܼ௠ (17) 

The term ݁௜௞ି௠ represents the voltage at Node i when 1 pu 
current is injected between Nodes k and m, and the term ௝݁௞ି௠ 
represents the voltage at Node j when 1 pu current is injected 
between Nodes k and m. The term ௜ܷି௝௞ି௠ ൌ ݁௜௞ି௠ െ ௝݁௞ି௠ is 
the voltage difference between Nodes i and j when 1 pu 
current is injected between Nodes k and m. The Z terms in 
(15), (16), and (17) represent the respective bus impedance 
matrix elements. In general, the bus impedance matrix element ܼ௜௞ represents the voltage measured at Node i when 1 pu 
current is injected at Node k. 

Note that if Nodes j and m are 0, representing the reference 
bus, we have the result shown in (18). 

 ௜ܷି଴௞ି଴ ൌ ݁௜௞ି଴ ൌ ܼ௜௞ (18) 

B.  Example: Calculation of the Two-Port Z Parameters 

Calculate the positive- and zero-sequence two-port 
Z parameters of the network in Fig. 5 for Ports S = {(1-0), 
(4-0)}. 

The two-port positive-sequence impedance parameters are 
as given in (19), which uses the corresponding elements from 
the positive-sequence bus impedance matrix (8): 

 ܼሺଵሻ்ு ൌ ቈ ଵܷି଴ଵି଴ ସܷି଴ଵି଴
ଵܷି଴ସି଴ ସܷି଴ସି଴቉ ൌ ൤ܼଵଵሺଵሻ ܼସଵሺଵሻܼଵସሺଵሻ ܼସସሺଵሻ൨ (19) 

ܼሺଵሻ்ு ൌ j ቂ0.02444 0.018520.01852 0.07464ቃ 
Similarly, the zero-sequence impedance parameters are 

given in (20), which uses the corresponding elements from the 
zero-sequence bus impedance matrix (11): 
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 ܼሺ଴ሻ்ு ൌ ቈ ଵܷି଴ଵି଴ ସܷି଴ଵି଴
ଵܷି଴ସି଴ ସܷି଴ସି଴቉ ൌ ൤ܼଵଵሺ଴ሻ ܼସଵሺ଴ሻܼଵସሺ଴ሻ ܼସସሺ଴ሻ൨ (20) 

ܼሺ଴ሻ்ு ൌ j ቂ0.08617 0.065960.06596 0.20851ቃ 
C.  Two-Port Y-Equivalent Sequence Networks 

The two-port Y-equivalent sequence networks are very 
useful for studying simultaneous faults that occur in different 
parts of the network. We can use the two-port Y-equivalent 
sequence networks to calculate the fault currents at 
intermediate points along a transmission line. We could also 
study complex series unbalances such as the one resulting 
from a three-phase transformer bank consisting of dissimilar 
single-phase units. 

Fig. 7 shows the positive-sequence two-port Y-equivalent 
network for Ports i and j. Ei(1) and Ej(1) are the prefault 
positive-sequence voltages of ports i and j. 

Ii(1) Ij(1)

Zij(1)

Zii(1
)–Zij(1

) Z
jj(1)–Z

ij(1)

Vj(1)Vi(1)

–

+

Ii(1) Ij(1)

Ei(1) Ej(1)

–

+ +

– –

+

 

Fig. 7. Positive-sequence two-port Y-equivalent network 

Remove the independent sources from the positive-
sequence network to draw the two-port Y-equivalent negative-
sequence network. Fig. 8 shows the negative-sequence two-
port Y-equivalent network for Ports i and j.  

Ii(2) Ij(2)

Ii(2) Ij(2)

Zij(2)

Zii(2
)–Zij(2

) Z
jj(2)–Z

ij(2)

Vj(2)Vi(2)

–

+

–

+

Negative Sequence
 

Fig. 8. Negative-sequence two-port Y-equivalent network 

.  
The zero-sequence two-port Y-equivalent network is 

shown in Fig. 9. 
Note that the positive-sequence network is an active two-

port network because it contains independent sources, while 
the negative- and zero-sequence networks are passive two-port 
networks. 

Ii(0) Ij(0)

Ii(0) Ij(0)

Zij(0)

Zii(0
)–Zij(0

) Z
jj(0)–Z

ij(0)

Vj(0)Vi(0)

–

+

–

+

Zero Sequence
 

Fig. 9. Zero-sequence two-port Y-equivalent network 

We derive the two-port Y-equivalent sequence networks 
from the two-port ZTH sequence equivalents. Several methods 
are available for obtaining the two-port Y-equivalent sequence 
networks. So far, we have discussed using the elements of the 
bus impedance matrix to obtain the two-port parameters. 
There are other methods for accomplishing the same result; 
see the appendix in [11]. 

Sometimes we want to find a two-port Y-equivalent 
network and at the same time retain one branch, for example a 
transmission line, between two buses. We accomplish this by 
first removing the line from the network before formulating 
the sequence network bus impedance matrices. 

V.  CONNECTING SEQUENCE NETWORKS  
FOR SIMULTANEOUS FAULTS 

Simultaneous faults are faults that occur simultaneously at 
one network location or at two or more different network 
locations. We consider both shunt and series faults in this 
paper. A shunt fault is an unbalance between phases or 
between phase(s) and ground (for example, phase-to-phase or 
a phase-to-ground fault). A series fault is an unbalance in the 
line impedances; it does not involve the ground or any 
interconnection between phases (for example, an open-phase 
condition resulting from a single-phase trip). 

When two faults occur simultaneously at Ports i and j, there 
are three cases of interest: 

1. A shunt fault at Port i and a shunt fault at Port j. 
2. A shunt fault at Port i and a series fault at Port j. 
3. A series fault at Port i and a series fault at Port j. 
The case of a series fault at Port i and a shunt fault at Port j 

is identical to Case 2, so we will not discuss it further. 

A.  Simultaneous Fault Connection of Sequence Networks 

We will discuss three different two-port sequence network 
connections: the series-series (Z-type faults), the parallel-
parallel (Y-type faults), and the series-parallel (H-type faults) 
connections. The interconnections between the two-port 
sequence networks help us form more complicated networks 
that allow us to study complex network faults and operating 
conditions. 

    1)  Series-Series Connection (Z-Type Faults) 
We use the series-series connection of the two-port 

sequence networks to study the following fault types: 
1. A single-phase-to-ground fault at Port i and a single-

phase-to-ground fault at Port j. 
2. A single-phase-to-ground fault at Port i and two open 

phases at Port j. 
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3. Two open phases at Port i and a single-phase-to-ground 
fault at Port j. 

4. Two open phases at Port i and two open phases at 
Port j. 

 

Fig. 10. Sequence network connection for simultaneous Z-type faults 

Fig. 10 shows the series-series (Z-type faults) two-port 
sequence network interconnection. 

The sequence networks in Fig. 10, indicated by square 
boxes, represent the two-port Y-equivalent networks (dashed 
squares) of Fig. 7, Fig. 8, and Fig. 9. 

We use (21) to calculate Port i and Port j positive-sequence 
voltages (see Fig. 7): 

 ൤ ௜ܸሺଵሻ௝ܸሺଵሻ൨ ൌ ൤ܧ௜ሺଵሻܧ௝ሺଵሻ൨ െ ൤ܼ௜௜ሺଵሻ ܼ௜௝ሺଵሻ௝ܼ௜ሺଵሻ ௝ܼ௝ሺଵሻ൨ ൤ܫ௜ሺଵሻܫ௝ሺଵሻ൨ (21) 

From Fig. 10, we can also write (22) and (23), where 
k = 0, 1, 2: 

 ݊௜ሺ௞ሻ ൌ ௫ܸሺ௞ሻ ௜ܸሺ௞ሻ⁄ ൌ ௫ܫ ⁄௜ሺ௞ሻܫ  (22) 

 ௝݊ሺ௞ሻ ൌ ௬ܸሺ௞ሻ ௝ܸሺ௞ሻ⁄ ൌ ௬ܫ ⁄௝ሺ௞ሻܫ  (23) 

Premultiplying (21) by ൤݊௜ሺଵሻ 00 ௝݊ሺଵሻ൨ , results in (24): 

 ൤ ௫ܸሺଵሻ௬ܸሺଵሻ൨ ൌ ൤݊௜ሺଵሻ • ௜ሺଵሻ௝݊ሺଵሻܧ • ௝ሺଵሻ൨ܧ െ ൦ ܼ௜௜ሺଵሻ ௡೔ሺభሻ•௓೔ೕሺభሻ௡ೕሺభሻ௡ೕሺభሻ•௓ೕ೔ሺభሻ௡೔ሺభሻ ௝ܼ௝ሺଵሻ ൪ ൤ܫ௫ܫ௬൨ (24) 

Similarly, we use (25) to calculate Port i and Port j 
negative-sequence voltages. 

 ൤ ௫ܸሺଶሻ௬ܸሺଶሻ൨ ൌ െ ൦ ܼ௜௜ሺଶሻ ௡೔ሺమሻ•௓೔ೕሺమሻ௡ೕሺమሻ௡ೕሺమሻ•௓ೕ೔ሺమሻ௡೔ሺమሻ ௝ܼ௝ሺଶሻ ൪ ൤ܫ௫ܫ௬൨  (25) 

Since ݊௜ሺ଴ሻ ൌ ௝݊ሺ଴ሻ ൌ 1, we use (26) to calculate Port i and 
Port j zero-sequence voltages. 

 ൤ ௫ܸሺ଴ሻ௬ܸሺ଴ሻ൨ ൌ െ ൦ ܼ௜௜ሺ଴ሻ ௡೔ሺబሻ•௓೔ೕሺబሻ௡ೕሺబሻ௡ೕሺబሻ•௓ೕ೔ሺబሻ௡೔ሺబሻ ௝ܼ௝ሺ଴ሻ ൪ ൤ܫ௫ܫ௬൨ (26) 

The final result is in (27). 

 ൤ ௫ܸሺ଴ሻ௬ܸሺ଴ሻ൨ ൌ െ ൤ܼ௜௜ሺ଴ሻ ܼ௜௝ሺ଴ሻ௝ܼ௜ሺ଴ሻ ௝ܼ௝ሺ଴ሻ൨ ൤ܫ௫ܫ௬൨ (27) 

From Fig. 10, we observe that: 

 ൤ ௫ܸܸ௬൨ ൌ ൤ ௫ܸሺଵሻ௬ܸሺଵሻ൨ ൅ ൤ ௫ܸሺଶሻ௬ܸሺଶሻ൨ ൅ ൤ ௫ܸሺ଴ሻ௬ܸሺ଴ሻ൨ ൌ ቂ00ቃ (28) 

Performing the addition in (28) and substituting (24), (25), 
and (26), we get the result in (29): 

 ൤ ௫ܸܸ௬൨ ൌ ൤݊௜ሺଵሻ • ௜ሺଵሻ௝݊ሺଵሻܧ • ௝ሺଵሻ൨ܧ െ ൤ܼ௜௜ ܼ௜௝௝ܼ௜ ௝ܼ௝൨ ൤ܫ௫ܫ௬൨ (29) 

where: 

 ܼ௜௜ ൌ ܼ௜௜ሺଵሻ ൅ ܼ௜௜ሺଶሻ ൅ ܼ௜௜ሺ଴ሻ (30) 

 ܼ௜௝ ൌ ሺ݊௜ሺଵሻ ௝݊ሺଵሻൗ ሻ • ܼ௜௝ሺଵሻ ൅                                           ሺ݊௜ሺଶሻ ௝݊ሺଶሻൗ ሻ • ܼ௜௝ሺଶሻ ൅ ܼ௜௝ሺ଴ሻ (31) 

 ௝ܼ௜ ൌ ሺ ௝݊ሺଵሻ ݊௜ሺଵሻൗ ሻ • ܼ௝௜ሺଵሻ ൅                                           ሺ ௝݊ሺଶሻ ݊௜ሺଶሻൗ ሻ • ܼ௝௜ሺଶሻ ൅ ௝ܼ௜ሺ଴ሻ (32) 

 ௝ܼ௝ ൌ ௝ܼ௝ሺଵሻ ൅ ௝ܼ௝ሺଶሻ ൅ ௝ܼ௝ሺ଴ሻ (33) 

Note that when the two-port sequence networks are 
connected in series as in Fig. 10, the Z-parameter matrix of the 
resulting two-port network is equal to the sum of the Z-
parameter matrices of the original two-port sequence 
networks. 

We use (34) to calculate currents Ix and Iy: 

 ൤ܫ௫ܫ௬൨ ൌ ൤ܼ௜௜ ܼ௜௝௝ܼ௜ ௝ܼ௝൨ିଵ ൤݊௜ሺଵሻ • ௜ሺଵሻ௝݊ሺଵሻܧ •  ௝ሺଵሻ൨ (34)ܧ

Note that for short-circuit calculations in an unloaded 
network, we have ܧ௜ሺଵሻ ൌ  ௬, weܫ ௫ andܫ ௝ሺଵሻ = 1 pu. Knowingܧ
can calculate the sequence network currents ܫ௜ሺ௞ሻ and ܫ௝ሺ௞ሻ, 
where k = 0, 1, 2. We then calculate the two-port injected 
sequence network currents. We calculate the sequence 
network bus voltage changes by multiplying the sequence 
network bus impedance matrices with the appropriate node 
injected current vectors. An example later in this section (V-
B) illustrates this method. 

    2)  Parallel-Parallel Connection (Y-Type Faults) 
The parallel-parallel connection of the two-port sequence 

networks is necessary for studying the following fault types: 
1. A double-phase-to-ground fault at Port i and a double-

phase-to-ground fault at Port j. 
2. A double-phase-to-ground fault at Port i and one open 

phase at Port j. 
3. One open phase at Port i and a double-phase-to-

ground fault at Port j. 
4. One open phase at Port i and one open phase at Port j. 
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Fig. 11 shows the parallel-parallel (Y-type faults) two-port 
sequence network interconnection. 

For parallel-parallel sequence network connections, we 
work with the two-port admittance parameters (Y-parameters). 
We calculate the Y-parameters by inverting the two-port 
sequence network impedance parameters (Z-parameters).  

We use (35) to calculate Port i and Port j positive-sequence 
currents: 

 ൤ܫ௜ሺଵሻܫ௝ሺଵሻ൨ ൌ ൤ܫ௦௜ሺଵሻܫ௦௝ሺଵሻ൨ െ ൤ ௜ܻ௜ሺଵሻ ௜ܻ௝ሺଵሻ௝ܻ௜ሺଵሻ ௝ܻ௝ሺଵሻ൨ ൤ ௜ܸሺଵሻ௝ܸሺଵሻ൨ (35) 

From Fig. 11, we can also write (36) and (37), where 
k = 0, 1, 2: 

 ݊௜ሺ௞ሻ ൌ ௫ܸሺ௞ሻ ௜ܸሺ௞ሻ⁄ ൌ ௫ܫ ⁄௜ሺ௞ሻܫ  (36) 

 ௝݊ሺ௞ሻ ൌ ௬ܸሺ௞ሻ ௝ܸሺ௞ሻ⁄ ൌ ௬ܫ ⁄௝ሺ௞ሻܫ  (37) 

Positive-
Sequence
Network

Vi(1)

–

+

Vx(1)

–

+

Vy(1)

–

+

Vj(1)

–

+

Negative-
Sequence
Network

Vi(2)

–

+

Vx(2)

–

+

Vy(2)

–

+

Vj(2)

–

+

Zero-
Sequence
Network

Vi(0)

–

+

Vx(0)

–

+

Vy(0)

–

+

Vj(0)

–

+

Sequence
Networks

Vx

–

+

Ix=0

Vy

–

+

Iy=0

Iy(0)

Vx

–

+

Vy

–

+

Ix(2)

Ix(1) Ii(1)

Ii(2)

Ij(0)

Iy(1)

IyIy(2)Ij(2)Ix

Ix(0) Ii(0)

Ij(1)

1:nj(1)

1:nj(2)

1:nj(0)

nj(1):1

nj(2):1

nj(0):1

 

Fig. 11. Sequence network connection for simultaneous Y-type faults 

Premultiplying (35) by ൤݊௜ሺଵሻ 00 ௝݊ሺଵሻ൨, results in (38). 

 ൤ܫ௫ሺଵሻܫ௬ሺଵሻ൨ ൌ ൤݊௜ሺଵሻ • ௦௜ሺଵሻ௝݊ሺଵሻܫ • ௦௝ሺଵሻ൨ܫ െ ൦ ௜ܻ௜ሺଵሻ ௡೔ሺభሻ•௒೔ೕሺభሻ௡ೕሺభሻ௡ೕሺభሻ•௒ೕ೔ሺభሻ௡೔ሺభሻ ௝ܻ௝ሺଵሻ ൪ ൤ ௫ܸܸ௬൨ (38) 

Similarly, we use (39) to calculate Port i and Port j 
negative-sequence currents. 

 ൤ܫ௫ሺଶሻܫ௬ሺଶሻ൨ ൌ െ ൦ ௜ܻ௜ሺଶሻ ௡೔ሺమሻ•௒೔ೕሺమሻ௡ೕሺమሻ௡ೕሺమሻ•௒ೕ೔ሺమሻ௡೔ሺమሻ ௝ܻ௝ሺଶሻ ൪ ൤ ௫ܸܸ௬൨  (39) 

Since ni(0) = nj(0) = 1, we use (40) to calculate Port i and Port j 
zero-sequence currents: 

 ൤ܫ௫ሺ଴ሻܫ௬ሺ଴ሻ൨ ൌ െ ൦ ܼ௜௜ሺ଴ሻ ௡೔ሺబሻ•௓೔ೕሺబሻ௡ೕሺబሻ௡ೕሺబሻ•௓ೕ೔ሺబሻ௡೔ሺబሻ ௝ܼ௝ሺ଴ሻ ൪ ൤ ௫ܸܸ௬൨ ൌ
                                     െ ൤ܼ௜௜ሺ଴ሻ ܼ௜௝ሺ଴ሻ௝ܼ௜ሺ଴ሻ ௝ܼ௝ሺ଴ሻ൨ ൤ ௫ܸܸ௬൨ (40) 

From Fig. 11, we observe that: 

 ൤ܫ௫ܫ௬൨ ൌ ൤ܫ௫ሺଵሻܫ௬ሺଵሻ൨ ൅ ൤ܫ௫ሺଶሻܫ௬ሺଶሻ൨ ൅ ൤ܫ௫ሺ଴ሻܫ௬ሺ଴ሻ൨ ൌ ቂ00ቃ (41) 

Performing the addition indicated in (41) and substituting 
(38), (39), and (40), we get the result in (42): 

 ൤ܫ௫ܫ௬൨ ൌ ൤݊௜ሺଵሻ • ௦௜ሺଵሻ௝݊ሺଵሻܫ • ௦௝ሺଵሻ൨ܫ െ ൤ ௜ܻ௜ ௜ܻ௝௝ܻ௜ ௝ܻ௝൨ ൤ ௫ܸܸ௬൨ (42) 

where: 

 ௜ܻ௜ ൌ ௜ܻ௜ሺଵሻ ൅ ௜ܻ௜ሺଶሻ ൅ ௜ܻ௜ሺ଴ሻ (43) 

 ௜ܻ௝ ൌ ሺ݊௜ሺଵሻ ௝݊ሺଵሻൗ ሻ • ௜ܻ௝ሺଵሻ ൅                                           ሺ݊௜ሺଶሻ ௝݊ሺଶሻൗ ሻ • ௜ܻ௝ሺଶሻ ൅ ௜ܻ௝ሺ଴ሻ (44) 

 ௝ܻ௜ ൌ ሺ ௝݊ሺଵሻ ݊௜ሺଵሻൗ ሻ • ௝ܻ௜ሺଵሻ ൅                                           ሺ ௝݊ሺଶሻ ݊௜ሺଶሻൗ ሻ • ௝ܻ௜ሺଶሻ ൅ ௝ܻ௜ሺ଴ሻ (45) 

 ௝ܻ௝ ൌ ௝ܻ௝ሺଵሻ ൅ ௝ܻ௝ሺଶሻ ൅ ௝ܻ௝ሺ଴ሻ (46) 

Note that when the two-port sequence networks are 
connected in parallel as in Fig. 11, the Y-parameter matrix of 
the resulting two-port network is equal to the sum of the Y-
parameter matrices of the original two-port sequence 
networks. 

We use (47) to calculate voltages Vx and Vy: 

 ൤ ௫ܸܸ௬൨ ൌ ൤ ௜ܻ௜ ௜ܻ௝௝ܻ௜ ௝ܻ௝൨ିଵ ൤݊௜ሺଵሻ • ௦௜ሺଵሻ௝݊ሺଵሻܫ •  ௦௝ሺଵሻ൨ (47)ܫ

There is a relationship among the different two-port 
network parameters. We can calculate one set of two-port 
network parameters from another known set of two-port 
network parameters [10]. For example, to calculate the 
Y-parameters needed for a parallel-parallel connection, we 
invert the two-port Z-parameter matrix. 

    3)  Series-Parallel Connection (H-Type Faults) 
We use the series-parallel connection of the two-port 

sequence networks to study the following type of faults: 
1. A single-phase-to-ground fault at Port i and a double-

phase-to-ground fault at Port j. 
2. A single-phase-to-ground fault at Port i and one phase 

open at Port j. 
3. Two open phases at Port i and a double-phase-to-

ground fault at Port j. 
4. Two open phases at Port i and one open phases at Port 

j. 

Fig. 12 shows the series-parallel connection of the two-port 
sequence networks.  

We use the same connection also to study parallel-series 
faults by reversing the left and right port definitions. We use 
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(48) to calculate the hybrid parameter matrices (H-parameters) 
from the two-port Z-parameter matrices [10]: 

ሺ௞ሻ൧ܪൣ  ൌ ൦ୢୣ୲ ௓ሺೖሻ௓ೕೕሺೖሻ ௓೔ೕሺೖሻ௓ೕೕሺೖሻെ ௓ೕ೔ሺೖሻ௓ೕೕሺೖሻ ଵ௓ೕೕሺೖሻ
൪ (48) 

where: 

k = 0, 1, 2 representing the zero-, positive-, and 
negative-sequence networks, respectively. det ܼሺ௞ሻ = the determinant of matrix ܼሺ௞ሻ. 

 

Fig. 12. Sequence network connection for simultaneous H-type faults 

When the two-port sequence networks are connected in 
series-parallel, as shown in Fig. 12, the H-parameter matrix of 
the resulting two-port network is equal to the sum of the 
H-parameter matrices of the original two-port sequence 
networks. We calculate the H-parameter matrix of the 
resulting two-port network by following the steps we used in 
the series-series and parallel-parallel connections. Refer to [8] 
and [9] for more detailed analysis and derivation of H-
parameters. 

The sequence network voltages and currents in Fig. 10, 
Fig. 11, and Fig. 12 between the isolation transformers are all 
referenced to A-phase of the power system. The connections 
on the other side of the isolation transformers represent the 
boundary conditions for the series or shunt unbalance of the 
particular phases involved. The isolation transformer ratios are 
all 1:1 and may include a phase shift equal to ܽ ൌ ݁௝ଵଶ଴ or ܽଶ ൌ ݁௝ଶସ଴. Table II shows the appropriate isolation 
transformer ratios for different types of shunt and series faults. 

TABLE II 
ISOLATION TRANSFORMER RATIOS 

Fault Type Zero Seq. Pos. Seq. Neg. Seq. 

A-Gnd 1 1 1 

B-Gnd 1 a2 a 

C-Gnd 1 a a2 

B-C-Gnd 1 1 1 

C-A-Gnd 1 a2 a 

A-B-Gnd 1 a a2 

A-Phase Open 1 1 1 

B-Phase open 1 a2 a 

C-Phase Open 1 a a2 

B&C-Phases Open  1 1 1 

C&A-Phases Open 1 a2 a 

A&B-Phases Open 1 a a2 

B.  Example: Simultaneous Line-to-Ground Faults 

Calculate the two-port network sequence currents and the 
total fault currents for the network in Fig. 5 for a B-phase-to-
ground fault at Bus 2 and a C-phase-to-ground fault at Bus 4. 
Table III lists the source voltage magnitudes and angles. 

TABLE III 
SOURCE DATA 

Source Magnitude in pu Angle in Degrees 

Bus 1 1.1 30 

Bus 2 1.0 0.0 

Bus 3 1.0 0.0 

First we calculate the two-port sequence impedance 
parameters following the procedure in Section IV-B. The two-
port sequence impedance parameters are extracted from the 
sequence bus impedance matrices as shown in (49): 

 ܼሺ௞ሻ ൌ ൤ܼଶଶሺ௞ሻ ܼଶସሺ௞ሻܼସଶሺ௞ሻ ܼସସሺ௞ሻ൨ (49) 

where k = 0, 1, 2 represent the zero-, positive-, and negative-
sequence networks, respectively. 

The two-port negative-sequence impedance parameters are 
identical to the two-port positive-sequence impedance 
parameters as shown in (50): 

 ܼሺଵሻ ൌ Zሺଶሻ ൌ ൤ܼଶଶሺଵሻ ܼଶସሺଵሻܼସଶሺଵሻ ܼସସሺଵሻ൨ (50) 

                                        ൌ ݆ ቂ0.05960 0.008420.00842 0.07464ቃ  

We use (51) to calculate the two-port zero-sequence 
impedance parameters: 

 ܼሺ଴ሻ ൌ ൤ܼଶଶሺ଴ሻ ܼଶସሺ଴ሻܼସଶሺ଴ሻ ܼସସሺ଴ሻ൨ ൌ ݆ ቂ0.20745 0.053190.05319 0.20851ቃ (51) 

Because we are considering two shunt faults (Z-type 
faults), we need to use the series-series connection of the 
sequence networks shown in Fig. 10. The boundary conditions 
at Port x in Fig. 10 for a B-phase-to-ground fault are according 
to (52) and (53): 
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௔ܫ    ൌ ௖ܫ  ,0 ൌ 0, and ௕ܸ ൌ 0 (52)        ௫ܸ ൌ ௕ܸ ൌ ௕ܸ଴ ൅ ௕ܸଵ ൅ ௕ܸଶ                                                    ൌ ௔ܸ଴ ൅ ܽଶ • ௔ܸଵ ൅ ܽ • ௔ܸଶ (53) 

All quantities in the sequence networks between the 
isolation transformers in Fig. 10 are referred to A-phase. 
Therefore, the two-port (Port i, left side of Fig. 10) isolation 
transformer ratios are as in (54): 

 ݊ଶሺ଴ሻ ൌ 1, ݊ଶሺଵሻ ൌ ܽଶ, and ݊ଶሺଶሻ ൌ ܽ (54) 

Similarly, the boundary conditions at Port y for a C-phase-
to-ground fault are according to (55) and (56): 

௔ܫ    ൌ ௕ܫ  ,0 ൌ 0, and ௖ܸ ൌ 0 (55)      ௫ܸ ൌ ௖ܸ ൌ ௖ܸ଴ ൅ ௖ܸଵ ൅ ௖ܸଶ                                                   ൌ  ௔ܸ଴ ൅ ܽ • ௔ܸଵ ൅ ܽଶ • ௔ܸଶ (56) 

Therefore, the Port 4 (Port j, right side of Fig. 10) isolation 
transformer ratios are as in (57): 

 ݊ସሺ଴ሻ ൌ 1, ݊ସሺଵሻ ൌ ܽ, and ݊ସሺଶሻ ൌ ܽଶ (57) 

The resulting two-port equivalent impedance parameter 
matrix is derived from the addition of the two-port sequence 
network impedance parameter matrices. Therefore, we can use 
(30), (31), (32) and (33) to obtain (58), (59), (60), and (61): 

 ܼଶଶ ൌ ܼଶଶሺଵሻ ൅ ܼଶଶሺଶሻ ൅ ܼଶଶሺ଴ሻ ൌ ݆0.32665  (58) 

 ܼଶସ ൌ ሺ௡మሺభሻ௡రሺభሻሻ • ܼଶସሺଵሻ ൅ ሺ௡మሺమሻ௡రሺమሻሻ • ܼଶସሺଶሻ ൅ ܼଶସሺ଴ሻ 
 ܼଶସ ൌ ܽ • ܼଶସሺଵሻ ൅ ܽଶ • ܼଶସሺଶሻ ൅ ܼଶସሺ଴ሻ ൌ ݆0.04477 (59) 

 ܼସଶ ൌ ሺ௡రሺభሻ௡మሺభሻሻ • ܼସଶሺଵሻ ൅ ሺ௡రሺమሻ௡మሺమሻሻ • ܼସଶሺଶሻ ൅ ܼସଶሺ଴ሻ 
 ܼସଶ ൌ ܽଶ • ܼସଶሺଵሻ ൅ ܽ • ܼସଶሺଶሻ ൅ ܼସଶሺ଴ሻ ൌ ݆0.04477 (60) 

 ܼସସ ൌ ܼସସሺଵሻ ൅ ܼସସሺଶሻ ൅ ܼସସሺ଴ሻ ൌ ݆0.35779 (61) 

The network prefault bus voltages of Fig. 5 are as follows: 

ێێێۏ 
ۑۑۑےସሺଵሻܧଷሺଵሻܧଶሺଵሻܧଵሺଵሻܧۍ

ې ൌ ൦1.061 · ݁௝ଶହ.଴1.003 · ݁௝ଵଵ.଻1.003 · ݁௝ଵଵ.଻1.028 · ݁௝ଵଽ.ଷ൪  

We calculate the bus prefault voltages by first converting 
the voltage sources into current sources and then by 
multiplying the positive-sequence bus impedance matrix by 
the current injection vector. In this example, the current 
injection vector is of dimension 4 x 1, and only the Bus 4 
current injection is zero. 

Next, we use (62) to calculate the Port x and Port y 
currents: 

 ൤ܫ௫ܫ௬൨ ൌ ൤ܼଶଶ ܼଶସܼସଶ ܼସସ൨ିଵ ൤݊ଶሺଵሻ • ଶሺଵሻ݊ସሺଵሻܧ •  ସሺଵሻ൨ (62)ܧ

The prefault voltages at Bus 2 and Bus 4 are as follows: 

ଶሺଵሻܧ  ൌ 0.98245 ൅ ݆0.20370 

ସሺଵሻܧ  ൌ 0.97076 ൅ ݆0.33951 

Therefore, the Port x and Port y currents are as follows: 

 ൤ܫ௫ܫ௬൨ ൌ ൤െ3.229 ൅ ݆0.6772.279 ൅ ݆2.094 ൨ 

We calculate the Port 2 and Port 4 sequence currents in 
(63) and (64): 

 ቎ܫଶሺ଴ሻܫଶሺଵሻܫଶሺଶሻ቏ ൌ ௫ܫ • ێێێۏ
1ۍ ݊ଶሺ଴ሻൗ1 ݊ଶሺଵሻൗ1 ݊ଶሺଶሻൗ ۑۑۑے

ې ൌ ൥െ3.229 ൅ ݆0.6771.028 െ ݆3.1352.201 ൅ ݆2.458 ൩ (63) 

 ቎ܫସሺ଴ሻܫସሺଵሻܫସሺଶሻ቏ ൌ ௬ܫ • ێێێۏ
1ۍ ݊ସሺ଴ሻൗ1 ݊ସሺଵሻൗ1 ݊ସሺଶሻൗ ۑۑۑے

ې ൌ ൥ 2.279 ൅ ݆2.0940.674 െ ݆3.021െ2.953 ൅ ݆0.927൩ (64) 

The total fault currents at Port 2 and Port 4 are as follows: 

 ቎ܫ௔ሺଶሻܫ௕ሺଶሻܫ௖ሺଶሻ቏ ൌ ൥ 0െ9.687 ൅ ݆2.030 ൩ ൌ ൥ 09.9 • ݁௝ଵ଺଼.ଶ0 ൩ 

 ቎ܫ௔ሺସሻܫ௕ሺସሻܫ௖ሺସሻ቏ ൌ ൥ 006.838 ൅ ݆6.281൩ ൌ ൥ 009.3 • ݁௝ସଶ.଺൩ 

C.  Representing an Open Phase in Stability Studies 

Stability programs represent the power system by a single-
phase positive-sequence impedance network [12]. To simulate 
any unbalanced network conditions, we connect the equivalent 
negative-sequence and zero-sequence impedances at the 
appropriate point in the positive-sequence network. 

In single-phase tripping applications, we clear single-
phase-to-ground faults by opening only the faulted phase. 
While the faulted phase is open, the two healthy phases still 
transmit reduced power. The power system experiences a 
series unbalance that causes negative- and zero-sequence 
currents to flow in the network. It is beneficial to study how 
long the system can operate with one phase open, to allow 
self-extinction of the secondary arc before making a reclosing 
attempt, and whether the system will remain stable during the 
open phase condition. 

Such studies require complex calculations to determine the 
equivalent impedance that will replace the line positive-
sequence impedance in stability simulations. In most cases, 
planning engineers request the equivalent impedance for such 
studies from the protection department. For the open-phase 
condition, the general practice is to represent the line open in 
one end only, even though both ends of the line are open. A 
common approach is to insert an impedance value equal to the 
parallel combination of the negative- and zero-sequence 
impedances as seen from the open point in series with the 
positive-sequence line impedance.  

Representing the open phase at one end of the line only is 
approximate, but sufficiently accurate for short lines because 
the shunt capacitance is relatively small. However, this 
approximate representation could result in a significant error 
in long transmission line applications [12]. The following 
example illustrates how to compute the equivalent impedance 
that replaces the positive-sequence impedance of a 
transmission line with an open phase in a stability study. 
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D.  Example: Open-Phase Representation in Stability Studies 

Calculate the equivalent impedance that must be inserted in 
the positive-sequence network in a stability study to represent 
the single-phase tripping of A-phase on Line 1 of the network 
in Fig. 13. 

 

Fig. 13. Simple network to study A-phase open of Breakers 1 and 2 

Fig. 14 depicts the impedance diagram of the network in 
Fig. 13 with A-phase of Breakers 1 and 2 open on Line 1. 
Table IV lists the positive- and zero-sequence impedances of 
each network element. 

The impedance diagram in Fig. 14 consists of 10 elements 
(a through j) and seven nodes. The network in Fig. 13 consists 
of five nodes, one node for each bus and one node for each 
series capacitor. To model the Line 1 open-phase condition, 
we must create two additional nodes between Breakers 1 and 2 
and the Line 1 series capacitors. In addition, in this example 
we model the shunt capacitance of Line 1, to demonstrate how 
to properly calculate the equivalent impedance as seen from 
Ports 1–6 and 4–7. This equivalent impedance represents the 
opening of A-phase of Breakers 1 and 2 during single-phase 
tripping. Lines 2 and 3 of the network in Fig. 13 are also series 
compensated, which the figure does not show; however, the 
series capacitance is reflected in the sequence impedances of 
Lines 2 and 3 in Table IV. 

 

Fig. 14. Impedance diagram of the network shown in Fig. 13 

TABLE IV 
SEQUENCE NETWORK IMPEDANCE DATA OF FIG. 14 

Element 
Start 
Bus End Bus 

Self Reactance 

Pos. Seq. Zero Seq. 

a 0 1 0.01095 0.01997 

b 0 5 0.03229 0.28120 

c 0 4 0.00523 0.00725 

d 1 5 0.00606 0.04650 

e 4 5 0.00323 0.03086 

f 2 6 –0.01020 –0.01020 

g 0 2 –0.78192 –1.10583 

h 2 3 0.03087 0.09638 

i 0 3 –0.78192 –1.10583 

j 3 7 –0.01020 –0.01020 

The positive- and zero-sequence bus impedance matrices 
for the impedance diagram in Fig. 14 are as follows: 

































39329.0–39883.0–0038309.0–39883.0–0

39883.0–39329.0–0039883.0–38309.0–0

0000481.000297.0000031.0

0000297.000383.00000191.0

38309.0–39883.0–0038309.0–39883.0–0

39883.0–38309.0–0039883.0–38309.0–0

000031.000191.00000589.0

)1( jZ

 

































53792.0–57811.0–0052772.0–57811.0–0

57811.0–53792.0–0057811.0–52772.0–0

000223.000424.0000067.0

0000424.000668.00000127.0

52772.0–57811.0–0052772.0–57811.0–0

57811.0–52772.0–0057811.0–52772.0–0

000067.000127.00001598.0

)0( jZ

 

The dimension of the bus incidence matrix of the 
impedance diagram in Fig. 14 is 7 x 10. The positive- and 
zero-sequence bus impedance matrices have dimension 7 x 7, 
and we can formulate these by using the same method we 
discussed earlier for the impedance diagram in Fig. 5. We 
assume the negative-sequence bus impedance matrix to be the 
same as the positive-sequence bus impedance matrix. 

We use (65) and (66) to obtain the negative- and zero-
sequence Thevenin equivalent impedances for Ports 1–6 and 
4–7: ܼሺଶሻ்ு ൌ ܼሺଵሻ்ு ൌ ቈ ଵܷି଺ଵି଺ ܷସି଻ଵି଺ଵܷି଺ସି଻ ܷସି଻ସି଻቉    ൌ൤ܼଵଵሺଵሻ െ ܼଵ଺ሺଵሻ െ ܼ଺ଵሺଵሻ ൅ ܼ଺଺ሺଵሻ ܼସଵሺଵሻ െ ܼସ଺ሺଵሻ െ ܼ଻ଵሺଵሻ ൅ ܼ଻଺ሺଵሻܼଵସሺଵሻ െ ܼଵ଻ሺଵሻ െ ܼ଺ସሺଵሻ ൅ ܼ଺଻ሺଵሻ ܼସସሺଵሻ െ ܼସ଻ሺଵሻെܼ଻ସሺଵሻ ൅ ܼ଻଻ሺଵሻ ൨
 (65) 

 ܼሺଶሻ்ு ൌ j ቂെ0.387393 െ0.396919െ0.396919 െ0.389453ቃ 
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ܼሺ଴ሻ்ு ൌ ቈ ଵܷି଺ଵି଺ ܷସି଻ଵି଺ଵܷି଺ସି଻ ܷସି଻ସି଻቉ ൌ൤ܼଵଵሺ଴ሻ െ ܼଵ଺ሺ଴ሻ െ ܼ଺ଵሺ଴ሻ ൅ ܼ଺଺ሺ଴ሻ ܼସଵሺ଴ሻ െ ܼସ଺ሺ଴ሻ െ ܼ଻ଵሺ଴ሻ ൅ ܼ଻଺ሺ଴ሻܼଵସሺ଴ሻ െ ܼଵ଻ሺ଴ሻ െ ܼ଺ସሺ଴ሻ ൅ ܼ଺଻ሺ଴ሻ ܼସସሺ଴ሻ െ ܼସ଻ሺ଴ሻെܼ଻ସሺ଴ሻ ൅ ܼ଻଻ሺ଴ሻ ൨
 (66) 

 ܼሺ଴ሻ்ு ൌ j ቂെ0.521936 െ0.576836െ0.576836 െ0.531242ቃ 
The sequence network connection for A-phase open at 

Port 1–6 and A-phase open at Port 4–7 is the connection for 
Y-type faults in Fig. 11. The ratio of all isolating transformers 
is 1:1 because we are studying an A-phase open condition in 
both ports. To represent the parallel connection of the 
negative- and zero-sequence networks, we sum the negative- 
and zero-sequence admittance matrices ሺܻଶሻ்ு and ሺܻ଴ሻ்ு, which 

we obtain by taking the inverse of ܼሺଶሻ்ுand ܼሺ଴ሻ்ு  
. The result of 

the sum is the following: 

 ்ܻு଴ଶ ൌ ݆ ቂെ67.9353 69.876169.8761 െ67.4589ቃ 
We invert ்ܻு଴ଶ to obtain the corresponding impedance 

matrix ்ܼு଴ଶ, which is shown below: 

 ்ܼு଴ଶ ൌ ݆ ቂെ0.224987 െ0.233049െ0.233049 െ0.226576ቃ 
We then combine ்ܼு଴ଶ with the positive-sequence two-

port impedance parameters of Line 1 to obtain the equivalent 
impedance matrix. This matrix represents the equivalent line 
parameters that should be used in place of the positive-
sequence impedance of Line 1 in stability studies. 

To obtain the two-port parameters of Line 1, including the 
series capacitors, we use the method presented in Section III-C 
and the impedance diagram in Fig. 15. Note that the node 
numbers in Fig. 15 are not related to the node numbers in Fig. 
14. 

 

Fig. 15. Impedance diagram of Line 1 and the series capacitors 

The bus incidence matrix for the impedance diagram in 
Fig. 15 is of dimension 4 x 5, and the corresponding bus 
impedance matrix is of dimension 4 x 4. The bus impedance 
matrix for the impedance diagram in Fig. 15 is as follows: 























3830871.0–3988329.0–3830871.0–3988329.0–

3988329.0–3830871.0–3988329.0–3830871.0–

3830871.0–3988329.0–3932871.0–3988329.0–

3988329.0–3830871–3988329.0–3932871.0–

jZ  

We are interested only in the two-port (1-0 and 2-0) 
impedance parameters from this network that we calculate 
with (67): 

 ்ܼுଵ ൌ ቈ ଵܷି଴ଵି଴ ଶܷି଴ଵି଴
ଵܷି଴ଶି଴ ଶܷି଴ଶି଴቉ ൌ ൤ܼଵଵ ܼଶଵܼଵଶ ܼଶଶ൨ (67) 

       ൌ j ቂെ0.393287 െ0.398833െ0.398833 െ0.393287ቃ 
Next, we sum ்ܼு଴ଶ and ்ܼுଵ to obtain the two-port 

equivalent impedance that will represent Line 1, the series 
capacitors, and the opening of A-phase of Breakers 1 and 2.  

 ܼாொ_ଵ ൌ ்ܼுଵ ൅ ்ܼு଴ଶ ൌ j ቂെ0.618274 െ0.631882െ0.631882 െ0.619863ቃ
 (68) 

Inverting ܼாொ_ଵ gives us the positive-sequence admittance 
matrix ܻாொ_ଵ: 

 ܻாொ_ଵ ൌ j ቂെ38.6703 39.420139.4201 െ38.5712ቃ  

We can represent the network in Fig. 15 with a pi-
equivalent circuit between Nodes 1 and 2 (or between Nodes 1 
and 4 in Fig. 14), as in Fig. 16. 

 

Fig. 16. Equivalent positive-sequence impedance parameters  

In Fig. 16, primitive impedances z1, z2, and z3 are the 
inverse of primitive admittance elements y1, y2, and y3 that we 
derive from ܻாொ_ଵ with (69), (70), and (71): 

ଵݕ  ൌ ଵܻଵாொ_ଵ ൅ ଵܻଶாொ_ଵ (69) 

ଶݕ  ൌ െ ଵܻଶாொ_ଵ (70) 

ଷݕ  ൌ ଵܻଶாொ_ଵ ൅ ଶܻଶாொ_ଵ (71) 

We can use a similar approach to study an A-phase open 
condition in each of two parallel transmission lines. 

VI.  TRANSFORMER BANKS OF DISSIMILAR UNITS 

Large EHV transformer banks are typically composed of 
three single-phase units. If one of the single-phase 
transformers fails, the utility may use a spare transformer 
located in the same substation, or a mobile system spare to 
replace the failed transformer. In either case, the impedances 
of the spare transformer are most likely different from the 
impedances of the other two healthy transformer units. 
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When such a situation arises, should the operating 
department limit the transformer loading? The problem is that 
the tertiary winding rating is normally 30 to 35 percent of the 
main winding rating. A small zero-sequence current in the 
main windings may result in a large zero-sequence current in 
the tertiary windings, which could cause these windings to 
overheat. Protection engineers must verify that the transformer 
tertiary overcurrent protection will not operate improperly 
because of maximum allowed transformer loading. Therefore, 
it is imperative that we calculate the impact of the unbalance 
resulting from unequal transformer impedances. 

The solution technique we describe is based on the 
symmetrical component method of circuit representation. The 
symmetrical component equivalent circuit of a balanced 
transformer bank, consisting of three identical single-phase 
units, is uncoupled. This means that a balanced loading 
condition causes current to flow only in the positive-sequence 
network. When the high-low, high-tertiary, and low-tertiary 
reactances of one of the transformer units are different from 
the reactances of the other two transformers, the symmetrical 
component networks are mutually coupled. 

Fig. 17 shows the T-equivalent circuits of the three single-
phase transformer banks.  

ZTa ZTb ZTc

ITa ITb ITc

T

VTa

IHc

IHb

IHa

H

VHc

VHb

VHa

ZHa

ZHb

ZHc ZLc

ZLb

ZLa

L

ILa

ILb

ILc

VLb

VLc

VLa

VTb VTc  

Fig. 17. T-equivalent circuit of three single-phase transformers 

Let us assume that the A-phase transformer has different 
impedances from those of the transformers of the other two 
phases. We use the impedances of A-phase and B-phase 
transformers to redraw the T-equivalent circuits of Fig. 17, in 
Fig. 18.  

 

Fig. 18. T-equivalent circuits with series unbalances in the A-phase 
transformer 

We replace the high, low, and tertiary impedances of the C-
phase in Fig. 17 with those of the B-phase transformer, 
because those units are identical. We replace the A-phase 
high, low, and tertiary impedances with the B-phase 
impedances and the difference impedance terms ZHa–ZHb, ZLa–
ZLb, and ZTa–ZTb.  

The goal now is to find a symmetrical component circuit 
representation of the three-phase unbalanced circuit in Fig. 18. 
The symmetrical component transformation for the voltages 
and currents in the respective transformer windings are as 
follows: 

 ൥ ுܸ௔଴ுܸ௔ଵுܸ௔ଶ൩ ൌ 1/3 ൥1 1 11 ܽ ܽଶ1 ܽଶ ܽ ൩ ൥ ுܸ௔ுܸ௕ுܸ௖ ൩ (72) 

 ൥ ௅ܸ௔଴௅ܸ௔ଵ௅ܸ௔ଶ൩ ൌ 1/3 ൥1 1 11 ܽ ܽଶ1 ܽଶ ܽ ൩ ൥ ௅ܸ௔௅ܸ௕௅ܸ௖ ൩ (73) 

 ൥்ܸ ௔଴்ܸ ௔ଵ்ܸ ௔ଶ൩ ൌ 1/3 ൥1 1 11 ܽ ܽଶ1 ܽଶ ܽ ൩ ൥்ܸ ௔்ܸ ௕்ܸ ௖ ൩ (74) 

 ൥ܫு௔଴ܫு௔ଵܫு௔ଶ൩ ൌ 1/3 ൥1 1 11 ܽ ܽଶ1 ܽଶ ܽ ൩ ൥ܫு௔ܫு௕ܫு௖ ൩ (75) 

 ൥ܫ௅௔଴ܫ௅௔ଵܫ௅௔ଶ൩ ൌ 1/3 ൥1 1 11 ܽ ܽଶ1 ܽଶ ܽ ൩ ൥ܫ௅௔ܫ௅௕ܫ௅௖ ൩ (76) 

 ൥்ܫ௔଴்ܫ௔ଵ்ܫ௔ଶ൩ ൌ 1/3 ൥1 1 11 ܽ ܽଶ1 ܽଶ ܽ ൩ ൥்ܫ௔்ܫ௕்ܫ௖ ൩ (77) 
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Now, let us use voltages and currents as designated in Fig. 
18 to compute the voltage drop from the high- to the low-
voltage winding. 

 ுܸ௔ ൌ ௅ܸ௔ ൅ ு௔ܼு௕ܫ ൅ ு௔ሺܼு௔ܫ െ ܼு௕ሻ ൅ 
௅௔ሺܼ௅௔ܫ  െ ܼ௅௕ሻ ൅  ௅௔ܼ௅௕ (78)ܫ

 ுܸ௕ ൌ ௅ܸ௕ ൅ ு௕ܼு௕ܫ ൅  ௅௕ܼ௅௕ (79)ܫ

 ுܸ௖ ൌ ௅ܸ௖ ൅ ு௖ܼு௕ܫ ൅  ௅௖ܼ௅௕ (80)ܫ

Using (72), (73), (75), (76) and (78), (79), (80), we 
compute the sequence network voltage difference from the 
high- to the low-voltage windings as in (81), (82), and (83): 

ுܸ௔଴ െ ௅ܸ௔଴ ൌ ு௔଴ܼு௕ܫ ൅ ሺܫு௔଴ ൅ ு௔ଵܫ ൅ ு௔ଶሻܫ ൬ܼு௔ െ ܼு௕3 ൰                            ൅ሺܫ௅௔଴ ൅ ௅௔ଵܫ ൅ ௅௔ଶሻܫ ቀ௓ಽೌି௓ಽ್ଷ ቁ ൅  ௅௔଴ܼ௅௕ (81)ܫ

ுܸ௔ଵ െ ௅ܸ௔ଵ ൌ ு௔ଵܼு௕ܫ ൅ ሺܫு௔଴ ൅ ு௔ଵܫ ൅ ு௔ଶሻܫ ൬ܼு௔ െ ܼு௕3 ൰                             ൅ሺܫ௅௔଴ ൅ ௅௔ଵܫ ൅ ௅௔ଶሻܫ ቀ௓ಽೌି௓ಽ್ଷ ቁ ൅  ௅௔ଵܼ௅௕ (82)ܫ

ுܸ௔ଶ െ ௅ܸ௔ଶ ൌ ு௔ଶܼு௕ܫ ൅ ሺܫு௔଴ ൅ ு௔ଵܫ ൅ ு௔ଶሻܫ •                             ൬ܼு௔ െ ܼு௕3 ൰ ൅ ሺܫ௅௔଴ ൅ ௅௔ଵܫ ൅ ௅௔ଶሻܫ •                             ቀ௓ಽೌି௓ಽ್ଷ ቁ ൅  ௅௔ଶܼ௅௕ (83)ܫ

Next, we use voltages and currents as designated in Fig. 18 
to compute the voltage drop from the tertiary to the low-
voltage winding. 

 ்ܸ ௔ ൌ ௅ܸ௔ ൅ ௔்ܼ௕்ܫ ൅ ௔ሺ்ܼ௔்ܫ െ ்ܼ௕ሻ                                      ൅ܫ௅௔ሺܼ௅௔ െ ܼ௅௕ሻ ൅  ௅௔ܼ௅௕ (84)ܫ

 ்ܸ ௕ ൌ ௅ܸ௕ ൅ ௕்ܼ௕்ܫ ൅  ௅௕ܼ௅௕ (85)ܫ

 ்ܸ ௖ ൌ ௅ܸ௖ ൅ ௖்ܼ௕்ܫ ൅  ௅௖ܼ௅௕ (86)ܫ

Using (84), (85), (86) and (73), (74), (76), (77), we 
compute the sequence network voltage difference from the 
tertiary to the low-voltage windings as in (87), (88), and (89): ்ܸ ௔଴ െ ௅ܸ௔଴ ൌ ௔଴்ܼ௕்ܫ  ൅ ሺ்ܫ௔଴ ൅ ௔ଵ்ܫ ൅ ௔ଶሻ்ܫ •                              ൬்ܼ௔ െ ்ܼ௕3 ൰ ൅ ሺܫ௅௔଴ ൅ ௅௔ଵܫ ൅ ௅௔ଶሻܫ •                              ቀ௓ಽೌି௓ಽ್ଷ ቁ ൅ ்ܸ ௅௔଴ܼ௅௕ (87)ܫ ௔ଵ െ ௅ܸ௔ଵ ൌ ௔ଵܼ௧௕்ܫ  ൅ ሺ்ܫ௔଴ ൅ ௔ଵ்ܫ ൅ ௔ଶሻ்ܫ •                              ൬்ܼ௔ െ ்ܼ௕3 ൰ ൅ ሺܫ௅௔଴ ൅ ௅௔ଵܫ ൅ ௅௔ଶሻܫ •                              ቀ௓ಽೌି௓ಽ್ଷ ቁ ൅ ்ܸ ௅௔ଵܼ௅௕ (88)ܫ ௔ଶ െ ௅ܸ௔ଶ ൌ ௔ଶܼ௧௕்ܫ ൅ ሺ்ܫ௔଴ ൅ ௔ଵ்ܫ ൅ ௧௔ଶሻܫ •                              ൬்ܼ௔ െ ்ܼ௕3 ൰ ൅ ሺܫ௅௔଴ ൅ ௅௔ଵܫ ൅ ௅௔ଶሻܫ •                              ቀ௓ಽೌି௓ಽ್ଷ ቁ ൅  ௅௔ଶܼ௅௕ (89)ܫ

Fig. 19 shows the symmetrical component representation 
of the unbalanced transformer bank, assuming that the tertiary 
winding is unloaded and that it is connected in delta. 

The next example illustrates application of the equivalent 
circuit to calculate the zero-sequence current circulating in the 
tertiary winding because of the series unbalances resulting 
from the unequal impedances of the A-phase transformer 
bank. 

 

Fig. 19. Symmetrical component circuit representation for an unbalanced 
transformer bank 

A.  Example: Dissimilar Transformer Banks 

Calculate the circulating current in the tertiary winding of 
an unbalanced three-phase transformer bank consisting of 
three single-phase units. We assume the 525/230/13.8 kV 
transformer bank to be loaded on the 230 kV side at 
100 percent of the A-phase transformer. The 525 kV system 
and transformer impedances are as follows: 

525 kV Source Impedances: 

 ZS1 = j 0.00587 p.u. at 100 MVA and 525 kV base 

 ZS0 = j 0.00472 p.u. at 100 MVA and 525 kV base 

Transformer impedances: 
A-Phase: 150/200/280 MVA (32.0/42.67/53.34 MVA) 
ZH-L = 7.31 % at 150.0 MVA 
ZH-T = 7.07 % at   33.6 MVA 
ZL-T = 4.59 % at   33.6 MVA 

B-Phase: 2000/267/334 MVA (33.6/44.8/56 MVA) 
ZH-L = 6.64 % at 200.0 MVA 
ZH-T = 7.62 % at   44.8 MVA 
ZL-T = 5.36 % at   44.8 MVA 

C-Phase: 2000/267/334 MVA (33.6/44.8/56 MVA) 
ZH-L = 6.64 % at 200.0 MVA 
ZH-T = 7.62 % at   44.8 MVA 
ZL-T = 5.36 % at   44.8 MVA 

230 kV side load: 112 ohms/phase 

Fig. 20 shows the sequence network connections for the 
previous example data. We use a 100 MVA base in 
calculating all impedances. 

From Fig. 20, we can calculate the zero-sequence current 
flowing in the tertiary winding: 

 ITa0 = 0.00334 + j 0.02259 p.u. or 374.7 A  

We confirmed the magnitude of the circulating current in 
the tertiary winding by modeling the same unbalanced bank in 
ATP. 



15 

Fig. 20. Complete sequence network connection for unbalanced transformer 

VII. CONCLUSIONS

1. Short-circuit calculations are extremely important in the
application and settings of protective relays. Protection
engineers should be well versed in the analysis of faulted
power systems so that they can make appropriate relay
settings and analyze complex system operations.

2. The two-port theory is very useful for the analysis of
simultaneous faults and complex operating conditions in
power systems.

3. To accurately represent the effect of single-phase open
conditions in stability studies, the equivalent impedance
parameters that replace the line under study should be
calculated considering the line open at both ends instead
of open at one end only.

4. We derived the symmetrical component equivalent for an
unbalanced transformer bank in this paper. The
magnitude of the circulating current in the tertiary
winding of the unbalanced transformer bank agrees very
closely with the results from a more sophisticated
modeling approach that uses ATP.
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