
Implementing SCADA Security Policies
via Security-Enhanced Linux

Ryan Bradetich
Schweitzer Engineering Laboratories, Inc.

Paul Oman
University of Idaho, Department of Computer Science

Presented at the
10th Annual Western Power Delivery Automation Conference

Spokane, Washington
April 8–10, 2008

1

Implementing SCADA Security Policies via
Security-Enhanced Linux

Ryan Bradetich, Schweitzer Engineering Laboratories, Inc.
Paul Oman, University of Idaho, Department of Computer Science

Abstract—Substation networks have traditionally been
isolated from corporate information technology (IT) networks.
Hence, the security of substation networks has depended heavily
upon limited access points and the use of point-to-point
supervisory control and data acquisition (SCADA)-specific
protocols. With the introduction of Ethernet into substations,
pressure to reduce expenses and provide Internet services to
customers has many utilities connecting their substation
networks and corporate IT networks, despite the additional
security risks. The Security-Enhanced Linux SCADA proxy was
introduced as an alternative method for connecting SCADA and
corporate IT networks by serving as a check valve between the
SCADA system and the IT network. The primary purpose of the
Security-Enhanced Linux SCADA proxy was to prohibit direct
access and interference from the corporate IT network to the
SCADA network, while still providing read-only access to
specific SCADA data.

This paper extends the prior research on the Security-
Enhanced Linux SCADA proxy with:

• An in-depth look at how the security policy enforces the
one-way communication for proxying specific SCADA
data from a protective relay to engineers on the
corporate IT network.

• The integration of settings into the security policy on the
Security-Enhanced Linux SCADA proxy (network
settings, syslog servers, etc.)

• The use of physical contact inputs to switch dynamically
between predefined behaviors in the security policy.

I. INTRODUCTION
Supervisory control and data acquisition (SCADA) systems

and corporate information technology (IT) networks evolved
independently and have, until recently, remained isolated from
each other. To reduce costs and capitalize on common
standards, vendors and business managers are connecting
SCADA systems with corporate IT networks. Current
SCADA security literature is advocating traditional IT
security solutions, such as strong passwords, encrypted
communications, and firewalls [1]. No assurance exists that
these mechanisms can provide adequate security for critical
real-time control networks.

SCADA systems operate in a fundamentally different way
than corporate IT networks. SCADA systems manage critical
infrastructures such as the transmission and distribution of
electricity, while corporate IT networks manage business.
SCADA system outages may result in environmental damage
and/or the loss of human life [2]. Outages on the corporate IT
network are generally financial and localized to a specific
corporation. Unsurprisingly, the protocols used on SCADA

and corporate IT networks are also fundamentally different.
SCADA protocols provide efficient, deterministic communi-
cations between devices [3] [4]. Corporate IT protocols
generally provide reliable communications over a shared
co

roviding SCADA data to authorized corporate IT
use

 for the original Security-Enhanced

mmunications channel.
Security-Enhanced Linux was initially developed by the

National Security Agency to introduce a mandatory access
control (MAC) solution into the Linux® kernel [5]. The
original proof-of-concept Security-Enhanced Linux SCADA
proxy introduced in [6] and [7] provided a baseline system.
The purpose of that baseline was to explore the feasibility of
using the MAC security model to maintain the logical network
isolation between the SCADA and the corporate IT networks,
while still p

rs.
To understand the improvements to the Security-Enhanced

Linux SCADA proxy presented in this paper, see Fig. 1,
which illustrates the high-level application domains and
communications paths
Linux SCADA proxy.

Corporate
IT Network

SCADA
Network

Firewall
Domain

Core
DomainsSyslog

Domain
Netadmin
Domain

Init
Domain

Kernel
Domain

SCADA
Protection
Domain

Web
Meter

Domain

SCADA
Meter

Domain

Web
Domain

Web
Protection
Domain

SCADA Data
Proxy Domains

SMTP Proxy Domains

Trusted
SMTP

Domain

SMTP
Proxy

Domain

Untrusted
SMTP

Domain

inux SCADA Proxy—Application
Do
Fig. 1. Original Security-Enhanced L

mains and Communications Paths

The original Security-Enhanced Linux SCADA proxy
functionality was divided into three application groups: core

2

domains, SCADA data proxy domains, and SMTP proxy
domains. The core domains are responsible for basic Linux
platform operations. The SCADA data proxy domains are
responsible for providing SCADA data to authorized users on
the corporate IT network. The SMTP proxy domains are
responsible for the one-way transfer of SMTP (email) from
the

A proxy to
pre e

1.
sical

2.

ings on

3. e

eractions, this

dated Security-Enhanced

 SCADA network to the corporate IT network.
The following three major architectural changes were made

to the original Security-Enhanced Linux SCAD
par it for the research presented in this paper.

The Security-Enhanced Linux SCADA proxy was
ported to a new platform, which supports phy
contact inputs and physical contact outputs.
An additional web server was set up on the SCADA
network interface. This web server is referred to as the
trusted web server and is used for updating sett
the Security-Enhanced Linux SCADA proxy.
The SMTP proxy domains were not relevant to th
research presented in this paper. To simplify the
policy and application domain int
application group was removed.

Fig. 2 provides the new high-level application domains and
communications paths used in the up
Linux SCADA proxy for this paper.

Corporate
IT Network

SCADA
Network

Firewall
Domain

Core
DomainsSyslog

Domain
Netadmin
Domain

Init
Domain

Kernel
Domain

SCADA Data
Proxy Domains

Trusted
Web

Domain
Settings

Untrusted
Web

Domain

SCADA
Protection
Domain

Web
Meter

Domain

SCADA
Meter

Domain

Web
Protection
Domain

inux SCADA Proxy—Application
Do

describ urity-
En

place the standard
Linu s
are perf ks.
This is i

• , etc.)

•

 audit messages (which are sent to a

ecks is described in Section A.
curity-Enhanced Linux controls

ault Security-Enhanced Linux security policy is to
deny Linux
policy s to

Fig. 2. Updated Security-Enhanced L
mains and Communications Paths

This paper has two purposes: to explore how user settings
can be securely integrated into the Security-Enhanced Linux
SCADA proxy and to provide a detailed look at how the
Security-Enhanced Linux security policy provides the one-
way communications path via the SCADA data proxy
domains. For this paper, Section II describes the basics of the
Security-Enhanced Linux policy language. Section III exposes
the Security-Enhanced Linux policy language used by the
SCADA data proxy domain. Section IV and Section V

e how user settings were integrated into the Sec
hanced Linux SCADA proxy.

II. SECURITY-ENHANCED LINUX POLICY BASICS
The Security-Enhanced Linux security policy provides the

MAC security model for the Security-Enhanced Linux
SCADA proxy. Although the standard Linux discretionary
access control (DAC) model is not discussed much in this
paper, the MAC security model does not re

x DAC model. The MAC security model resource check
ormed after the standard Linux DAC resource chec
mportant for the following reasons:
Permissions to resources (i.e., files, directories
must pass both the Linux DAC and MAC checks.
Security-Enhanced Linux generates audit messages
when a policy violation occurs. The Security-
Enhanced Linux SCADA proxy takes advantage of
this situation by carefully matching the privileges in
the DAC and MAC security models. This allows the
Security-Enhanced Linux SCADA proxy to generate
policy violation
remote host via syslog) to indicate that the Security-
Enhanced Linux security proxy may be under attack
by an intruder.

The following two sections provide background
information for the Security-Enhanced Linux security policy
statements used in this paper. The policy language statement
use for access control ch
Section B describes how Se
the creation and relabeling of processes in different
application domains.

A. Access Vector (AV) Rules
The def

 access to all resources. The Security-Enhanced
 language uses AV rules to specify permission

resources.

rule source(s) target(s):class(es) permission(s);

Fig. 3. Security-Enhanced Linux AV Rule Syntax

five elements of the AV rule syntax are discuThe ssed
below:1

1.

e sources and

2. all

are referenced as the source(s) in the AV rules. Fig. 4

o rule types deal with generating additional and suppressing
audit messages.

rule – Security-Enhanced Linux currently supports
four AV rule types. This paper only describes the
allow and neverallow rule types.2 The allow rule type
permits the specified access between th
targets. The neverallow rule type is a policy compile-
time check to ensure the specified access between the
sources and targets is never permitted.
source(s) – Security-Enhanced Linux adds labels to
processes running on the Linux system. These labels

1 The Security-Enhanced Linux security policy supports multiple elements

within a single rule but requires multiple elements to be enclosed within { }.
2 The other tw

3

illustrates the additional Security-Enhanced Linux
label attribute in addition to the user id

entifier (UID)

and grou used in the
standard L

p identifier (GID) attributes
inux DAC security model.

Process: Web Server

UID: 33 (webadm)
GID: 33 (webuser)

Label: external_web_t

 4. Labeled Process

target(s) – Security-Enhanced Linux also adds lab
to all resources on the Linux system. These labels a
referenced as the target(s) in the AV rules. Fig. 5
illustrates the additional Security-Enhanced Linux
label attribute in additi

Fig.

3. els
re

on to the UID, GID, and
permissio ndard Linux
DAC sec

Label: untrusted_web_t

n label attributes used in the sta
urity model.

File: /var/www/index.html

UID: 33 (webadm)
GID: 33 (webuser)

Permissions: -rwxr-xr-x

Labeled File

Security-Enhanced Linux also labels resources that
not traditionally used in the DAC security model.

Fig. 5.

 are

Fig. 6 illu ty-Enhanced
Linux ork interface.

usted_t

strates the additional Securi
 label attribute added to a netw

Network Interface: eth0

Label: untr

 6. Labeled Network Interface

class(es) – Security-Enhanced Linux represents kerne
resources as classes.

Fig.

4. l

e files,

5. es the

fines
ss:

ck,

Linux
policy statement that permits processes with the untrusted_
we

4 Examples of System V IPC communications include semaphores,
message queues, and shared memory.

3 Example kernel resources
protected by Security-Enhanced Linux includ
directories, network interfaces, network communica-
tions, and System V IPC communications.4
permission(s) – The permission element specifi
access permissions for the specified element class(es).
Each element class defines the set of available
permissions in the Security-Enhanced Linux security
policy. For example, the 2.6.23.9 Linux kernel de
the following permissions for the file element cla
append, create, execute, getattr, ioctl, link, lo
mounton, quotaon, read, relabelfrom, relabelto,
rename, setattr, swapon, unlink, and write.

Fig. 7 provides an example Security-Enhanced

b_t label read access to files with the lib_t label.

3 The 2.6.23.9 Linux kernel provides 42 classes. Security-Enhanced Linux
also provides support for nonkernel classes. This paper does not address any
of the nonkernel classes.

allow untrusted_web_t lib_t:file read;

Fig. 7. Example Policy #1

Fig. 8 provides an example Security-Enhanced Linux
policy statement with multiple target and permission elements.
This policy statement gives the untrusted_web_t domain read,
getattr, and search permissions to directories labeled with the
root_t and system_t labels.5

allow untrusted_web_t { root_t system_t }
:dir { read getattr search };

Fig. 8. Example Policy #2

The neverallow policy statements do not remove
permissions from the security policy; instead, they generate
policy compiler errors [5]. The neverallow rule supports two
additional syntax operators, the wildcard (*) and complement
(~). Fig. 9 illustrates a Security-Enhanced Linux policy
statement that prevents any process with the untrusted_web_t
label from accessing any resources on any network interface
without the untrusted_t label.

neverallow untrusted_web_t ~untrusted_t
:netif *;

Fig. 9. Example Policy #3

B. Domain Transitions
The AV rules specify the permissions each domain has to

the Linux system resources. Security-Enhanced Linux also
supports transitioning a process from one application domain
into a different application domain. Dynamic domain transi-
tions and default domain transitions are the two types of
domain transitions supported.

The dynamic domain transition privilege was added to
Security-Enhanced Linux primarily for compatibility with
other systems. Dynamic domain transition permits the process
to execute arbitrary code in a different domain, destroying the
separation between application domains. The dynamic domain
transition is not recommended for use in Security-Enhanced
Linux policies and is not discussed further in this paper [5].

Default domain transitions occur when an existing domain
creates a new Linux process and the Security-Enhanced Linux
security policy is configured to automatically relabel the
process to the new domain. To configure the Security-
Enhanced Linux security policy for default domain transitions,
the following four requirements must be met:

1. The current domain must be permitted to execute the
domain entry point file.6

2. The domain entry point file must have the entrypoint
file permission.

3. The current domain process must have permission to
transition to the new domain.

4. A type_transition policy statement must exist to
change the process label when executing the domain
entry point file.

5 The getattr permission is used to protect access to specific attributes of

an object, such as access modes [5].
6 The file executed to launch the new Linux process is referred to as the

domain entry point file.

4

Fig. 10 provides the Security-Enhanced Linux policy
statements required for the init_t domain to transition into the
untrusted_web_t domain.

Domain transition rule.
type_transition init_t untrusted_web_exec_t

:process untrusted_web_t;

Mark the domain entry point file.
allow untrusted_web_t untrusted_web_exec_t

:file entrypoint;

Execute permissions on domain entry point.
allow init_t untrusted_web_exec_t

:file execute;

Permit the process transition.
allow init_t untrusted_web_t

:process transition;

Fig. 10. Required Policy Statements for Default Domain Transitions

Fig. 11 shows the default domain transitions configured
into the security policy for the Security-Enhanced Linux
SCADA proxy.

firewall_t

untrusted_web_t

web_meter_t web_protection_t

syslog_t scada_protection_t

scada_meter_t

netadmin_t
init_t

kernel_t

trusted_web_t

Fig. 11. Security-Enhanced Linux SCADA Proxy Domain Transitions

Analysis of the default domain transitions in the Security-
Enhanced Linux security policy exposes which domains an
intruder could potentially compromise during an attack. For
the Security-Enhanced Linux SCADA proxy, the intruder is
assumed to scan all ports and services but focus the attack on
the untrusted_web_t domain.

After reviewing the domain transition diagram for the
original Security-Enhanced Linux SCADA proxy, it is reason-
able to assume the intruder could compromise the untrusted_
web_t, web_meter_t, and web_protection_t domains.7 To
prevent any additional domain transitions from the
untrusted_web_t domain, this implementation of the Security-
Enhanced Linux SCADA proxy provides a web server on the
SCADA network interface. This web server runs in the
trusted_web_t domain and is used for changes in the
electronic device settings on the Security-Enhanced Linux
SCADA proxy.

III. SCADA DATA PROXY DOMAINS
The primary purpose of the Security-Enhanced Linux

SCADA proxy is to logically isolate the SCADA and

corporate IT networks, while still providing SCADA data to
authorized users on the corporate IT network. The SCADA
application domains (scada_meter_t and scada_protection_t)
are responsible for collecting data from SCADA devices and
storing these data locally on the Security-Enhanced Linux
SCADA proxy. The web application domains (untrusted_
web_t, web_meter_t, and web_protection_t) are responsible
for presenting these SCADA data in useful formats for
authorized users on the corporate IT network. The original
Security-Enhanced Linux SCADA proxy presented a
hypothetical scenario, modeled in the test environment, to
illustrate how the Security-Enhanced Linux SCADA proxy is
able to meet this objective. This paper uses the same
hypothetical scenario and test environment to expose the
Security-Enhanced Linux security policy for the SCADA data
proxy domains enforcing a strict one-way communications
path. A short description of the hypothetical scenario and test
environment is provided for background information.

7 The domain transition diagram for the original Security-Enhanced Linux

SCADA proxy can be found in Figure 6.6 in [7], in which untrusted_web_t is
labeled as web_t.

As described in [7], the test environment is modeled after a
hypothetical scenario of an electric utility factory interconnect.
The factory has several wind turbines to help offset the cost of
power from the electric utility. The power generated from the
wind turbines is insufficient to power the factory during daily
production runs, so power from the electric utility is still
required. At night, when the power consumption is much
lower, the factory sells the excess power generated from the
wind turbines back to the electric utility. Fig. 12 illustrates the
one-line circuit diagram for the hypothetical test environment.

Relay

Meter

Factory
Interconnect

Wind Turbines

Fig. 12. Test Environment—One-Line Diagram

Fig. 13 illustrates the communications paths used in the test
environment. The adaptive multichannel source (AMS) is
configured to provide simulated voltages and currents to both
the protective relay and the meter. Periodically, the AMS will
also simulate power system faults in the test environment.

Substation
Network

SCADA
Network

Corporate
IT Network Security-Enhanced

Linux SCADA
Proxy Meter

Protective
Relay

AMS

Syslog
Server AMS Cable

Serial Cable
Ethernet Cable

Fig. 13. Security-Enhanced Linux SCADA Proxy Communications Diagram

5

I
T

N
e
t
w
o
r
k

S
C
A
D
A

Read
Write

Create

Delete
Untrusted

Web
Domain

Web
Protection
Domain

Web
Meter

Domain

SCADA
Meter

Domain

SCADA
Protection
Domain

/database/meter

scada_meter_t

/database/protection

scada_protection_t

/var/spool/event_reports

event_reports_t

Read

Read

Read

Read
Write

Read
Write

Write
Create

Read
Write

Create

Delete

Fig. 14. SCADA Data Proxy—One-Way Communications Path

Fig. 14 maps the one-way communications path and the
separation of SCADA data into a high-level security policy.
The Security-Enhanced Linux application domains are
represented as boxes and are discussed in additional detail in
the sections below. The ovals represent SCADA data storage
on the file system and are responsible for enforcing the one-
way communication.

A. SCADA Meter Domain
The SCADA meter domain is responsible for collecting

both instantaneous data and load profile records from the
revenue meter. The meter data collection process is the only
process labeled with the scada_meter_t label. This process
connects to the revenue meter via a serial connection using a
device file.8 Fig. 15 provides a detailed look at how the
SCADA meter domain participates in the one-way
communications path through the SCADA data proxy
domains.

SCADA
Meter

Domain

/database/meter

scada_meter_t

device file
scada_meter_tty_t

S
C
A
D
A

Read
Write

Create

Delete
Read
Write

scada_meter.conf

trusted_web_settings_t

Read

Fig. 15. SCADA Meter Domain Permissions

The trusted_web_t domain has privileges to relabel the
user-specified device file with the scada_meter_tty_t label.
The trusted_web_t domain also has privileges to update the
scada_meter.conf configuration file. On startup, the meter
collection application reads the scada_meter.conf configu-
ration file to determine which device file to use for connecting
to the revenue meter. Fig. 16 provides the Security-Enhanced

Linux policy statements to ensure only the trusted_web_t and
scada_meter_t domains are able to access device files labeled
with the scada_meter_tty_t label.

8 A device file is a special file that allows user-space applications to

interact with kernel-controlled resources (i.e., serial ports).

meter collection has read/write access to the device file.
allow scada_meter_t scada_meter_tty_t

:chr_file { read write ioctl };

trusted web has relabel access to the device file.
allow trusted_web_t scada_meter_tty_t

:chr_file { getattr relabelfrom relabelto };

prohibit all other access to the device file.
neverallow ~{ scada_meter_t trusted_web_t } scada_meter_tty_t

:chr_file *;
neverallow scada_meter_t scada_meter_tty_t

:chr_file ~{ read write ioctl };
neverallow trusted_web_t scada_meter_tty_t

:chr_file ~{ getattr relabelfrom relabelto };

Fig. 16. SCADA Meter Domain—Device File Policy Statements

Fig. 17 provides the Security-Enhanced Linux policy
statement to ensure only the trusted_web_t domain has
permission to write to the scada_meter.conf configuration file.

neverallow ~trusted_web_t trusted_web_settings_t
:file ~{ read getattr };

Fig. 17. Settings Configuration File Policy Statements

The data collected from the revenue meter is stored in an
SQLite database. The SQLite database files are stored in the
/database/meter directory and labeled with the scada_meter_t
label. To maintain database integrity during updates, the
SQLite database engine creates a temporary file in the
/database/meter directory. To prevent temporary file security
attacks, only processes in the scada_meter_t domain are
permitted to create and remove files from the /database/meter
directory. Fig. 18 provides the Security-Enhanced Linux
policy statements to ensure only the scada_meter_t domain
has permission to create, remove, read, and write to files in the
/database/meter directory. Fig. 18 also shows that only the
web_meter_t and init_t domains have permission to read the
SCADA data stored in this SQLite database.

6

meter collection has create/read/write/delete permissions
allow scada_meter_t scada_meter_t

:file { create read getattr write unlink lock };

web meter has read permissions
allow web_meter_t scada_meter_t

:file { read getattr lock };

init domain requires read permissions
allow init_t scada_meter_t:file read;

prohibit all other access to the SCADA data
neverallow ~{ scada_meter_t web_meter_t init_t } scada_meter_t

:file *;
neverallow scada_meter_t scada_meter_t

:file ~{ create read getattr write unlink lock };
neverallow web_meter_t scada_meter_t

:file ~{ read getattr lock };
neverallow init_t scada_meter_t

:file ~read;

Fig. 18. SCADA Meter Domain—Database File Permissions

The Security-Enhanced Linux policy statements provided
in this section show how the SCADA meter domain
participates in the one-way communications design of the
Security-Enhanced Linux SCADA proxy. Fig. 16 shows that
the scada_meter_t domain is the only application domain
permitted to communicate with device files with the
scada_meter_tty_t label. Fig. 18 shows that the scada_meter_t
domain is the only application domain with update privileges
to the SCADA data stored in the SQLite database in the
/database/meter directory. Fig. 19 provides the final policy
statement to ensure all communications paths are prohibited
between the application domains only connected by white
space in Fig. 14.

neverallow { untrusted_web_t web_protection_t
 scada_protection_t }

{ scada_meter_t scada_meter_exec_t
scada_meter_tty_t }:
{ blk_file chr_file dir fd fifo_file file filesystem
lnk_file sock_file association key_socket netif
netlink_audit_socket netlink_dnrt_socket
netlink_ip6fw_socket netlink_kobject_uevent_socket
netlink_nflog_socket netlink_route_socket sem shm
netlink_selinux_socket netlink_socket msg msgq
netlink_tcpdiag_socket netlink_xfrm_socket
node packet_socket rawip_socket socket tcp_socket
udp_socket unix_dgram_socket unix_stream_socket ipc
capability passwd pax process security system } *;

Fig. 19. SCADA Meter Domain—White Space Verification

B. SCADA Protection Domain
The SCADA protection domain is responsible for

collecting both instantaneous data and event reports from the
protective relay. This domain has two processes running in it,
the relay data collection application and the event reports
collection application. Both applications are labeled with the
scada_protection_t label. The relay data collection application
connects to the protective relay via a serial connection using a
device file. The event report collection application connects to
the protective relay via a network connection. Fig. 20 provides
a detailed look at how the SCADA protection domain
participates in the one-way communications path through the
SCADA data proxy domains.

SCADA
Protection Domain

Read
Write

Create

Delete

Read
Write

/var/spool/event_reports

event_reports_t network interface
trusted_t

Read
Write

Create
Write

Read

scada_protection.conf
trusted_web_settings_t

device file
scada_protection_tty_t

S
C
A
D
A

/database/protection

scada_protection_t

Fig. 20. SCADA Protection Domain Permissions

The trusted_web_t domain has privileges to relabel the
user-specified device file with the scada_protection_t label
but does not have privileges to relabel network interfaces. The
trusted_web_t domain also has privileges to update the
scada_protection.conf configuration file. On startup, both the
relay data collection and event report collection applications
read the scada_protection.conf configuration file to determine
the device file and IP address to use for connecting to the
protective relay. Fig. 21 provides the Security-Enhanced
Linux policy statements to ensure that only the trusted_web_t
and scada_protection_t domains are able to access device files
labeled with the scada_protection_t label.

relay collection has read/write access to the device file.
allow scada_protection_t scada_protection_tty_t

:chr_file { read write ioctl };

trusted web has relabel access to the device file.
allow trusted_web_t scada_protection_tty_t

:chr_file { getattr relabelfrom relabelto };

prohibit all other access to the device file.
neverallow ~{ scada_protection_t trusted_web_t }

scada_protection_tty_t:chr_file *;
neverallow scada_protection_t scada_protection_tty_t

:chr_file ~{ read write ioctl };
neverallow trusted_web_t scada_protection_tty_t

:chr_file ~{ getattr relabelfrom relabelto };

Fig. 21. SCADA Protection Domain—Device File Policy Statements

Fig. 22 provides the Security-Enhanced Linux policy
statements to ensure the scada_protection_t domain only has
privileges to access IP addresses using the SCADA network
interface.

event report collection needs read/write permissions
to the SCADA network
allow scada_protection_t trusted_t

:netif { tcp_recv tcp_send };

prohibit access to all other network interfaces.
neverallow scada_protection_t ~trusted_t

:netif *;

Fig. 22. SCADA Protection Domain Only Permitted to Communicate Over
a Trusted Network Interface

7

Data collected from the relay data collection application is
stored in an SQLite database in the /database/protection
directory. Fig. 23 provides the Security-Enhanced Linux
policy statements to ensure only the scada_protection_t
domain has privileges to create, remove, read, and write files
in the /database/protection directory.

relay collection has create/read/write/delete permissions
allow scada_protection_t scada_protection_t

:file { create read getattr write unlink lock };

web protection has read permissions
allow web_protection_t scada_protection_t

:file { read getattr lock };

init domain requires read permissions
allow init_t scada_protection_t:file read;

prohibit all other access to the SCADA data
neverallow ~{ scada_protection_t web_protection_t init_t }

scada_protection_t:file *;
neverallow scada_protection_t scada_protection_t

:file ~{ create read getattr write unlink lock };
neverallow web_protection_t scada_protection_t

:file ~{ read getattr lock };
neverallow init_t scada_protection_t:file ~read;

Fig. 23. SCADA Protection Domain—Database File Permissions

Data collected from the event reports collection application
is stored in the /var/spool/event_reports directory. The event
reports are labeled with the event_reports_t label to experi-
ment with assigning different permissions to data from the
same SCADA device. Fig. 24 provides the Security-Enhanced
Linux policy statements to ensure the scada_protection_t
domain has privileges to create and write but not delete or
read files with the event_reports_t label.

event reports can add files to the directory.
allow scada_protection_t event_reports_t

:dir { search write add_name };

event reports can create and write files.
allow scada_protection_t event_reports_t

:file { write create getattr };

prohibit all access to event reports except to the
scada_protection_t and web_protection_t domains.
neverallow ~{ scada_protection_t web_protection_t }

event_reports_t:file *;

verify scada_protection_t permissions to event_report_t
files.
neverallow scada_protection_t event_reports_t

:file ~{ write create getattr };

Fig. 24. SCADA Protection Domain—Event Reports Permissions

The Security-Enhanced Linux policy statements provided
in this section show how the scada_protection_t domain
participates in the one-way communications design of the
Security-Enhanced Linux SCADA proxy. Fig. 21 shows the
scada_protection_t domain is the only domain with privileges
to communicate with device files with the scada_protection_

tty_t label. Fig. 22 shows the scada_protection_t domain as
the only domain with privileges to communicate with user-
specified IP addresses on the SCADA network. Fig. 23 and
Fig. 24 show the scada_protection_t domain as the only
domain with privileges to update the SQLite database in the
/database/protection directory and the event reports in the
/var/spool/event_reports directory. Fig. 25 provides the final
policy statement to ensure all communications paths are
prohibited between the application domains only connected by
white space in Fig. 14.

neverallow { untrusted_web_t web_meter_t scada_meter_t }
{ scada_protection_t scada_protection_exec_t
scada_protection_tty_t }:
{ blk_file chr_file dir fd fifo_file file filesystem
lnk_file sock_file association key_socket netif
netlink_audit_socket netlink_dnrt_socket
netlink_ip6fw_socket netlink_kobject_uevent_socket
netlink_nflog_socket netlink_route_socket sem shm
netlink_selinux_socket netlink_socket msg msgq
netlink_tcpdiag_socket netlink_xfrm_socket
node packet_socket rawip_socket socket tcp_socket
udp_socket unix_dgram_socket unix_stream_socket ipc
capability passwd pax process security system } *;

Fig. 25. SCADA Protection Domain—White Space Verification

C. Untrusted Web Domain
The SCADA meter and SCADA protection domains are

responsible for collecting and storing SCADA data on the
Security-Enhanced Linux SCADA proxy. The untrusted_
web_t domain is responsible for providing these data to
authorized users on the corporate IT network. The untrusted
web server executes common gateway interface (CGI)
applications to access the SCADA data and presents these
SCADA data to the authorized user. The CGI applications are
marked as domain entry point executables so they will
perform a default domain transition into the appropriate
domain, thus having read access to the required SCADA data.

The Security-Enhanced Linux SCADA proxy uses three
application domains to provide these data to corporate IT
users as an experiment to explore the different levels of
protection Security-Enhanced Linux can offer. This area still
needs continued research, but the current level of protection is:

• Compromised web_meter_t domain – the intruder has
full read-only access to all stored SCADA data from
the meter.

• Compromised web_protection_t domain – the intruder
has full read-only access to all stored SCADA data
from the protective relay.

• Compromised untrusted_web_t domain – the intruder
does not have direct access to the stored SCADA data.
The intruder does have permission to launch the CGI
applications and read stored SCADA data from the
meter and protective relay.

8

Fig. 26 provides the Security-Enhanced Linux security
policy to ensure the untrusted web server can only
communicate with the untrusted network interface on the
HTTPS port (443/tcp).

allow untrusted_web_t untrusted_t
:netif tcp_recv;

allow untrusted_web_t https_port_t
:tcp_socket name_bind;

neverallow untrusted_web_t ~untrusted_t
:netif *;

neverallow untrusted_web_t ~https_port_t
:tcp_socket name_bind;

Fig. 26. Untrusted Web Domain Network Interface Security Policy

Fig. 27 provides the Security-Enhanced Linux security
policy to ensure the untrusted_web_t domain is only permitted
to transition into the web_meter_t and web_protection_t
domains.

neverallow untrusted_web_t ~{ web_meter_t web_protection_t }
:process transition;

Fig. 27. Untrusted Web Domain—Domain Transitions

The Security-Enhanced Linux policy statements provided
in this section show how the untrusted_web_t domain
participates in the one-way communications design of the
Security-Enhanced Linux SCADA proxy. Fig. 26 shows that
the untrusted_web_t domain only has permission to bind to
port 443/tcp on the corporate IT network. Fig. 27 shows that
the untrusted_web_t domain only has permission to transition
into the web_meter_t and web_protection_t domains. Fig. 28
provides the final policy statement to ensure all communi-
cations paths are prohibited between application domains only
connected by white space in Fig. 14.

neverallow { scada_meter_t scada_protection_t }
{ untrusted_web_t untrusted_web_exec_t }:
{ blk_file chr_file dir fd fifo_file file filesystem
lnk_file sock_file association key_socket netif
netlink_audit_socket netlink_dnrt_socket
netlink_ip6fw_socket netlink_kobject_uevent_socket
netlink_nflog_socket netlink_route_socket sem shm
netlink_selinux_socket netlink_socket msg msgq
netlink_tcpdiag_socket netlink_xfrm_socket
node packet_socket rawip_socket socket tcp_socket
udp_socket unix_dgram_socket unix_stream_socket ipc
capability passwd pax process security system } *;

Fig. 28. Untrusted Web Domain—White Space Verification

The untrusted_web_t domain is the most susceptible to
intruder attacks because it is the only port listening on the
untrusted_t network interface. The Security-Enhanced Linux
policy statements provided in Fig. 29 ensure the enhancements
and improvements to the Security-Enhanced Linux SCADA
proxy do not reduce the security offered by the original
Security-Enhanced Linux SCADA proxy proof-of-concept.
These policy statements ensure processes running in the
untrusted_web_t domain are unable to access any serial ports
and are unable to create, delete, or modify any files on the
Security-Enhanced Linux SCADA proxy.

prohibit create, delete, or write access to all files.
neverallow untrusted_web_t *

:file { create unlink write };

prohibit access to all serial ports.
neverallow untrusted_web_t ~{ urandom_device_t null_device_t }

:chr_file *;

Fig. 29. Untrusted Web Domain File and Serial Port Security Policy

D. Untrusted Web Meter Domain
The web_meter_t domain is responsible for presenting the

SCADA data from the revenue meter to the business group in
a useful format. As discussed in [7], this proof-of-concept
provides the business group with three methods for accessing
the SCADA data from the revenue meter: a front-panel
display, a graph showing power usage, and a graph showing
the power factor. Fig. 30 provides a detailed look at how the
web_meter_t domain participates in the one-way communi-
cations path through the SCADA data proxy domains.

Untrusted
Web

Domain

Web
Meter

Domain

/database/meter

scada_meter_t

Read

Read
Write

Fig. 30. Web Meter Domain Permissions

Fig. 31 provides the Security-Enhanced Linux policy
statements to ensure that only the web_meter_t domain has
read-only permission to the SCADA data stored in the SQLite
database in the /database/meter directory.

allow web_meter_t scada_meter_t
:file { read getattr lock };

neverallow web_meter_t scada_meter_t
:file ~{ read getattr lock };

Fig. 31. Web Meter Domain—Database File Permissions

Fig. 32 provides the Security-Enhanced Linux policy
statements showing the read/write relationship between the
web_meter_t and untrusted_web_t domains.

allow web_meter_t untrusted_web_t
:tcp_socket { read write };

neverallow ~{ untrusted_web_t web_meter_t web_protection_t }
untrusted_web_t:tcp_socket { read write };

neverallow web_meter_t untrusted_web_t
:tcp_socket ~{ read write };

Fig. 32. Web Meter Has Read/Write Permissions to Untrusted Web Domain

The Security-Enhanced Linux policy statements provided
in this section show how the web_meter_t domain participates
in the one-way communications design of the Security-
Enhanced Linux SCADA proxy. As shown previously in
Fig. 18, the web_meter_t domain only has read permission to
the SCADA data collected from the revenue meter. Fig. 33
provides the final policy statement to ensure all

9

communications paths are prohibited between application
domains only connected by white space in Fig. 14.

neverallow { web_protection_t scada_protection_t }
{ web_meter_t web_meter_exec_t }:
{ blk_file chr_file dir fd fifo_file file filesystem
lnk_file sock_file association key_socket netif
netlink_audit_socket netlink_dnrt_socket
netlink_ip6fw_socket netlink_kobject_uevent_socket
netlink_nflog_socket netlink_route_socket sem shm
netlink_selinux_socket netlink_socket msg msgq
netlink_tcpdiag_socket netlink_xfrm_socket
node packet_socket rawip_socket socket tcp_socket
udp_socket unix_dgram_socket unix_stream_socket ipc
capability passwd pax process security system } *;

Fig. 33. Web Meter Domain—White Space Verification

The web_meter_t domain is potentially accessible to an
intruder from the corporate IT network. The Security-
Enhanced Linux policy statements in Fig. 34 ensure the
web_meter_t domain is prohibited from accessing the network
interfaces, accessing the serial ports, and modifying files on
the Security-Enhanced Linux SCADA proxy.

prohibit access to all network interfaces.
neverallow web_meter_t *:netif *;

prohibit access to all serial ports.
neverallow web_meter_t ~null_device_t

:chr_file *;

prohibit create/write/delete of all files.
neverallow web_meter_t *

:file { create unlink write };

Fig. 34. Web Meter Cannot Access Network Interface and Serial Ports or
Modify Files

E. Untrusted Web Protection Domain
The web_protection_t domain is responsible for presenting

the SCADA data from the protective relay to protection
engineers in a useful format. As discussed in [7], this proof-
of-concept provides the protection engineers with two
methods for accessing the SCADA data from the protective
relay: a one-line diagram of the test environment and an event
report viewer. Fig. 35 provides a detailed look at how the
web_protection_t domain participates in the one-way commu-
nications path through the SCADA data proxy domains.

Untrusted
Web

Domain

Web
Protection
Domain

Read
Write Read

/var/spool/event_reports

event_reports_t

Read
/database/protection
scada_protection_t

Fig. 35. Web Protection Domain Permissions

Fig. 36 provides the Security-Enhanced Linux policy
statements permitting the web_protection_t domain read-only
access to protective relay data stored in the SQLite database in
the /database/protection directory.

allow web_protection_t scada_protection_t
:file { read getattr lock };

neverallow web_protection_t scada_protection_t
:file ~{ read getattr lock };

Fig. 36. Web Protection Domain—Database File Permissions

Fig. 37 provides the Security-Enhanced Linux policy
statements permitting the web_protection_t domain read-only
access to the event reports stored on the Security-Enhanced
Linux SCADA proxy.

allow web_protection_t event_reports_t
:file { read getattr };

neverallow web_protection_t event_reports_t
:file ~{ read getattr };

Fig. 37. Web Protection Domain—Event Reports Permissions

The Security-Enhanced Linux policy statements provided
in this section show how the web_protection_t domain
participates in the one-way communications design of the
Security-Enhanced Linux SCADA proxy. Fig. 36 and Fig. 37
show that only the web_protection_t domain has read-only
access to the protective relay data. Fig. 38 provides the final
policy statement to ensure all communications paths are
prohibited between application domains only connected by
white space in Fig. 14.

neverallow { web_meter_t scada_meter_t }
{ web_protection_t web_protection_exec_t }:
{ blk_file chr_file dir fd fifo_file file filesystem
lnk_file sock_file association key_socket netif
netlink_audit_socket netlink_dnrt_socket
netlink_ip6fw_socket netlink_kobject_uevent_socket
netlink_nflog_socket netlink_route_socket sem shm
netlink_selinux_socket netlink_socket msg msgq
netlink_tcpdiag_socket netlink_xfrm_socket
node packet_socket rawip_socket socket tcp_socket
udp_socket unix_dgram_socket unix_stream_socket ipc
capability passwd pax process security system } *;

Fig. 38. Web Protection Domain—White Space Verification

The web_protection_t domain is potentially accessible to
an intruder from the corporate IT network. The Security-
Enhanced Linux policy statements in Fig. 39 ensure the
web_protection_t domain is prohibited from accessing the
network interfaces, accessing the serial ports, and modifying
files on the Security-Enhanced Linux SCADA proxy.

10

prohibit access to all network interfaces.
neverallow web_protection_t *:netif *;

prohibit access to all serial ports.
neverallow web_protection_t ~null_device_t

:chr_file *;

prohibit create/write/delete of all files.
neverallow web_protection_t *

:file { create unlink write };

Fig. 39. Web Protection Domain Cannot Access Network Interface and
Serial Ports or Modify Files

IV. PHYSICAL CONTACT INPUTS AND OUTPUTS
The Security-Enhanced Linux security policy provides

support for run-time conditional (i.e., Boolean) variables. This
allows the security policy to dynamically switch between pre-
defined behaviors, depending upon the status of the
conditional variable. The platform the Security-Enhanced
Linux SCADA proxy is running on supports a single physical
contact input and a single physical contact output (without the
addition of an expansion board). The use of a single physical
contact of each type is not a restriction of the Security-
Enhanced Linux policy language, in fact, the ideas presented
in this paper scale to multiple physical contact inputs and
multiple physical contact outputs.

A. Physical Contact Input
The high-level integration goal for the physical contact

input is to only permit changes to the electronic device
settings when the physical contact input is asserted and to
prohibit all changes to the electronic device settings when the
physical contact input is deasserted. To realize this integration
goal, a custom Linux driver was added to the Linux kernel to
periodically scan the status of the physical contact input. This
Linux kernel driver detects rising and falling edges to
appropriately set the update_settings conditional variable in
the Security-Enhanced Linux security policy.

The Security-Enhanced Linux security policy uses the
update_settings conditional variable to dynamically grant or
revoke privileges from the trusted_web_t domain. The
trusted_web_t domain gains the following privileges when the
physical contact input is asserted:

• Write permissions to files with the
trusted_web_settings_t label.9

• Relabeling permissions on device files associated with
serial ports.10

• Reboot privileges.11

9 Files with the trusted_web_settings_t label are configuration files the

trusted web server is permitted to update on settings changes.
10 To ensure the data collection domains remain isolated, the

scada_meter_t and scada_protection_t domains require the appropriate label
on the device file. The trusted web server must relabel these device files with
the appropriate label when specifying which serial port the SCADA device is
connected to.

11 After changes to the settings on the device have been made, the system
requires a reboot before the settings changes take effect. Online device
changes are possible but were not implemented in this proof-of-concept.

When the physical contact input is deasserted, the above
privileges are revoked from the trusted_web_t domain.

Fig. 40 provides the relevant Security-Enhanced Linux
policy statements to grant and revoke the appropriate
privileges from the trusted_web_t domain.

if(update_settings) {
relabel device files.
allow trusted_web_t security_t:filesystem getattr;
allow { scada_meter_tty_t scada_protection_tty_t } fs_t

:filesystem associate;

allow trusted_web_t security_t:dir search;
allow trusted_web_t security_t:file { read write };
allow trusted_web_t { scada_meter_tty_t

scada_protection_tty_t tty_device_t }
:chr_file { getattr relabelto relabelfrom };

allow trusted_web_t security_t:security check_context;

Setting Files
allow trusted_web_t trusted_web_settings_t

:file { read getattr write };

Reboot
allow init_t init_t:capability sys_boot;

}

Fig. 40. Conditional Security-Enhanced Linux Policy Statements

B. Physical Contact Output
The high-level integration goal for the physical contact

output is to provide notification when Security-Enhanced
Linux policy alarms are generated. In addition to sending
Security-Enhanced Linux policy alarm messages to the central
syslog server, the custom Linux kernel driver also asserts the
physical contact output. This output can be used to provide a
visible alarm such as driving an LED or controlling an alarm
icon on an HMI (human-machine interface) screen.

V. DEVICE SETTINGS
The final goal for this paper is to extend the functionality

of the original Security-Enhanced Linux SCADA proxy to
allow users to make changes to the electronic device settings.
This proof-of-concept Security-Enhanced Linux SCADA
proxy permits users to modify the following device settings
using the trusted web server: network interface settings, syslog
server settings, revenue meter communications settings, and
protective relay communications settings.

The following four sections describe in detail how the
Security-Enhanced Linux SCADA proxy implements the user-
updateable settings. To simplify the settings description,
assume the physical contact input is asserted.

A. Network Interface Settings
The trusted web server allows users to configure the IP

address and the subnet mask for both the trusted and untrusted
network interfaces.12 The Security-Enhanced Linux SCADA
proxy configures the network interface in the /etc/inittab file.13

12 The trusted network interface is labeled with the trusted_t label, while

the untrusted network is labeled with the untrusted_t label.
13 The init program reads the /etc/inittab file on system startup to

determine which applications need to be started.

11

Although granting the trusted_web_t domain write privileges
to the /etc/inittab file would provide user-updateable settings,
it would also expose the entire /etc/inittab file to an intruder
attacking from the SCADA network. Because the Security-
Enhanced Linux SCADA proxy was designed to protect itself
against both corporate IT and SCADA intruders, an alternative
method for updating the /etc/inittab was used.

This alternative method has the trusted_web_t domain
write the IP address and subnet information for each network
interface to user-configuration-files. The nonuser-updateable
/etc/inittab entries are stored in /etc/inittab fragments. The
custom buildinit shutdown application regenerates the
/etc/inittab file from the /etc/inittab fragments and the user-
configuration-files. The custom buildinit shutdown application
performs input validation on the user-defined data before
generating proper /etc/inittab entries. This input validation is
important to prevent an intruder from making unauthorized
modifications to the /etc/inittab file.14

B. Syslog Server Settings
The trusted web server allows users to configure the IP

address for the syslog server. The syslog server application is
also launched from the /etc/inittab file. The syslog server IP
address is updated in the /etc/inittab file using the same
methodology described in the previous section on network
interface settings. In addition to updating the /etc/inittab file,
the syslog server IP address must also be updated in the
firewall rules and the Security-Enhanced Linux security
policy.

The Linux operating system provides a stateful, packet-
filtering firewall built directly into the Linux kernel. The
firewall rules are stored in the /etc/rc.firewall file and loaded
into the Linux kernel during system boot.15 Similar to how the
/etc/inittab is regenerated, a custom buildfirewall shutdown
application regenerates the /etc/rc.firewall file. To simplify
and prevent configuration errors, the custom buildinit and
custom buildfirewall applications use the same syslog user-
configuration-file.

Following the security-in-depth principle, the Security-
Enhanced Linux security policy also ensures syslog messages
are only sent to the specified syslog server. The Security-
Enhanced Linux security policy offers greater protection by
ensuring only the syslog_t domain is permitted to send syslog
messages to the syslog server.

To prevent a covert (unauthorized) communications
channel through the Security-Enhanced Linux SCADA proxy,
the syslog server must exist on the corporate IT network.
Fig. 41 provides the Security-Enhanced Linux policy
statements to ensure that only the syslog_t domain can send
syslog messages to the syslog server.

14 There is a very small chance an intruder from the SCADA network
could still make unauthorized modifications to the /etc/inittab file. The
trusted_web_t domain transitions into the init_t domain (via the reboot.cgi
application), and the init_t domain has privileges to write to the /etc/inittab
file. Experimentations to separate the reboot command from the init_t domain
were not completed in time for this paper.

15 The firewall rules are loaded into the Linux kernel before the network
interfaces are configured.

allow syslog_t untrusted_t:netif udp_send;
allow syslog_t syslog_node_t:node udp_send;

neverallow syslog_t ~untrusted_t:netif *;
neverallow syslog_t untrusted_t:netif ~udp_send;
neverallow syslog_t ~syslog_node_t:node udp_send;

Fig. 41. Untrusted Network Syslog Security Policy Statements

Fig. 41 introduces the syslog_node_t type representing the
syslog server. Fig. 42 provides the Security-Enhanced Linux
policy statement to associate the user-specified IP address
with the syslog_node_t type.

nodecon <IPAddress> 255.255.255.255
system_u:object_r:syslog_node_t

Fig. 42. Syslog_node_t Security-Enhanced Linux Policy Definition

Following the methodology of the custom buildinit and
buildfirewall applications, the buildpolicy application reads,
validates, and generates the nodecon Security-Enhanced Linux
policy statement with the proper <IPAddress> based on the
format in Fig. 42. After the policy has been generated, the
buildpolicy application then compiles the policy into the
binary form required by the Linux kernel.16

C. Revenue Meter Communications Settings
For this proof-of-concept, the only user-configurable

setting is which serial port the revenue meter is connected to.
Additional user-configurable settings were not added because
they did not add anything new to this paper.

As discussed above, the trusted_web_t domain updates a
meter user-configuration-file. The meter user-configuration-
file contains the name of the device file the meter data
collection process will use to connect to the revenue meter. In
addition to specifying which device file to use, the device file
must also have the scada_meter_t label.

To prevent the trusted_web_t domain from having
permission to relabel any file, the trusted_web_t domain is
only permitted to relabel device files with the tty_device_t
label to either the scada_meter_t or scada_protection_t labels.
With this restriction in place, the trusted_web_t domain must
relabel both the previous device file with the tty_device_t label
and the new device file with the scada_meter_tty_t label.

D. Protective Relay Communications Settings
The scada_protection_t domain also provides a user-

configurable setting to identify which serial port the protective
relay is connected to. The methodology for updating the relay
user-configuration-file and the meter user-configuration-file is
identical.

In addition to collecting SCADA data over a serial
connection, the scada_protection_t domain also collects the
event reports using a network connection. The relay user-
configuration-file contains both the device file and the IP
address of the protective relay. Similar to the syslog server

16 The new Security-Enhanced Linux security policy will take effect after
the reboot. If online changes are desired, Security-Enhanced Linux can also
be configured to reload the policy without rebooting.

12

settings in Section B above, changing the IP address of the
protective relay requires updates to both the Linux firewall
and Security-Enhanced Linux security policy. The
buildfirewall and buildpolicy applications discussed in
Section B also update the Linux firewall and Security-
Enhanced Linux security policy with the protective relay IP
address information.

VI. CONCLUSION
The first objective of this paper was to expose how the

Security-Enhanced Linux security policy used on the Security-
Enhanced Linux SCADA proxy enforces a one-way
communications path of SCADA data to authorized users on
the corporate IT network. Through the careful management of
file and directory privileges, the Security-Enhanced Linux
policy statements provided in this paper support the one-way
communications diagram illustrated in Fig. 14.

The second objective was to extend the research into the
Security-Enhanced Linux SCADA proxy by integrating
device settings and physical contact inputs and outputs into
the Security-Enhanced Linux security policy and standard
device operation. Although the device settings are incomplete,
a variety of settings were implemented to show how device
settings could be implemented with minimal impact to the
security goals and objectives of the Security-Enhanced Linux
SCADA proxy. The additional security protection from using
the physical contact input to dynamically switch between the
predefined policy behaviors (has privileges to write settings or
does not have privileges to write settings) worked very well
and would be interesting to study further.

Although this paper takes a detailed look into the Security-
Enhanced Linux security policy, most of what is described in
this paper is not end-user visible. The only end-user-visible
portion of the Security-Enhanced Linux security policy is the
generated syslog messages when the Security-Enhanced Linux
SCADA policy statements are violated.

VII. REFERENCES
[1] P. Oman, E. O. Schweitzer III, and D. Frincke, “Concerns About

Intrusions Into Remotely Accessible Substation Controllers and SCADA
Systems,” proceedings of the 27th Annual Western Protective Relay
Conference, Spokane, WA, October 2000.

[2] C. Leonard, “Taum Sauk Reservoir Fails,” seMissourian.com News,
December 14, 2005. Available: http://www.semissourian.com/story
/1131377.html

[3] S. Boyer, SCADA: Supervisory Control and Data Acquisition, 2nd ed.,
North Carolina: ISA, 1999.

[4] G. Clarke and D. Reynders, Practical Modern SCADA Protocols:
DNP3, IEC 60870.5 and Related Systems, Massachusetts: Newnes,
2004.

[5] F. Mayer, K. MacMillan, and D. Caplan, SELinux by Example: Using
Security Enhanced Linux, Prentice Hall, 2006.

[6] R. Bradetich and P. Oman, “Connecting SCADA Systems to Corporate
IT Networks Using Security-Enhanced Linux,” proceedings of the 34th
Annual Western Protective Relay Conference, Spokane, WA, October
2007.

[7] R. Bradetich, “Using SE-Linux Object Type Enforcement Domains to
Logically Isolate SCADA Networks,” Master’s thesis, University of
Idaho, Moscow, ID, December 2007.

VIII. BIOGRAPHIES
Ryan Bradetich received his BSCS in 1997 and his MSCS in 2007 from the
University of Idaho. He is a lead database developer at Schweitzer
Engineering Laboratories, Inc. (SEL) in Pullman, WA. Ryan is currently
working on automation products used in electric utility substations. Prior to
joining SEL, he worked at Hewlett-Packard on the security team responsible
for auditing and reporting the security status for approximately 20,000 UNIX
and Windows® systems.

Dr. Paul W. Oman is a Professor of Computer Science at the University of
Idaho. He is currently working on secure communications and critical
infrastructure protection with grants from NSF, NIATT, and DARPA. From
2000 to 2002, he served as a senior research engineer at Schweitzer
Engineering Laboratories, Inc. (SEL), specializing in digital equipment for
electric power system protection. Before joining SEL, he was Chair of the CS
Department at the University of Idaho and held the distinction of Hewlett-
Packard Engineering Chair for a period of seven years. He is a Senior
Member of the IEEE.

© 2008 by the University of Idaho and
Schweitzer Engineering Laboratories, Inc.

All rights reserved.
20080222 • TP6315-01

	CoverPage_20150429
	6315_ImplementingSCADA_RB_20080222
	Introduction
	Security-Enhanced Linux Policy Basics
	Access Vector (AV) Rules
	Domain Transitions

	SCADA Data Proxy Domains
	SCADA Meter Domain
	SCADA Protection Domain
	Untrusted Web Domain
	Untrusted Web Meter Domain
	Untrusted Web Protection Domain

	Physical Contact Inputs and Outputs
	Physical Contact Input
	Physical Contact Output

	Device Settings
	Network Interface Settings
	Syslog Server Settings
	Revenue Meter Communications Settings
	Protective Relay Communications Settings

	Conclusion
	References
	Biographies

