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Transformer Fault Analysis Using Event 
Oscillography 

Casper Labuschagne and Normann Fischer, Schweitzer Engineering Laboratories, Inc. 

Abstract—Transformer differential protection operates on 
Kirchhoff’s well-known law that states, “The sum of currents 
entering and leaving a point is zero.” Although Kirchhoff’s law is 
well understood, the implementation of the law in transformer 
differential protection involves many practical considerations 
such as current transformer (CT) polarity, phase-angle correc-
tion, zero-sequence removal, and CT grounding. Still, even cor-
rectly implemented transformer differential protection misoper-
ates occasionally, resulting from conditions such as CT satura-
tion during heavy through faults.  

Whereas electromechanical and electronic relays provide no 
or very little fault information, numerical relays provide an 
abundance of information. However, the analyst must still select 
the correct fault information from this abundance of information 
to perform useful fault analysis.  

This paper demonstrates how to begin analysis of such events 
by using real-life oscillographic data and going through a step-
by-step analysis of the relay algorithm using a mathematical re-
lay model. Relay engineers can use this paper as a reference for 
analyzing transformer oscillography in a systematic and logical 
manner. 

I.  DATA FLOW AND EVENT INFORMATION 
With so much information available in a numerical relay, 

the question is: which event report is the correct one? Avail-
able fault data in a relay depends largely on the memory space 
and the type of protection element. Fig. 1 shows the most im-
portant items in a typical data flow diagram of a numerical 
relay. After the anti-aliasing low-pass filter and analog-to-
digital conversion, the relay calculates the magnitude and 
phase of the current inputs. Because the anti-aliasing filter 
only attenuates higher frequencies, the signals still contain all 
frequencies and direct current value up to the cutoff frequency 
of the anti-aliasing filter. 
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Fig. 1. Typical Data Flow Diagram of a Numerical Relay 

In Fig. 1, these quantities are labeled RAW (unfiltered) 
Quantities, “unfiltered” referring to digital filtering. For the 
relay discussed in this paper, the sampling rate is 64 samples 
per cycle, with both filtered and raw data available at 64 sam-
ples per cycle, at 16 samples per cycle, at 8 samples per cycle, 
and at 4 samples per cycle. Which one to choose? Fig. 2 

shows a composite signal containing fundamental, second-
harmonic, third-harmonic, fourth-harmonic, and fifth-
harmonic values. 
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Fig. 2. TOP Generated Waveform 

Fig. 3 shows the event report of the 16 samples-per-cycle 
RAW data. Clearly, the signals are closely correlated, in other 
words, the raw event report data contain substantially the same 
information as the applied signal. 
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Fig. 3. Raw, 16 Samples-per-Cycle Event Report 

Fig. 4 depicts the frequency analysis of the signal, showing 
the fundamental frequency (60 Hz) and the magnitudes of the 
second harmonic, third harmonic, fourth harmonic, and fifth 
harmonic as percentages of the fundamental. 
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Fig. 4. Harmonic Contents of the Raw Signal 

Fig. 5 shows the event report of the four samples-per-cycle, 
filtered data. By contrast, the filtered data contain only the 
fundamental frequency information. 

 

Fig. 5. Filtered, Four Samples-per-Cycle Event Report 

Fig. 6 depicts the frequency analysis of the signal, showing 
only the fundamental frequency (60 Hz) information. 

 

Fig. 6. Harmonic Contents of the Filtered Signal 

II.  COMPENSATION 
In addition to filtering, the relay further compensates for 

the phase-angle difference between the high-voltage winding 
(HV) and the low-voltage winding (LV) (see Appendix A), 
and removes zero-sequence currents if necessary (see Appen-
dix B). Because standard CT ratios seldom match the full-load 
current of the transformer, the relay adjusts each phase current 

to compensate for the ratio mismatch between installed CTs 
and the transformer full-load current by calculating a scaling 
factor called TAP, using (1). 

CTR•kV•3
1000•MVA•kTAP =   (1) 

where:  
k = 1 for wye-connected CTs, or k = √3 for delta-connected 
CTs 
MVA = transformer rating in MVA 
kV = system-rated voltage in kV 
CTR = CT ratio (normalized) 
The relay then uses the filtered, compensated quantities to 

calculate the per-unit values for use in the differential element. 
Table 1 shows the differences between the raw quantities and 
the filtered, compensated fundamental quantities. 

TABLE 1 
RAW QUANTITIES AND FILTERED, COMPENSATED FUNDAMENTAL 

QUANTITIES COMPARISON 

Values Raw Quantities Filtered, Compen-
sated Fundamental 

Quantities 

Fundamental 
frequency 

Yes Yes 

Harmonics Yes No 

DC offset Yes No 

Positive-sequence Can be calculated* Can be calculated 

Negative-sequence Can be calculated* Can be calculated 

Zero-sequence Can be calculated* No 

Angle compensation Can be calculated* Yes 
* After appropriate filtering and magnitude calculations 

Raw data contain crucial information for analyzing CT per-
formance. Such information is important because CT satura-
tion poses the biggest problem for a correctly commissioned 
differential relay. In particular, the higher the amount of de-
caying dc present in the primary current, the higher the likeli-
hood that CTs will saturate for prolonged through faults. Be-
cause the dc component is filtered out of filtered data, this 
vital dc information is lost to the analyst. 

It is sometimes useful to test relay performance with differ-
ent relay settings by injecting the fault event into the relay, 
usually in the IEEE Std. C37.111-1999 COMTRADE format. 
Most modern analysis software generates COMTRADE files 
when running the fault event, so that COMTRADE files are 
readily available. However, these COMTRADE files are only 
useful if generated from the RAW data. For example, Table 1 
shows that there is no second harmonic present in the filtered 
data, but most modern transformer relays use the second har-
monic to prevent differential operation during inrush condi-
tions. Injecting the relay with a signal without the second 
harmonic may lead to incorrect conclusions.  

Therefore, always select the RAW data at the highest sam-
pling rate available in the relay for any fault analysis. 
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III.  DIFFERENTIAL ELEMENT CALCULATIONS 
The final functional block in Fig. 1 is the differential ele-

ment. As is the case with all protection elements, the oper-
ate/no operate decision is in the form of a comparator, com-
paring a measured quantity against a setting value. Fig. 7 
shows such a comparator, which for the purpose of this dis-
cussion, we will call the differential comparator. When doing 
fault analysis, it is important to understand that the trip/no trip 
decision is not a comparison between the restraint current and 
operate current, but between two operate currents, namely, a 
measured operating current and an operating current calcu-
lated from the relay settings. 

TRIP
Measured Value

Setting –

+

 

Fig. 7. Differential Comparator, Comparing a Measured Value Against a 
Setting 

Equation (2) shows a typical form of the equation that the 
relay uses to calculate the measured quantity (operating cur-
rent) for a two-winding transformer differential protection 
application. 

2I1IIOPm +=   (2) 

where: 
IOPm = Measured operating current 
I1 = Phasor current from Winding 1 
I2 = Phasor current from Winding 2 

For the setting value, the relay solves for the operating cur-
rent as a function of the relay characteristic and the particular 
settings. Fig. 8 shows a single-slope differential characteristic. 

IOP(IRT)

IRT

SLP1

O87P

( )21 IIkIRT +•=

P1

P2

 

Fig. 8. Single-Slope Differential Element 

Point P1 is the restraint current for specific values of I1 and 
I2 during any processing interval [see (3)]. Point P2 is the 
result of solving a straight-line equation with the specific IRT 
value [see (4)]. To start the calculations for the setting value, 
the relay uses (3) to calculate IRT, the independent variable in 
Fig. 8. 

( )2I1I•kIRT +=   (3) 

where: 
IRT = Restraint current 
k = Design constant (usually 1 or 0.5) 
I1 = Phasor current from Winding 1 
I2 = Phasor current from Winding 2 

Because the single-slope characteristic is a straight line 
starting at the origin, the relay uses (4) to solve for IOP(IRT) 
the setting value. 

IRT•1SLP)IRT(IOP =   (4) 

where: 
IOP(IRT) = Solved operating current 
SLP1 = Slope 1 setting 
IRT = Restraint current [result from (3)] 

For example, assuming that the CT ratios match the full-
load current of the transformer (TAP1 = TAP2 = 1), determine 
whether the relay operates under the following condition: 

SLP1 = 0.3 (30 percent) 
I1 = 5∠0° 
I2 = 4∠150° 
k = 0.5 

Use (2) to calculate IOPm as follows: 

2I1IIOPm +=  = °∠+°∠ 150405   

IOPm = 2.52 per unit 
Use (3) to calculate IRT as follows: 

( )2I1I•kIRT +=  = 0.5(4 + 5)  

IRT = 4.5 per unit 
Use (4) to calculate IOP(IRT) as follows: 

IRT•1SLP)IRT(IOP =  = 0.3 • 4.5  
IOP(IRT) = 1.35 per unit 

Fig. 9 shows the comparator that compares IOPm and 
IOP(IRT). In this case, IOPm (2.52) is greater than IOP(IRT) 
(1.35) and the TRIP output asserts. 

–

+
TRIP

IOP(IRT) = 1.35

IOPm = 2.52

 

Fig. 9. Differential Element Comparator With TRIP Values 

Furthermore, it is important to understand that event re-
ports show the measured value (IOPm) and the restraint value 
(IRT), not IOP(IRT). Fig. 10 shows the magnitudes of the 
operate current (IOP1, bottom signal) and the restraint current 
(IRT1, top signal) of Differential Element 1. In Fig. 10, the 
restraint current (1.25 per unit) is much greater than the oper-
ating current (0.5 per unit). It may seem that the relay should 
not operate because the restraint current is larger than the op-
erate current. 
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Fig. 10. Operate and Restraint Current Magnitudes 

However, as discussed, the differential comparator com-
pares IOPm and IOP(IRT). Notice that Fig. 10 shows IOPm 
and not IOP(IRT). It is still necessary to calculate IOP(IRT) 
using IRT and the slope setting before the differential com-
parator can make the trip/no trip decision. Therefore, for a 
SLP1 setting of 0.25 (25 percent), use (4) to calculate 
IOP(IRT), the setting value: 

IRT•1SLP)IRT(IOP =  = 0.25 • 1.25  
IOP(IRT) = 0.31 per unit 

Because the measured value (IOPm = 0.5 per unit) is 
greater than the setting value (IOP(IRT) = 0.31), the relay 
trips. 

IV.  USING EVENT OSCILLOGRAPHY TO ANALYZE 
TRANSFORMER FAULTS 

Although analysis software is useful, all relevant relay in-
formation is not always available for manipulation in the 
analysis software.  For clearer visual representation of the 
data, the following analysis uses a MathCAD™ worksheet that 
mimics the relay algorithms both in calculations and in data 
processing sequence. In general, the following discussion fol-
lows the data flow as depicted in Fig. 1. However, instead of 
first developing the relay operations and later applying these 
calculations to analyze system faults, we show the function 
block together with a graph.  

To provide data for the graphs, we consider a case where a 
transformer differential relay operated for an external fault on 
the HV side (220 kV system) of the transformer. The fault 
occurred on one of the 220 kV feeders; the feeder breaker 
opened approximately four cycles after fault inception. Ap-
proximately three cycles after the feeder breaker tripped, the 
transformer breakers tripped. The customer stated that the 
feeder fault was a phase-to-phase fault. Fig. 11 is a capture of 
the raw event report that we will use for analyzing this fault. 

 

Fig. 11. Unfiltered (raw) Oscillographic Event Report of the Fault to be Ana-
lyzed 

Fig. 12 is a single-line diagram of the customer’s network 
and fault location. The transformer data are as follows: 

Rating: = 120 MVA  
Windings: = 3 
Connections: = Wye/Wye/Delta [Star/Star/ Delta] 
Voltage ratio: = 220/110/10.5 kV 

110 kV 
Bus

220 kV 
Bus

10.5 kV 
Bus

fault

Transformer

 

Fig. 12. Substation Single-Line Diagram 

Although this is a three-winding transformer, the tertiary 
was unloaded and CT data are only available from the HV and 
LV windings. Although the tertiary was unloaded and played 
no visible function, it greatly influenced the fault current seen 
on the LV side of the transformer. 

In order to analyzing the actual fault, we need more infor-
mation regarding the data flow/processing path within the 
relay. Whereas Fig. 1 provides an overall view of the data 
flow in a numerical transformer relay, Fig. 7 gives more de-
tailed information about the differential element. Fig. 13 also 
includes six references (a through f) to clearly show points 
where specific data observations apply. 
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Fig. 13. Data Path in a Numerical Transformer Differential Relay 

Starting with the unfiltered or raw data stored in the oscil-
lographic event report, Fig. 14 (A) shows the unfiltered HV 
currents and Fig. 14 (B) shows the LV line or transformer 
terminal current. These currents are generated at point “a” in 
the data path in Fig. 13. 

(A) 

 

(B) 

 

Fig. 14. HV Winding Unfiltered (raw) Phase Current (A) and LV Winding 
Unfiltered (raw) Phase Current (B) 

Although the raw quantities provide extremely useful in-
formation such as dc-offset and waveform distortion, the next 
step is to filter the raw quantities in order to calculate the op-
erating and restraint quantities. This particular relay uses a 
full-cycle cosine digital filter. Fig. 15 shows the filtered HV 
and LV winding currents. Note that filtering removes the dc 
offset and all nonfundamental frequency (harmonics) currents. 
These currents are generated at point “b” in the data path in 
Fig. 13. 

(A) 

 

(B) 

 

Fig. 15. HV Winding Filtered Phase Current (A) and LV Winding Filtered 
Phase Current (B) 

Because the prime concern of the analysis is with the dif-
ferential element operation, first consider the top path in  
Fig. 13, namely the calculation of the operating, restraint, and 
differential quantities. Fig. 16 shows the HV and LV currents 
after these currents have been filtered, scaled (TAP calcula-
tion), and phase corrected (matrix calculation). For these cur-
rents, refer to point “c” in Fig. 13. 

(A) 

 

(B) 

 

Fig. 16. HV Winding Currents After Filtering, and Magnitude and Phase 
Correction (A) and LV Winding Currents After Filtering, and Magnitude and 
Phase Correction (B) 

An important aspect of transformer differential protection 
is that the differential elements operate on an effective differ-
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ential element basis, and not on a transformer winding/phase 
basis (see Appendix A). For example, in a wye-connected 
winding, the line and phase currents are the same, but in a 
delta-connected winding, the line currents are the difference 
between two phase currents. Therefore, the relay does not 
compare the current in the transformer HV winding A-phase 
current to the LV current in the A-phase LV winding, but 
rather the current entering the A-phase differential element 
from the HV CTs against the current entering A-phase differ-
ential element from the LV CTs.  

Recall that the transformer under consideration is a 
wye/wye/delta transformer.  [1] For the two wye/wye wind-
ings, the compensation matrices must have the same elements 
(W1CTC = W2CTC = 1). With this compensation matrix se-
lection, the input current for the A-phase differential element 
from the HV winding is composed of the currents from the A- 
and B-phase terminals (IA – IB). Fig. 17 shows the combina-
tion of HV currents and LV currents for the A-phase differen-
tial element. Therefore, the A-phase differential element cal-
culates a differential current between a particular combination 
of currents from the HV winding and a particular combination 
of currents from the LV winding. The B- and C-phase differ-
ential elements have compositions similar to the A-phase dif-
ferential element, using the appropriate current combinations. 

Transformer

A-Phase
Differential

+

-

+

-

A

B

C

a

b

c

HV Winding A phase 
differential element

 input current

LV Winding A phase 
differential element

 input current

Σ Σ

 

Fig. 17. Composition of the HV and LV Winding A-Phase Differential Ele-
ment Input Current 

Because the differential elements are a combination of par-
ticular currents, we have to examine all differential elements, 
and not any individual element on its own. Fig. 18, Fig. 19, 
and Fig. 20 show the HV winding differential input current 
and the LV winding differential input currents that make up 
the individual phase differential elements. 

(A) 

 

(B) 

 

Fig. 18. A-Phase Differential Element Input Currents (A) and A-Phase Differ-
ential Element Input Current Magnitudes (B) 

(A) 

 

(B) 

 

Fig. 19. B-Phase Differential Element Input Currents (A) and B-Phase Differ-
ential Element Input Current Magnitudes (B) 
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(A) 

 

(B) 

 

Fig. 20. C-Phase Differential Element Input Currents (A) and C-Phase Differ-
ential Element Input Current Magnitudes (B) 

For steady-state values, Fig. 18, Fig. 19, and Fig. 20 are 
most useful because these graphs clearly show whether the 
magnitude and angle compensation (and thus the matrix selec-
tion for the particular transformer-vector group) are correct. 
These graphs also provide the operate and restraint currents 
necessary for fault analysis. From examining the raw current 
graphs (Fig. 14), it is clear that the fault inception occurred at 
approximately 1.6 cycles. This correlates with the graphs of 
the differential elements (Fig. 18, Fig. 19, Fig. 20) and the 
original oscillographic event (Fig. 11) because we see a 
change in the current magnitude in the different differential 
elements. From Fig. 18, Fig. 19, and Fig. 20, we see an in-
crease of equal magnitude in both HV winding currents and 
LV winding currents and these currents are 180° out of phase. 
This is typical for an external fault. However, on close inspec-
tion of the phase angle between the HV winding differential 
element input current and the LV winding differential element 
input current at approximately cycle 3, the phase angle be-
tween the two input quantities changes from being 180° out of 
phase to being in phase. Can we conclude that the fault 
evolved at approximately cycle 3 from an external fault into 
an internal fault? Fig. 21 (enlarged graph of Fig. 19 between 
cycles 3.5 and 6.5) shows that the input currents into the dif-
ferential element are in phase, a clear indication of an internal 
fault. 

 

Fig. 21. Zoomed Graph of the B-Phase Differential Element Input Currents 

The A-phase differential elements inputs currents exhibit 
similar traits as that of the B-phase, albeit not as severe. 

However, looking at the raw current waveforms (Fig. 22) 
there is no evidence of this current inversion. Why this appar-
ent contradiction? 

(A) 

 

(B) 

 

Fig. 22. HV Winding unfiltered A-Phase Current (A) and LV Winding Unfil-
tered A-Phase Current (B) 

In analyzing the raw current waveform of the HV winding 
A-phase, beginning at the time of fault inception, we can make 
the following observations: 

• At fault inception the current is sinusoidal with a dc 
offset 

• At cycle 3.5 the current distortion starts 
• From cycle 4 to cycle 6 the current is severely dis-

torted and has decreased in magnitude 
• After cycle 6 the current is sinusoidal 

During the same time interval, the LV winding raw-current 
waveforms appear to remain sinusoidal except for some slight 
distortion between cycles 4.5 to 6. 

Clearly, the period of interest is between cycle 3.5 and cy-
cle 6. During this time, the HV winding A-phase shows severe 
distortion because of CT saturation. To substantiate this claim, 
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we investigate the second- and fourth-harmonic content of the 
HV winding A-phase current. Fig. 23 shows the second- and 
fourth-harmonic content of the A-phase line current for both 
the HV and LV winding. 

(A) 

 

(B) 

 

Fig. 23. A-Phase Second- and Fourth-Harmonic Content of the HV Winding 
A-Phase Current (A) and A-Phase Second- and Fourth-Harmonic Content of 
the LV Winding A-Phase Current 

Analyzing the second- and fourth-harmonic plots, we can 
make the following observation: 

• There are no second or fourth harmonics present in ei-
ther the HV or LV currents prior to the fault. 

• At fault inception, there is an increase in both second 
and fourth harmonics in both the HV and LV wind-
ings. 

• At approximately cycle 3.5, the second harmonic be-
gins to increase in the HV winding, reaching a maxi-
mum value at approximately cycle 5. The LV winding 
current does not experience the same increase in sec-
ond-harmonic current as the HV winding does. 

•  At approximately cycle 4, the fourth harmonic begins 
to increase in the HV winding, reaching a maximum 
value at approximately cycle 4.5. Again, the LV wind-
ing current does not experience the same increase. 

From the second- and fourth-harmonic analysis (HV and 
LV winding A-phase currents), we observe that the HV wind-
ing CT experienced increases in second- and fourth-harmonic 
content during cycles 3.5–6. During the same time, there was 
no increase in the second- and fourth-harmonic contents of the 
LV winding CT. From these observations, we conclude that 
the HV winding CT saturated during this time period.  

If we now analyze the B-phase unfiltered winding currents, 
shown in Fig. 24, we see that these currents remain nearly 
sinusoidal. The only exception seems to occur approximately 
between cycle 5 and cycle 6 on the HV winding current. The 
LV winding current remains sinusoidal during the entire fault. 

(A) 

 

(B) 

 

Fig. 24. HV Winding Unfiltered B-Phase Current (A) and LV Winding Unfil-
tered B-Phase Current (B) 

Computing the second- and fourth-harmonic contents of 
the HV and LV line currents, shown in Fig. 25, we can make 
the following observations: 

• The second-harmonic content of the HV winding cur-
rent increases sharply at fault inception, then decays 
within 1 cycle, and increases again at approximately 
cycles 5 and 7. The LV winding current has a very 
low second-harmonic content. 

• There is very little fourth-harmonic content in both 
HV and LV winding currents. 
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(A) 

 

(B) 

 

Fig. 25. Second- and Fourth-Harmonic Contents of the HV Winding B-Phase 
Current (A) and Second- and Fourth-Harmonic Contents of the LV Winding 
B-Phase Current (B) 

From the above analysis we conclude that the B-phase HV 
winding CT experienced slight saturation during cycles 5–6, 
but the B-phase LV winding CT did not experience any satu-
ration. 

Finally, from analyzing the HV winding C-phase currents 
and the unfiltered currents as shown in Fig. 26 (A), we con-
clude the following: 

• At fault inception the current is sinusoidal with a dc 
offset 

• At approximately cycle 3.2, the waveform does not 
remain completely sinusoidal  

• From cycle 3.5 to cycle 6 we see that the waveform is 
no longer sinusoidal and has decreased in magnitude 

• After cycle 6 the waveform once more becomes sinu-
soidal 

(A) 

 

(B) 

 

Fig. 26. HV Winding Unfiltered C-Phase Current (A) and LV Winding Unfil-
tered C-Phase Current (B) 

If we examine and analyze LV winding C-phase raw cur-
rent waveforms, these waveforms appear to remain sinusoidal 
except for the dc offset from the onset of the fault. The period 
of interest seems to be between 3.2 to 6 cycles. During this 
time we can say the HV winding C-phase CT went into satura-
tion. To substantiate this claim, we will compute the second- 
and fourth-harmonic content of the HV winding C-phase cur-
rent. Fig. 27 shows the second- and fourth-harmonic content 
of the C-phase line current for both the HV and LV winding. 

(A) 

 

(B) 

 

Fig. 27. Second- and Fourth-Harmonic Content of the HV C-Phase Current 
(A) and Second- and Fourth-Harmonic Content of the LV C-Phase Current 
(B) 
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Analyzing the second- and fourth-harmonic plots, we can 
make the following observation: 

• Prior to the fault, there is no second or fourth harmon-
ics present in either the HV nor LV currents. 

• At fault inception, there is an increase in the second 
harmonic in both the HV and LV winding. 

• The fourth-harmonic content does not change signifi-
cantly in either winding. 

• At approximately cycle 3.2 the second harmonic be-
gins to increase in the HV and LV windings. In the 
HV winding the second harmonic reaches its peak 
value at approximately cycle 3.8. The LV winding 
current does not experience the same excursion of 
second-harmonic current as the HV winding does. 

At approximately cycle 4.2 the second harmonic of the HV 
winding decreases sharply for approximately 0.2 cycles before 
recovering   

As an overall statement, we can say the HV CTs experi-
enced saturation in varying degrees, with the B-phase CT ex-
periencing some saturation and the A- and C-phase CTs ex-
periencing quite severe saturation. 

Although we now have enough information to examine the 
operation of the individual differential elements, the cause of 
the dissimilar CT saturate is still unknown. We will answer 
this question a little later; for now we will concentrate on why 
the differential element misoperated.  

Recall that the A-phase differential element current inputs 
consist of the A-phase and the B-phase line currents for both 
the HV and LV windings. To see what effect the saturation of 
the A-phase HV line current has on the A-phase differential 
element, let us examine the A-phase differential element in 
detail. Fig. 11 showed the inputs into the A-phase differential 
elements. Fig. 28 shows the calculated operate and restrained 
currents derived from the input currents; these quantities can 
be observed at point “d” in Fig. 13. 

 

Fig. 28. A-Phase Differential Element Calculated Operate and Restrained 
Currents 

From Fig. 28, we can see that before the fault, in cycles 1–
1.6 the restraint current is about 0.32 per unit and the operate 
current is approximately zero, a normal condition for an un-
faulted, loaded power transformer. At fault inception, (cycle 
1.6 to cycle 4), the operate current remains approximately at 
zero while the restraint current increases to approximately 0.7 

per unit. At cycle 4, the restraint current begins to decrease 
and the operate current begins to increase; this corresponds to 
the time when the A-phase HV CT begins to saturate. At  
cycle 5, the operate current is nearly twice the restraint cur-
rent. This is a result of the output of the HV line CT being 
nearly zero. This means that the operate and restraint currents 
of the A-phase differential element are composed solely from 
the LV line current. The operate and restraint currents are cal-
culated as shown in (2) and (3) where k = 0.5 in (3). 

At approximately cycle 6, the feeder breaker clears the 
fault and we see that the CT begins to pull out of saturation. 
Fig. 21 also shows the CT pulling out of saturation, in other 
words, when the restraint current begins to increase and the 
operate current begins to decrease. Notice that at cycle 7, the 
restraint current is larger than the operate current. However, 
the operate current is as yet not zero; this is because the HV 
A-phase line CT has not completely emerged from saturation. 

Fig. 29 (A), (B), and (C) shows three “snapshots” over a 
10-cycle period of the operate and restraint current of the dif-
ferential element during the fault. 

• Prefault and fault before the CTs saturate, Fig. 29 (A), 
0–4 cycles 

• During the fault with the CT saturated, Fig. 29 (B), 4–
6 cycles 

• Post fault when the CT pulls out of saturation, Fig. 29 
(C), 6–10 cycles. 
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(A) 

 
Cycles 0–4 

(B) 

 
Cycles 4–6 

(C) 

 
Cycles 6–10 

Fig. 29. 10-Cycle Period of Operate and Restrain Current of Differential Ele-
ment During Fault 

Fig. 29 (A) shows a typical plot for an external fault or load 
condition in that the differential element plots into the restraint 

region. Fig. 29 (B) shows the migration of the operating point 
of the differential element from the restraint region into the 
operate region, resulting from the HV A-phase winding CT 
going into saturation. Fig. 29 (C) shows that, once the fault is 
cleared, the operating point of the differential element returns 
to the restraint region as the CT begins to pull out of satura-
tion. Fig. 30 and Fig. 31 show the behavior of the B- and C-
phase differential elements. 

(A) 

 

(B) 

 

Fig. 30. B-Phase Differential Element Calculated Operate and Restrained 
Currents (A) and B-Phase Differential Element Restraint vs. Operate Currents 
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(A) 

 

(B) 

 

Fig. 31. C-Phase Differential Element Calculated Operate and Restrained 
Currents (A) and C-Phase Differential Element Restraint vs. Operate Currents 
(B) 

One question that now comes to mind is why the operating 
point of the differential element has relatively low magnitudes 
while the fault currents are reasonably high. There is only one 
calculation that reduces the current: the removal of the zero-
sequence component of the phase current. But for the effect to 
be substantial, the line currents must contain primarily zero-
sequence current. Fig. 32 shows the sequence currents of the 
HV and LV winding sequence components. 

 

 

Fig. 32. Sequence Components in the HV and LV Windings 

From Fig. 32, the zero-sequence current resulting from the 
fault and before the current transformer goes into saturation is 
nearly four times the positive-sequence and negative-sequence 
currents. From this information, we conclude that: 

• The fault involves ground 
• Strong zero-sequence source and relatively weak posi-

tive- and negative-sequence source 
Note that when a current transformer goes into saturation it 

results in generating a non-real/fictitious zero-sequence cur-
rent, therefore once a current transformer goes into saturation, 
the sequence data calculated using this information are no 
longer reliable. 

On the LV winding, positive-sequence and negative-
sequence currents are twice as large as the zero-sequence cur-
rent. Why this discrepancy? What happened to the zero-
sequence current?  Recall that this is a three-winding trans-
former and that the third winding (delta connected) is a zero-
sequence sink, so that the difference of the HV and LV wind-
ing zero-sequence current circulates in the tertiary winding. 
Fig. 33 is a sketch of the zero-sequence component diagram 
for this type of transformer winding configuration [2], [3]. 

ZSH0

N0

F0

ZTT0

ZTL0 ZTH0

ZSL0
ZL0

LV
Current 

transformer

HV
Current 

transformer

LV
Bus

HV
Bus

Tertiary Bus

 

Fig. 33. Zero-Sequence Diagram for a Wye/Wye/Delta Connected Trans-
former 
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Referring to Fig. 33: even though there is no load con-
nected to the tertiary winding, the tertiary winding sinks a 
great deal of zero-sequence current.  Because no CT is in-
stalled in the delta winding, we cannot measure the current 
that actually flows in the delta winding during such a fault 
condition.  

To further substantiate this claim, Fig. 34 shows the differ-
ential element plot for the A-phase differential element when 
the matrix compensation was set to that of a unit matrix, one 
in which no zero-sequence current removal occurs. (NOTE: 
this change of setting is only to substantiate the claim; do not 
select this setting on a grounded-wye winding; failure to re-
move the zero-sequence current from the differential elements 
will result in relay misoperation for out-of-zone ground 
faults). 

 

Fig. 34. A-Phase Differential Element Plot When Unit Matrix Compensation 
is Applied 

From Fig. 34, we see that even with the unit matrix com-
pensation, the differential element still migrated into the oper-
ating region. The only difference is that this time the magni-
tude of the excursion is greater. 

To provide differential element stability during transformer 
energization, transformer differential elements use either har-
monic blocking elements or harmonic restraint elements. Pur-
suing the lower path of Fig. 6, we can determine the harmonic 
current content of the unfiltered operating current. It is the 
content of this raw operating current that the relay uses to de-
termine whether to restrain/block the differential element.  

[4] In general, the relay also calculates the harmonics to re-
strain/block the differential element on a differential basis, i.e. 
subtracts the LV harmonics from the HV harmonics. This cal-
culation is necessary to separate the harmonics generated in 
the load from the harmonics generated within the transformer. 
Note that the harmonic analysis in the previous section deter-
mined the harmonic content of the individual line phase cur-
rent, and not in a differential calculation. Fig. 35 (A), (B) and 
(C) shows the second-, fourth-, and fifth-harmonic current 
content of the raw operating current for the A-, B-, and C-
phase differential elements (differential calculations). 

(A) 

 

(B) 

 

(C) 

 

Fig. 35. Second-, Fourth-, and Fifth-Harmonic Current Content of the “Raw 
Operating” Current for A-, B-, and C-Phase Differential Elements 

Fig. 35 shows that the B- and C-phase second- and fourth-
harmonic content decreases sharply at approximately cycle 4 
and only recovers approximately one-half cycle later. This is 
approximately the same time that the A- and C-phase CTs 
went into deep saturation.  

V.  SUMMARY AND CONCLUSION 
This paper provided general information regarding current 

compensation and differential element calculations, followed 
by a step-by-step analysis of a transformer differential relay 
misoperation. 
1. Using raw data provides valuable system information not 

available when considering only the filtered data. Always 
use the raw data at the highest available sampling rate for 
fault analysis. 

2. Manipulate the data by means of mathematical programs 
such as MathCAD to emulate relay elements.  

3. Analyzing event data at selected points of data manipula-
tion in the relay isolates relay elements to perform dis-
crete functional analysis on these individual elements. For 
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example, when the harmonic content of the fault current 
is analyzed discretely, we see that the harmonic content 
can vary considerably during the fault, especially if the 
current transformer goes into severe saturation. This con-
siderable variation in the harmonic content of the fault 
current can lead to misoperation of the differential ele-
ment. 

VI.  APPENDIX A 

A.  Phase-Angle Compensation 
Phase-angle differences come about when one set of power 

transformer windings is wye connected, and the other set of 
windings is delta connected. For example, consider the YDAB 
(YNd11) connection shown in Fig. A1. If we take the A-phase 
of the HV winding as reference, the a-b delta connection 
causes the A-phase of the LV winding to differ by 30° with 
respect to the A-phase HV winding. 

A

C B

120 ° 30°

60°

a - b

c - a

b - c

A
a - b

HV Winding LV Winding Phase Difference

 

Fig. A1. Phase Shift Between HV and LV Sides of a YDAB (Ynd11) Trans-
former 

With electromechanical relays, CTs from wye-connected 
power transformer windings are connected in delta, and CTs 
from delta-connected power transformer windings are con-
nected in wye to compensate for this phase shift. When both 
HV and LV CTs are wye connected, CT connections cannot 
compensate for this 30° phase difference; the secondary cur-
rent from the HV winding and the secondary current from the 
LV winding are phase shifted by 30°. For correct differential 
operation, we need to correct for the phase shift of wye-delta 
transformers in the relay software. To achieve this phase-shift 
correction, the relay mathematically forms the delta connec-
tion in the software. Equations (5) through (7) show the three 
line current equations for the YDAB transformer connection. 

baab III −=     )0I( c =   (5) 

cbbc III −=     )0I( a =   (6) 

acca III −=     )0I( b =   (7) 
If (5) through (7) are in matrix format, the placeholders for 

the current vectors are as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

IcIbIa
IcIbIa
IcIbIa

 so that baab III −=  becomes [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

Ic
Ib
Ia

•011   

)0I( c =  
Renaming Iab = IACOMP, we complete the current relation-

ships of the YDAB transformer in matrix form as follows (di-
vide by 3  to correct the magnitude): 

⎥
⎥
⎥
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⎢
⎢

⎣

⎡

⎥
⎥
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⎦
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⎢
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⎣

⎡

−
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

C

B

A

C

B

A

I
I
I

•
101
110

011

3
1

I
I
I

COMP

COMP

COMP

 

In the same manner we form other “delta” matrices for 
transformer vector groups that require a 30° phase shift cor-
rection. 

B.  Vector-Group Compensation Using Matrix Algebra 
A vector (or phasor) is a quantity with both magnitude and 

direction, as opposed to a scalar quantity which has magnitude 
only. In the rectangular form, we represent a vector as follows: 

jyxZ +=
r

 

where  
Z = vector 
x = real component 
y = imaginary component 
j = √-1  

In the polar form, we represent a vector as follows: 
θ∠= ZZ

r
 

where 
22 yxZ +=  

⎟
⎠

⎞
⎜
⎝

⎛=θ −

x
ytan 1  

We require only basic vector algebra to manipulate the vec-
tor quantities. For example, calculate the difference between 
IA and IB in Fig. A2.  

IA

IC

120°

IB

IA

IC IB

3 30°
IA IB-

IB
-

 

Fig. A2. Addition of Vector IA and Vector –IB 

°−∠−°∠=− 30IB90IAIBIA  

°∠= 1203IAB  

By dividing IAB by 3 , we have a vector with magnitude 
IA, but advanced by 30°. For example, to calculate the com-
pensated values of three system currents (taking IA as refer-
ence), multiply the three system currents (1∠0°, 1∠–120°, and 
1∠120°) by matrix M1: 



15 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

101
110

011
1M   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

°∠
°−∠

°∠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1201
1201
01

•
101
110

011

3
1

I
I
I

COMP

COMP

COMP

C

B

A

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

°∠°∠−
°∠−°−∠

°∠−°∠
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1201001
120112010
0120101

3
1

I
I
I

COMP

COMP

COMP

C

B

A

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

°−∠
°−∠

°∠
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

15073.1
9073.1

3073.1

3
1

I
I
I

COMP

COMP

COMP

C

B

A

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

°−∠
°−∠

°∠
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1500.1
900.1

300.1

I
I
I

COMP

COMP

COMP

C

B

A

 

VII.  APPENDIX B 
Why eliminate zero-sequence current? Fig. B1 shows a wye-
delta transformer with the wye winding grounded. Ground 
faults on the HV side of the transformer result in current flow-
ing in the lines of the wye-connected windings, and therefore, 
the HV CTs. This current distribution is different in the LV 
windings of the transformer. Fault current for ground faults on 
the HV side of the transformer circulates in the delta-
connected windings, but no current flows in the LV lines and, 
hence, no current flows in the LV CTs. Because fault current 
flows in the HV CTs only, the differential protection is unbal-
anced and can misoperate.  

wye winding delta winding

A

B

C

F

No Secondary 
Fault Current

Secondary 
Fault Current HV Side LV Side

 

Fig. B1. YDAB Transformer 

Clearly, we need to eliminate the zero-sequence from CTs 
connected to all grounded, wye-connected transformer wind-
ings. Because all CTs are wye connected, we need to remove 
the zero-sequence currents mathematically in the relay. One 
way to remove the zero-sequence current is by means of the 
delta matrices we use for phase-angle correction. For a DAB 
delta, connecting a–b, b–c, and c–a phases forms the delta 
connection. Of these three groups, consider the Ia – Ib connec-
tion. Equations (8) and (9) express Ia and Ib in terms of sym-
metrical components, A-phase being the customary reference. 

021a IIII ++=   (8) 

021
2

b IIII +α+α=   (9) 

ba II − 021 III ++=  021
2 III −α−α−          (10) 

( ) ( ) 01I1III 2
2

1ba +α−+α−=−  (11) 
where α  is the alpha operator, i.e., 1∠120° 
Equation (10) shows the Ia – Ib connection in terms of 

symmetrical components. From (11) we see that the zero-
sequence currents cancel, and only positive- and negative-
sequence currents flow. However, although delta connections 
effectively eliminate zero-sequence currents, delta connections 
also create phase shifts.  

For wye-delta transformers this phase shift is desirable, but 
not for autotransformers or wye-wye connected transformers. 
With autotransformers or wye-wye connected transformers, 
the HV and LV currents are in phase with each other (or 180° 
out of phase), and using a delta connection to remove the zero-
sequence current will introduce an undesirable 30° phase shift 
between the HV and LV currents.  

Fortunately, numerical relays make it possible to mathe-
matically remove zero-sequence current without creating a 
phase shift. Perform the following calculation to remove the 
zero-sequence current from the A-phase current: 

( )0AA III
COMP

−=    

where ( )CBA0 III
3
1I ++=  

( )⎥⎦
⎤

⎢⎣
⎡ ++−= CBAAA III

3
1II

COMP
 

( )CBAAA IIII3
3
1I

COMP
−−−=  

( )CBAA III2
3
1I

COMP
−−=  

Similarly for the B- and C-phases: 

( )CABB III2
3
1I

COMP
−−=  

( )ABCC III2
3
1I

COMP
−−=  

Arranging the results in matrix form yields the following: 
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Matrix 0 is the identity matrix, and does not alter the cur-
rents. 
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