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ABSTRACT 

System protection engineers are familiar with I2t thermal limitations specified for transformers, 
motors or generators. However, because of the limitations of electromechanical relaying, thermal 
protection had to be treated as an overcurrent coordination problem without regard to dynamics or 
thermal history involved. 

Today time-discrete forms of differential equations are easily implemented in microprocessor-
based relays. Consequently, algorithms based on real-time computing power add a new dimension 
for accurate thermal protection using thermal models. This paper is a tutorial on the thermal 
models used in power system protection, their parameters, and how they are derived from 
available application data. 

INTRODUCTION 

This paper reviews the nature of the thermal models used to compute and monitor the temperature 
rise for the thermal protection of motors, transformers, overhead lines, and cables. The basic 
model is developed from the equation for temperature rise caused by watts loss on a conductor. 
The paper then establishes the relation of the model to the I2t characteristic as a representation of 
a limiting temperature. 

The paper then reviews the more complex models of hottest-spot temperature rise for oil-cooled 
transformers as specified by IEEE STD C57.91-1995, and overhead lines as given in IEEE Std 
738 -1993. Next the paper discusses the calculation of thermal resistance and thermal capacitance 
required for the thermal models of buried cables. Finally, it lists conclusions drawn on the 
possibilities and outlook for thermal protection for machines, transformers, overhead lines, and 
cables. 

OVERCURRENT RELAYS VS THE THERMAL MODEL 

By definition[1], an overcurrent relay produces an inverse time-current characteristic by 
integrating a function of current F(I) with respect to time. The F(I) is positive above and negative 
below a predetermined input current called the pickup current. Pickup current is the current at 
which integration starts positively, and the relay produces an output when the integral reaches a 
predetermined set value. The F(I) represents the velocity of an induction disk and the integral 
represents its travel. Figure 1 shows the overcurrent relay represented as an analog circuit. The 
disk travel is represented by a voltage V. The function is F(I) = I2 - 1 which produces an 
extremely-inverse characteristic where I is the input in per unit of the pickup current. 
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Figure 1:  Analog of an Overcurrent Relay 
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Figure 2:  Analog of a Thermal Model 

Figure 2 shows a thermal model represented by an analog circuit. The voltage V in the thermal 
model represents the temperature rise in I2t above an initial temperature V0. In Figure 2, V has a 
steady state value for every value of input current and a trip is asserted only if V exceeds the trip 
threshold Thr. The threshold is set at the limiting temperature of the protected element. By 
contrast, in Figure 1, the voltage V has no steady state and rises to exceed the trip threshold kθ 
for any I > 1 and resets to zero for any current I < 1. The overcurrent trip time is set by means of 
a time dial that increases the travel by modifying factor k. The thermal model trip time is 
determined by the time constant RTCT, which is set to equal the thermal time-constant of the 
protected element. 

 

Figure 3:  Overcurrent Coordination With a 
Thermal Characteristic 

 

Figure 4:  Thermal Characteristic Variation With 
Initial Condition V0 
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Figure 3 shows that an overcurrent characteristic can emulate the shape of the thermal 
characteristic and can be closely coordinated with it. However, Figure 4 shows that the 
coordination is valid only for the initial temperature V0 equal to 1 per unit. When a temporary 
overload raises the temperature, V0 increases and the time to reach the damaging temperature 
decreases as shown in Figure 4. Consequently, during a recurring overload, the damaging 
temperature occurs before the overcurrent relay can operate. In addition, the coordination 
prevents the use of the added thermal capacity available when temperature V0 is less than 1.0. 

Consequently, only the thermal model can account for thermal history and accurately track the 
excursions of conductor temperatures. 

DETERMINING A MOTOR THERMAL MODEL 

The motor thermal model accounts for the slip dependent I2r heating of both positive- and 
negative-sequence current and is defined by motor nameplate and thermal limit data. This 
mathematical model calculates the motor temperature in real time. The temperature is then 
compared to thermal limit trip thresholds to prevent overheating from overload, locked rotor, too 
frequent or prolonged starts, or unbalanced current. 

What data defines the thermal model? Full load speed, the locked rotor current and torque, and the 
thermal limit time define the model. 

What does torque have to do with the thermal model?  

The I2r heat source and two trip thresholds are identified by the motor torque, current, and rotor 
resistance versus slip shown in Figure 5. Figure 5 shows the distinctive characteristic of the 
induction motor to draw excessively high current until the peak torque develops near full speed. 
Also, the skin effect of the slip frequency causes a high locked rotor resistance, R1, which 
decreases to a low running value, R0, at rated slip. 

 

Figure 5:  Current, Torque, and Rotor Resistance of an Induction Motor Versus Speed 
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A typical starting current of six times the rated current and a locked rotor resistance R1 of three 
times the value of R0 causes the I2r heating to be 62 x 3 or 108 times normal. Consequently, an 
extreme temperature must be tolerated for a limited time to start the motor. A high emergency I2t 
threshold is specified by the locked rotor limit during a start, and a second lower threshold for the 
normal running condition is specified by the service factor. Therefore, the thermal model requires 
a trip threshold when starting, indicated by the locked rotor thermal limit, and a trip threshold when 
running, indicated by the service factor. 

How is the heating effect of the positive- and negative-sequence current determined? The 
positive-sequence rotor resistance is plotted in Figure 5 and is calculated using current I, torque 
QM, and slip S in the following equation: 

 S
I

Q
=R 2

M
r  (1) 

It is represented by the linear function of slip shown in Figure 5. The positive-sequence resistance 
Rr+ is a function of the slip S: 

 ( ) 001r RSRRR +−=+  (2) 

The negative-sequence resistance Rr- is obtained when S is replaced with the negative-sequence 
slip (2-S): 

 ( )( ) R+S2RR=R 001r- −−  (3) 

We obtain factors expressing the heating effect of positive- and negative-sequence current by 
dividing Equations 2 and 3 by the running resistance R0. Consequently, for the locked rotor case, 
and where R1 is typically three times R0, the heating effect for both positive- and negative-
sequence current is three times that caused by the normal running current. 
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For the running case, the positive-sequence heating factor returns to one, and the negative-
sequence heating factor increases to 5: 
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These factors are the coefficients of the positive and negative currents of the heat source in the 
thermal model shown in Figure 6. 
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Figure 6:  States of the Thermal Model 

Starting and Running States of the Motor Thermal Model 

Because of its torque characteristic, the motor must operate in either a high current starting state 
or be driven to a low current running state by the peak torque occurring at about 2.5 per unit 
current. The thermal model protects the motor in either state by using the trip threshold and 
heating factors indicated by the current magnitude. The two states of the thermal model are 
shown in Figure 6. The thermal model is actually a difference equation executed by the micro-
processor. However, it can be represented by the electrical analog circuit shown in Figure 6. In 
this analogy, the heat source is represented by a current generator, the temperature is represented 
by voltage, and thermal resistance and capacitance are represented by electrical resistance and 
capacitance. The parameters of the thermal model are defined as follows: 

R1 = Locked rotor electrical resistance (per unit ohms) 
R0 = Running rotor electrical resistance also rated slip (per unit ohms) 
IL = Locked rotor current in per unit of full load current 
Ta = Locked rotor time with motor initially at ambient 
To = Locked rotor time with motor initially at operating temperature 

TRANSFORMER THERMAL MODEL 

The transformer thermal model satisfies the requirements specified in ANSI standard C57.92- 
1995 [3] to provide transformer overload protection. The model consists of two exponential 
equations and non-linear time-constants determined from transformer data. 

The thermal model calculates the following temperatures shown in Figure 7 for reference: 

θo Top-oil rise over ambient temperature, °C 

θg Hottest-spot conductor rise over top-oil temperature, °C 

θhs Hottest-spot winding temperature, °C 
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(b) Any Load Condition 

Figure 7:  Transformer Temperatures for Different Load Conditions 

Top-Oil Rise Over Ambient Temperature, θo 

When a constant load is applied throughout the time interval ∆t, the model calculates the top-oil 
rise over ambient temperature at the end of the interval, according to the following expression: 

 ( ) oi
T60
t

oiouo
oe1 θ+













−⋅θ−θ=θ ⋅

∆−

 (6) 

where: 

θou Ultimate top-oil rise over ambient temperature for any load, °C 

θoi Initial top-oil rise over ambient temperature at the start time of the interval, °C 

To Oil time constant of transformer, in hours 

The increment ∆t defines the time interval between calculations. The recommended interval is 10 
minutes. 

Ultimate Top-Oil Rise Over Ambient Temperature 

The model calculates the ultimate top-oil rise over ambient temperature due to constant loads 
according to the following expression: 
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where: 

K Load expressed in per unit of transformer nameplate rating according to the cooling 
system in service (maximum phase current divided by the nominal current) 

R Ratio of load loss at rated load to no-load loss 

n An empirically derived oil exponent  

θor Top-oil rise over ambient temperature at rated load, °C 

Oil Time Constant of the Transformer 

The following expression determines the thermal top-oil time constant of the transformer for any n 
(oil exponent accounting for viscosity change with temperature) value and for any load value: 
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where: 

Tr Thermal time constant at rated load with initial top-oil temperature equal to ambient 
temperature 

If the Tr time constant is not known, the following expression determines the time constant: 

 




 θ
⋅=

r

or
r P

CT  (9) 

where: 

C Transformer thermal capacity (watt-hours/degree) 
 = 0.06⋅(weight of core and coil assembly in pounds)  
 + 0.04⋅(weight of tank and fitting in pounds)  
 + 1.33⋅(gallons of oil) 

       or 

C Transformer thermal capacity (watt-hours/degree)  
 = 0.0272⋅(weight of core and coil assembly in kilograms)  
 + 0.01814⋅(weight of tank and fitting in kilograms)  
 + 5.034⋅(liters of oil) 

Pr Total loss at rated load (watts) 
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The model adds the ambient temperature, θa, to the top-oil rise over ambient temperature, θo, to 
obtain the top-oil temperature, θTO. The top-oil temperature at the end of the time interval, ∆t, is: 

 aoTO θ+θ=θ  (10) 

Hottest-Spot Conductor Rise Over Top-Oil Temperature, θg 

When a constant load is applied throughout time interval ∆t, the model calculates the hottest-spot 
conductor rise over top-oil temperature at the end of the interval, according to the following 
expression: 

 ( ) gi
T60

t

gigug
hse1 θ+













−⋅θ−θ=θ ⋅

∆−

 (11) 

where: 

θgu Ultimate hottest-spot rise over top-oil temperature for any load K, °C 

θgi Initial hottest-spot rise over top-oil temperature at the start time of the interval, °C 

Ths Winding time constant of hottest-spot, in hours 

Ultimate Hottest-Spot Rise Over Top-Oil Temperature 

The model calculates the ultimate hottest-spot rise over top-oil temperature due to constant loads 
according to the following expression: 

 gr
m2

gu K θ⋅=θ  (12) 

where: 

m An empirically derived winding exponent 

θgr Hottest-spot conductor rise over top-oil at rated load, °C 

Hottest-Spot Conductor Rise Over Top-Oil at Rated Load 

When the transformer manufacturer does not provide the hottest-spot conductor rise over top-oil 
at rated load, you can calculate it as follows: 

 orhsrwwrgr θ−θ+θ=θ  (13) 

where: 

θwr Average winding temperature rise over ambient temperature at rated load, °C 

θhsrw Hottest-spot conductor rise over average winding rise, °C 
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Hottest-Spot Winding Temperature, θhs 

When a constant load is applied throughout time interval ∆t, the relay calculates the hottest-spot 
winding temperature at the end of the interval, according to the following expression: 

 goahs θ+θ+θ=θ  (14) 

Thus it takes two exponential expressions, thermal capacitance and times constants, calculated 
using transformer nameplate and test data, to determine the hottest-spot temperature under a 
specified load. The model is given in clause 7 of the standard and is based on top-oil temperature 
as a starting point. An alternative, more accurate, model is given in Annex G of the ANSI 
standard using bottom-oil temperature as a starting point. This model, although more accurate for 
large transient loads, presents a difficulty in that only top-oil temperature is available from most 
manufacturers. Annex G introduces duct oil temperature which may be higher than top-oil 
temperature, giving a true hottest-spot located in the duct. 

Table 1:  Exponents Used in Temperature Equations 

Type of Cooling m n 

OA 0.8 0.8 

FA 0.8 0.9 

Non-directed FOA or FOW 0.8 0.9 

Directed FOA or FOW 1.0 1.0 

HEATING OF OVERHEAD LINES 

The heat balance equation for over-head conductors takes into account heat gain from the watt 
loss, convection loss due to wind velocity, heat loss due to radiation, and heat gain from solar 
radiation. These parameters are defined in subsequent equations with tables and polynomial 
equations provided to determine constants as explained in IEEE Std 738-1193 [4]: 

 )T(RIq
dt

dT
mCqq c

2
s

c
prc ⋅+=++  (15) 

where: 

qc Convected heat loss 

qr Radiated heat loss 

qs Solar gain 

mCp Total conductor heat capacity 

R(Tc) = Conductor electrical resistance 
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Forced Convection Heat 

Equation (16) gives the heat loss in a conductor for low speed wind velocity. However, Equation 
(16) underestimates losses from high wind speeds. Equation (17) is needed for high speed wind 
velocity: 

 ( )acf

52.0

f

wf
1c TTkVD371.001.1q −⋅⋅
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2c TTk
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


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


µ
ρ

=  (17) 

where: 

D = Conductor diameter (in) 

ρf = Density of air (lb/ft
3 

) 

µf = Absolute viscosity of air (lb/ft h) 

Vw = Velocity of the air stream (ft/h) 

Tc = Conductor temperature (°C) 

Ta = Ambient temperature (°C) 

kf = Thermal conductivity of air, W/ft (°C) 

The physics governing cooling caused by wind velocity, unfamiliar to many protection engineers, 
are given in tables or polynomials provided in IEEE Std 738-1193 [4]. 

Radiated Heat Loss 

Radiated loss depends on the emissivity, ε , ( 0.23 to 0.91) which is a property of the surface and 
diameter of the conductor and is proportional to the 4th power of the absolute temperature: 
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Solar Gain 

Heat gain in the conductor from the sun is given by Equation (19) with the angle defined as in 
Equation (20). 

 A)sin(sQsq θ⋅⋅α=  (19) 

 [ ])lZcZcos()cHcos(1cos −−=θ  (20) 
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where: 

θ = Effective angle of incidence of the sun’s rays (degrees) 

α = Solar absorptivity (0.23 to 0.91) 

Qs = Total solar and sky radiated heat flux, (W/ft2) 

A = Projected area of the conductor, (ft2/ft) 

Hc = Altitude of sun (degrees) 

Zc = Azimuth of the sun (degrees) 

Zl = Azimuth in line degrees 

Tables and polynomial equations for determining these constants are provided. 

Conductor Electrical Resistance 

The values conductor resistance at high temperature Thigh, and low temperature Tlow may be 
taken from tabulated values in reference [5]. The resistance can then be determined by linear 
interpolation: 

 ( ) ( ) ( ) ( ) ( )lowlowhigh
lowhigh

lowhigh
c TRTT

TT

TRTR
TR +−⋅













−

−
=  (21) 

The heat loss equations reviewed above have been successfully implemented as the thermal 
element in a microprocessor-based line protection relay. 

POWER CABLE THERMAL MODEL 

Figure 8, the thermal model of a cable, shows the thermal resistance and the distribution of the 
thermal capacitance for all layers of the cable. The model of a multi-layered cable is characterized 
by its complexity and the relative difficulty of determining its parameters. Although the thermal 
capacitance and resistance are available in standards and specifications of transformers [3], 
motors [2], and overhead lines [4], they must be calculated for the cable using physical parameters 
[5]. 
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Figure 8:  Thermal Model of a Cable 

Thermal Resistance of a Cylindrical Layer 

The thermal resistance of the insulation layers of the cable must be calculated. The equation here 
is for a cylindrical layer of insulation. Thermal resistance must be calculated for each layer of 
insulation, and armor, and for the screen layers, sheath and/or oil layers that make up the cable. T 
is the IEC symbol used for thermal resistance: 

 
1

2th

r
r

ln
2

T
π

ρ=  (22) 

where: 

ρth Thermal resistivity of the material K m/W 

r1 Inside radius (m) 

r2 Outside radius (m) 

Thermal Capacitance 

The thermal capacitance must be calculated for each layer of insulation, armor, sheath, and/or oil 
that makes up the cable outer layers. The thermal capacitance is obtained by multiplying the 
volume of the material by its specific heat. Q is the IEC symbol used for thermal capacitance. 

 ( )2
1

2
2th DD

4
cVQ −

π
=⋅=  (23) 
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where: 

V Volume (m3) 

c Specific heat (J/(m3·K)) 

D1 Inside diameter (m) 

D2 Outside diameter (m) 

As Anders describes [6], “The thermal capacity of the insulation is not a linear function of the 
thickness of the dielectric. To improve the accuracy of the approximate solution using lumped 
constants, Van Wormer, in 1955, proposed a simple method of allocating the thermal capacitance 
between the conductor and the sheath so that the total heat stored in the insulation is repre-
sented.” The derivation, as shown in Figure 9, is based on the assumption that the temperature 
distribution in the insulation follows the steady state logarithmic distribution during the transient. A 
three-node representation of the dielectric of a cable with thermal capacitance distributed using 
Van Wormer coefficients is shown in Figure 10. 

The thermal model in Figure 8 may suggest that measured current can be used to calculate 
temperature in a cable. However, the density and resistivity of the soil back-fill is crucial in 
determining the temperature rise. The backfill temperature must be monitored. 
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Figure 9:  Logarithmic Distribution of Thermal Capacitance in Annular Insulation 
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Figure 10:  Three-Node Representation Using Van Wormer Coefficient 
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CONCLUSIONS 

1. A long-time extremely-inverse overcurrent relay can emulate the shape of a thermal 
characteristic and can be coordinated to give thermal protection for a fixed initial condition. 
However, once heating occurs the overcurrent relay cannot prevent thermal damage for 
cyclic overloads. 

2. A thermal model used for motor protection is defined by available nameplate, torque and 
thermal limits specified for the motor. The model accurately accounts for the thermal history 
and accurately tracks temperature throughout the operating cycle. 

3. An IEEE standard [3] defines thermal models for calculating transformer hottest-spot winding 
temperature, using top-oil temperature as the starting point and involving non-linear time 
constants. The standard gives an alternate method using bottom-oil temperature that is more 
accurate but requires test data that is rarely available by specification. 

4. A comprehensive IEEE standard gives the thermal model for overhead transmission lines. The 
heat balance equation includes convected and radiated heat loss and solar gain, as well as total 
conductor thermal capacity and watt loss. The standard provides polynomials for tabulated 
constants to aid computation. This thermal model has been integrated as an element in a line 
protection relay. 

5. The thermal model for a multilayer cable is characterized by complexity and by the difficulty 
of determining the thermal parameter. Although thermal capacitance and resistance values 
are available for transformers, motors, and overhead lines, for cables they must be calculated 
from physical parameters. 
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ANNEX A : THE HEAT EQUATION 

The thermal model and its relation to an I2t time-current characteristic is derived from the 
differential equation for temperature rise caused by current in a conductor: 

 
dt
d

CrI T
2 θ=  (A1) 

where: 

I2r Is the input in watts (conductor loss) 

CT Is the thermal capacity of the conductor in watt-sec./°C 

dθ/dt Is the rate of change of temperature in °C/second 

Integrate the equation to find the temperature: 

 ∫ ⋅=θ
t

0

2

T

dtrI
C
1  (A2) 

Therefore the temperature rise for constant input watts is: 

 t
C

rI

T

2

=θ  (A3) 

where θ is the temperature in °C. The heat equation can be represented by an analog circuit 
consisting of a current generator feeding a capacitor. The current is numerically equal to the 
watts; the capacitor equals the thermal capacitance. The voltage charge accumulated by the 
capacitor represents the temperature rise over ambient caused by the watts. The temperature can 
be expressed in per unit and be plotted versus per unit current as a time-current characteristic. To 
do this let: 

 ratedImI ⋅=  (A4) 

and substitute for I in Equation (A4): 

 
( )

t
C

rIm

T

2
rated⋅=θ  (A5) 

Divide Equation (A5) through by: 
( )

T

2
rated

C
rI  to obtain: 

 
( )

tm
rI

C 2
2

rated

T =θ  (A6) 

By expressing the left side of (A6) as Θ the equation can be written simply as: 

 tm2=Θ  (A7) 
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The above equations show that an I2t curve can represent a thermal limit. The curve represents a 
specific  temperature expressed in seconds and is a straight line which has a slope of 2 when 
plotted on log-log paper. If at locked rotor current ML the thermal limit time is TA , then from (A7) 
the temperature represents the rise over ambient: 

 A
2
LL TM=Θ  (A8) 

If at the locked rotor current ML the time to reach the thermal limit is TO with the conductor 
initially at operating temperature, then Equation (A8) becomes: 

 OO
2
LA

2
L TMTM Θ+=  (A9) 

and the operating temperature in terms to ML, TA, and TO is: 

 )TT(M OA
2
LO −=Θ  (A10) 

Equation (A7) is the familiar I2t characteristic that plots as a straight line of slope on log-log paper. 
The plot shown in Figure A1 represents a specific limiting temperature. The operating 
temperature, represented by Equation (A10) , is caused by one per unit current flowing in the 
thermal resistance of the conductor. Consequently, Equation (A10) is the thermal resistance as 
shown in the electrical analog shown in Figure A2. 
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Figure A1:  Thermal Limit Curve 
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Figure A2:  Thermal Model 
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