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The Importance of Relay and Programmable 
Logic Documentation 

Jason Young and Derrick Haas, Schweitzer Engineering Laboratories, Inc. 

Abstract—With increasing use of microprocessor-based re-
lays, incorporating logic into relays has become more common. 
Traditional relay and control schemes used dc control schematics 
to describe how schemes functioned. The ability to see electrical 
paths aided technicians during testing and troubleshooting. As 
logic is incorporated into relays, the ability to visualize logic is 
important for complete testing and troubleshooting. This paper 
describes the need for documenting relay logic, highlighting the 
importance of testing, and understanding relay logic. The paper 
describes real-world examples of misoperations due to failure to 
fully test logic schemes, and it reviews several documentation 
methods. 

I.  INTRODUCTION 
The importance of documenting settings and wiring has 

been recognized since the advent of protective relaying. A 
required part of relay panel installation typically includes a 
detailed dc schematic and a point-to-point or physical wiring 
diagram. IEEE has defined device numbers [1], and the indus-
try has established recognizable symbology to accurately and 
concisely represent various devices. 

Multifunction microprocessor-based relays incorporate 
both multiple relay functions and programmable logic capabil-
ity in one box. This logic capability allows various “logic 
schemes,” previously implemented by wiring auxiliary relays, 
timers, and devices together, to be implemented in a single 
device using settings. Manufacturers’ logic settings have taken 
on a variety of forms, from actual settings that users fill in, to 
a code similar to a simple programming language, to software 
utilities that are graphical in nature. 

Given such a spectrum of both capabilities and differences 
in nomenclature, a key aspect of using the logic capabilities of 
microprocessor-based relays is the methodology used to 
document the logic located within the relay. With logic 
schemes implemented in wiring, the logic functions are docu-
mented using the dc schematic, along with any settings asso-
ciated with a device. The technician and/or engineer tasked 
with testing or troubleshooting an installation can visualize the 
logical function as an electrical path on the diagram. For ex-
ample, Fig. 1 clearly shows that when Contact A and Contact 
B are both closed, Coil C is electrically energized or asserted. 
The electrical path from positive dc to negative dc could be 
traced with a highlighter, and the logic functioning could be 
easily verified and tested.  

Several considerations must be factored in when using  
microprocessor-based relays. First, because the logic is no 
longer part of the physical wiring, the control schematic no 
longer serves as a record of the logic scheme. 
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Fig. 1. Example DC Schematic 

Second, different manufacturers use different nomenclature 
for logic settings. If two different relays are used together as 
part of a scheme, it is difficult to clearly document interde-
pendent schemes. 

Third, added functions, such as the capability to do math 
and peer-to-peer communications protocols (i.e., MIRRORED 
BITS® communications and IEC 61850 GOOSE) are appearing 
in relays. While the peer-to-peer protocols and methods of 
communicating different pieces of information continue to 
change, a common method of representing inputs is needed, 
whether it is a wired contact, the result of a logic calculation, 
or a bit from a serial or Ethernet message. For example, a re-
lay receiving a control command from a DNP master calling 
for a breaker to open may require the object type and index 
information as part of the settings. The same command using 
the IEC 61850 protocol may require logic-node addressing. 
Using a proprietary peer-to-peer protocol may require other 
settings. However, from the standpoint of the logic scheme, 
the protocol and associated settings should not affect the over-
all logic function. The communications connections, medium 
used, associated settings, information regarding the protocol, 
etc., are certainly important to document, but placing this in-
formation on a logic diagram may serve only to complicate 
things. Consider where this information is documented. Relay 
and SCADA technicians probably would not care to have pro-
tocol information, connection diagrams, and addressing of 
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points in the same set of drawings as the logic diagram. How-
ever, certain engineering and testing technicians may need or 
want to access both pieces of information. 

To address these considerations, several different methods 
of documenting programmable relay logic have been devel-
oped by manufacturers, utilities, industrial facilities, and oth-
ers to accurately depict logic functioning within the relay. 
These include the following: 

• A written description of relay logic 
• A document listing the logic settings or code, or a file 

that contains the settings or code 
• A graphical representation of the scheme as logic gates 
• A graphical representation of the scheme as ladder 

logic 
• A graphical representation of logic and math functions, 

using both logic gates and symbology from the control 
systems and communications fields 

• A combination of the above 
The use of a particular method appears to be fairly arbi-

trary, although different manufacturers and devices will have 
certain preferences. For example, PLCs will typically utilize 
the ladder logic representation of a particular logic scheme, 
because that representation accurately depicts not only the 
overall function but also the device’s inherent processing—the 
scan and addressing of memory associated with PLCs.  
Microprocessor-based relays and controllers seem more varied 
in their choice of methods. 

II.  COMPARISON OF SEVERAL METHODS  
OF DOCUMENTING LOGIC 

In order to evaluate the methods listed in Section I, we 
show a simple example of using programmable logic to im-
plement breaker failure in a typical distribution relay [2]. As-
suming the relay is connected with the dc schematic outlined 
in Fig. 2, our documentation focuses on the relay’s program-
mable logic. 
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Breaker Failure 
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Fig. 2. DC Schematic 

The first method of documenting programmable logic is to 
provide a clear, written description of how the scheme is ex-
pected to operate. The description for our example follows: 

The basic functioning of the breaker failure scheme is de-
scribed as follows: When the breaker failure initiate sig-
nal is asserted (typically a tripped signal from another re-
lay, in this case from another feeder relay), if the breaker 
failure initiate remains asserted and the breaker is closed, 
then after a certain period of time, we declare breaker 
failure. The time is typically a user setting on the order of 
ten cycles for a typical distribution breaker (possibly 
quicker for faster breakers). Indications that the breaker 
is still closed are the presence of current (either phase or 
ground) and the 52a contact being asserted. Because 
many believe that breaker status contacts can be unreli-
able, a user setting, SV1, is included to enable contact su-
pervision. In addition, in many cases, it is desirable to 
“latch in” the breaker failure initiate signal. In other 
cases, latching in the breaker failure initiate signal may 
not be desirable. Another user setting, SV2, is included to 
determine whether the breaker failure is latched in or not. 

The second method is to use an “equivalent dc schematic.” 
The schematic in Fig. 3 depicts the relay connections to the 
rest of the control system. A simple way to describe the pro-
grammable logic inside the relay is to simply treat it as dc 
logic. To put it another way, decide how you would imple-
ment this scheme using electromechanical relays. Because 
Relay Word bits, AND functions, OR functions, and NOT 
functions all can be represented as contacts and coils in series, 
parallel, or other configurations, the dc schematic is a valid 
method as well. For our example, the schematic is shown in 
Fig. 3. 

SETTINGS LEGEND

SV1 Enable 52a supervision (SV1 = 0 corresponds to no 52a contact
supervision, SV1 = 1 corresponds to 52a supervision enabled)

SV2 Enable Breaker Failure Seal In (SV2 = 0 corresponds to disabling
latching of breaker failure, SV2 = 1 corresponds to latching of breaker
failure)
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Fig. 3. Example Scheme Represented as an Equivalent DC Schematic 
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The third method is to represent the logic as “logic gates.” 
For our example system, the logic gate representation is 
shown in Fig. 4. 

SV2

SETTINGSINPUTS

IN2 (BFI)

SV1
IN1 (52a)

50P1

50G1

OUT1

(86LO)

SV5PU

SV5DO

SETTINGS LEGEND

SV1 Enable 52a supervision (SV1 = 0 corresponds to no 52a contact
supervision, SV1 = 1 corresponds to 52a supervision enabled)

SV2 Enable Breaker Failure Seal In (SV2 = 0 corresponds to disabling
latching of breaker failure, SV2 = 1 corresponds to latching of breaker
failure)

50P1 Phase Current Detector (Low Set Instantaneous Element)

50G1 Ground Current Detector (Low Set Instantaneous Element)

SV5PU Breaker Failure Timer (Set in Cycles)

SV5DO Drop-Out Timer NOT USED (Leave Set to Zero Cycles)  

Fig. 4. Example Scheme Represented as Logic Gates 

The fourth method is to represent logic as “ladder logic.” 
Ladder logic is commonly used in PLC products and is one of 
the accepted graphical programming languages in the 
IEC 61131 standard. The other accepted graphical method, the 
functional block diagram, is very similar to the logical gate 
representation. For this reason, a discussion of functional 
block diagrams is not included in this paper. Our example 
system of the ladder logic representation is shown in Fig. 5. 

SETTINGS LEGEND

SV1 Enable 52a supervision (SV1 = 0 corresponds to no 52a contact
supervision, SV1 = 1 corresponds to 52a supervision enabled)

SV2 Enable Breaker Failure Seal In (SV2 = 0 corresponds to disabling
latching of breaker failure, SV2 = 1 corresponds to latching of breaker
failure)

50P1 Phase Current Detector (Low Set Instantaneous Element)

50G1 Ground Current Detector (Low Set Instantaneous Element)

SV5PU Breaker Failure Timer (Set in Cycles)

Rung 1

Rung 2

End Rung

(        )OUT1

(        )END

[                             ]SV5PU TON SV5T[       ]SV5

[         ]IN1
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[         ]50P1

[         ]SV1

[         ]50G1

[         ]IN2
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[       ]SV5[       ]SV2

SV5(        )

 

Fig. 5 Example Scheme Represented as Ladder Logic 

A fifth representation is a text list of the settings. For this 
particular scheme, the settings are as follows: 

SV5 = (SV2 * SV5 + IN2) * (SV1 * IN1 + 50P1 + 50G1) 
SV5PU = 10 (pickup time in cycles) 
SV5DO = 0 
OUT1 = SV5T 
Looking at the five different representations, we can com-

pare the different methods and discuss the advantages and 
disadvantages of each. Note that because our simple example 
of a breaker failure scheme did not require any math functions 
or calculations, the documentation of math functions is not 
included as part of our comparison; however, a specific exam-
ple of documenting math functions as a part of logic will be 
provided later in Section III. 

The written method is excellent because it describes the 
way the scheme is intended to function. In addition, a written 
description is easy to generate and does not require much la-
bor or any special software to create. However, without graph-
ics, it is very difficult to visualize logic functioning. 

The equivalent dc schematic of our logic is very easy to 
visualize. You can see in Fig. 3 how the electrical paths that 
involve contacts and coils are a representation of Relay Word 
bits and outputs. An energized coil represents the assertion of 
an output—similarly, the “a” contact changing state would 
represent a logical point or, as in our example, a Relay Word 
bit changing state. However, a schematic does require effort to 
generate; typically another drawing is issued with the settings. 
In addition, some minimal notes describing the settings used 
are necessary in order to capture the intended function. In 
other words, the schematic alone is typically not enough to 
accurately and clearly capture the intended function of the 
scheme.  

The logic gate representation, like the dc schematic, is very 
easy to visualize. Logic gates are commonplace in the micro-
processor and microcontroller industry and are now typically 
part of most electrical engineering and technician curricula. 
For example, in Fig. 6, one can clearly see how the logical 
states transition from left to right across the diagram. Often, to 
capture the assertion and deassertion of inputs and outputs in 
time, a timing diagram may be drawn. 
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Fig. 6. Visualizing Logical Paths and Timing Diagrams 

The logic gate representation, in some cases, requires effort 
to generate; however, in many cases, software tools are avail-
able to either generate a logic diagram based on settings or 
create logic schemes using the graphical interfaces, as shown 
in Fig. 6. 

Like the dc schematic, often a logic diagram alone is not 
adequate to clearly represent a system’s intended function, and 
either notes or a separate functional description may be 
needed. Another disadvantage is that, while the logic gate 
symbology has been present and very commonplace since the 
advent of transistor and discrete logic devices, many in the 
power industry may not be familiar with the symbology. The 
concepts of Boolean algebra, represented as AND, OR, and 
NOT gates, may not be as familiar as coils and contacts. 

For the ladder logic representation, the scheme can be 
visualized as well. One disadvantage of representing logic in 
this form is that the logic is really specific to the PLC device 
used. Microprocessor-based relays, communications proces-
sors, and other logical processors are not easily represented 
with ladder logic. Another disadvantage is that the ladder logic 
representation implies an order of processing. Logical evalua-
tion is carried out in time from the top of the ladder logic dia-
gram on the first “rung” to the end “rung.” This process is 
referred to as “the scan.” Use caution when representing a 
scheme as ladder logic, so the order in which the devices 
evaluate logic match the order specified on the ladder logic 
diagram. It may be difficult to determine the order in which 
the logic evaluation occurs in sophisticated relays with sepa-
rate protection logic and automation logic processes.  

The final method, which is to simply print or document the 
settings, has some disadvantages compared to the other meth-

ods. It is difficult for even those familiar with a particular de-
vice to visualize logic from a settings printout. Printouts do 
not give an overview of the scheme as a whole. For example, 
if a particular protection or control scheme involved multiple 
devices, this method of documentation would involve trying to 
piece together printouts from those different devices. Another 
disadvantage to this method is that it offers very little assur-
ance of how a scheme was intended to function. Although the 
capability to attach or append comments to settings, similar to 
commenting in computer programming language, is growing, 
it still does not capture the intended function of the entire 
scheme like a written description does. 

The printout method has one advantage; often the settings 
are stored as a computer file. Either the electronic file or 
printout serves as documentation of exactly how the relay or 
controller was programmed. The other methods are not di-
rectly related to how the device is set. Consequently, any 
changes in logical settings or programming will necessitate 
that the drawings (either logic gate, equivalent dc, or ladder 
logic) be updated and/or their written description revised. The 
importance of maintaining these documents causes some to 
argue that the settings files for the device should be all that is 
used for documentation, and any tools needed to aid in visual-
izing logic should be included as part of the software. While 
this is certainly a good point, consider who will have the soft-
ware. Integration technicians commonly carry computers, but 
not all relay technicians or plant electricians may have easy 
access to a laptop with the necessary software. In addition, the 
visualization tools associated with many devices are typically 
only compatible with one manufacturer’s device. So when 
there are multiple devices from different manufacturers, even 
the best software visualization tools will not give a complete 
picture like a drawing and/or description.  

III.  DOCUMENTING ADVANCED FUNCTIONS 
Because the breaker failure example did not require any 

math, we will use another simple example to illustrate how a 
logic scheme that does require the use of math functions can 
be documented. In this case, use programmable logic to com-
pare the measured single-phase reactive power and trigger an 
alarm when the threshold is exceeded [3]. A written descrip-
tion of the logic follows: 

The reactive power alarm logic should function as fol-
lows: The measured reactive power, averaged over a ten-
cycle period, should be compared to a threshold setting 
stored in the numerical analog math variable, AMV054, 
and should start a timer. If the measured power exceeds 
the set threshold for longer than 60 cycles, the output 
contact, OUT101, should assert, and this output will be 
monitored. 
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Similarly, a representation of the logic using logic gates 
and communications symbology is shown in Fig. 7. 
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Fig. 7. Power Element Logic Operation 

Finally, the printout of the settings, or code, follows: 
PSV41 := PMV01 > 40 AND LIAFM > AMV056 OR 
PMV01 > 10 AND LIAFIM > AMV057 
PSV47 := (PMV41 > AMV054) AND PSV41 
PCT03IN := PSV47 
PCT03PU := 60 # pickup time in cycles 
PCT03DO := 0 # dropout time not used 
OUT101 := PCT03Q 

Although math functions are included in this example, the 
overall conclusions are very similar. The written description 
still captures the intended function. The graphical representa-
tion still allows the settings and scheme to be viewed, and 
logical paths as well as mathematical operations can be high-
lighted and tracked, making testing and troubleshooting easier. 
Finally, the settings, or code, while not a good visual tool, 
provide a record of how the settings are programmed in the 
device. Several important aspects of logic that involve math 
functions include: 

• Commenting on both drawings and settings to clarify 
intended function; 

• Ensuring that math errors (division by zero, etc.) are 
either handled or avoided; 

• Making sure that when measured values are used as 
part of calculations, units are consistent. (Is the quan-
tity given in V or kV?) 

IV.  REAL-WORLD EXAMPLES 
Because of the lack of proper documentation (discussed 

above) several cases of misoperations have occurred in the 
field. This section investigates a few of those misoperations 

and discusses how proper documentation could have pre-
vented them. 

A.  Recloser Control Event 
A recloser control was configured to protect a feeder. The 

reclosing element in the control was set to operate with three 
shots. The trip equation was TR = 50P1 * !SV10 + 51PT + 
51NT. Therefore, the control was intended to trip for an in-
stantaneous phase overcurrent element pickup or the timeout 
of either a phase or neutral inverse-time overcurrent element. 

The control was configured with a cold load pickup 
scheme, using the variable SV10. When the recloser was open 
for a pre-set amount of time, the instantaneous overcurrent 
element (50P1) was disabled and the phase inverse-time over-
current element pickup was adjusted from 3.10 amperes sec-
ondary to 35 amperes secondary. The curve and time dial of 
this element were not affected by the cold load pickup 
scheme. 

A C-G fault occurred on the system, seen correctly by the 
control, as shown in Fig. 8. 
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Fig. 8. Recloser Control Event 

The event report shows that an instantaneous phase over-
current element asserted. The “C” above the assertion of the 
50P element indicates that the C-phase current exceeded the 
pickup threshold for one of the instantaneous phase elements 
in the control. Three separate instantaneous phase overcurrent 
elements were set in the control, only one of which, 50P1, was 
set to trip the recloser. Fig. 9 shows a portion of the internal 
logic in the control associated with the Level 1 instantaneous 
phase overcurrent element. 

67P1

67P1T

Torque Control

Directional Control

(asserted to logical 1 
continuously if E32 = N)

50P1

Setting
67P1TC

67P1D

0

 
Fig. 9. Instantaneous Directional Overcurrent Logic 

The 50P1 element output was combined with directional 
and torque control inputs to create the output 67P1. Therefore, 
returning to Fig. 8, we see that the 67P3 element asserted, as 
indicated by the “3” above the assertion point of the 67P ele-
ment. If 67P1 had asserted, a “1” would have appeared over 
the assertion point instead. 
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However, Fig. 8 shows both the phase and ground inverse-
time overcurrent elements asserted. Both elements have a time 
delay associated with them. The “T” at Cycle 10 over the 51N 
element indicates that 51N timed out first, causing the trip. 

At Cycle 10, the digital OUT 12 asserted as well, indicat-
ing that the output contact, OUT101, on the control closed. In 
the event report, the digital OUT 12 represented both OUT101 
and OUT102. A “1” marked the assertion of OUT101, and a 
“2” marked the assertion of OUT102. When both inputs as-
serted at the same time, a “b” was placed above the digital 
OUT 12. The control settings showed that OUT101 = TRIP, 
which is a digital element in the control that asserts when the 
TR equation is a logical 1. 

Approximately four cycles later, the overcurrent elements 
deasserted, along with IN101, as shown by the deassertion of 
the IN 12 digital. The recloser 52A contact was wired to 
IN101 on the control. Therefore, we know that the recloser 
opened, and everything to this point operated as expected. 

However, Fig. 8 shows that at 14.5 cycles into the event, 
the reclosing function went directly from the reset state to the 
lockout state. The control was programmed to make three re-
closing attempts before going to lockout, so why did it not do 
so? 

A logic equation in the control initiates reclosing, causing 
the control to go from the reset state to the cycle state. This 
transition would be shown in the event report as a “C” for the 
79 digital. This did not occur during the event, meaning that 
reclosing was not initiated. This explains why the control went 
to the lockout state. Its internal logic, documented in the re-
lay’s instruction manual, caused the control to go to lockout 
when the breaker opened without a reclose initiate command 
being issued. 

Why didn’t the control issue a reclose initiate command? 
The answer is found in the reclose initiate equation for the 
control: 79RI = 50N1. This is an instantaneous neutral over-
current element available in the control. Fig. 8 does not show 
this element because it did not assert. The reason is that the 
control did not have any instantaneous neutral overcurrent 
elements enabled. 

The reclose initiate command should have been set to 
TRIP. The inclusion of the instantaneous overcurrent element, 
50P1, in the drive-to-lockout equation (79DTL) indicates that 
the control was expected to enter the cycle state when a trip 
occurred. The instantaneous element was to be used to force 
the control into the lockout state after the TRIP initiated re-
closing for high-current faults.  

In this case, the logic setting was entered incorrectly in the 
control. It is obvious that the reclosing element was not tested 
during the control’s commissioning, as this error would have 
been caught. Had the logic been properly documented, it 
would have been clear that reclosing needed to be tested to 
completely commission the control. 

A documentation scheme that would have assisted in the 
commissioning of this control follows: 

The control is set as a three-shot recloser. When a trip 
occurs, the relay should enter the reclosing cycle state. 
The control uses setting 79RI, set to TRIP, as a trigger to 

initiate reclosing. The initiation is supervised by the re-
closer status, which is connected to IN101.  
Once initiated, the first open-interval timer will begin tim-
ing once the breaker is open (IN101 deasserts) and no 
current is flowing (51P, 51N, and TRIP have deasserted). 
The open-interval times are 30, 120, and 300 cycles for 
the first, second, and third open intervals, respectively. 
The control will automatically go to the lockout state if 
IN103 deasserts (connected to a 79 ON/OFF switch), 
50P1 asserts, or a manual open occurs (via a serial port 
OPEN command). 
The reset time is 300 cycles for the control to enter the re-
set state from either the cycle or the lockout state. 

If this document had been available to the crew members 
who commissioned the control, they would have known that 
reclosing was being used, and they would have understood 
how it should operate. As a result, they would have known 
that it was being initiated with a logic equation and that the 
logic must be tested for accuracy. Had they tested it, they 
would have found the settings error, and this misoperation 
would not have occurred. 

B.  Line Relay Event 
This relay served as backup protection on a 69 kV line. The 

relay had phase distance elements, one for phase-to-phase and 
one for three-phase faults and neutral overcurrent elements, 
for ground faults, set to provide backup protection for the ad-
jacent line. An A-G fault at approximately 95 percent of the 
line produced the event shown in Fig. 10. 
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Fig. 10. A-G Fault at 95 Percent of the Line 

When protecting a line with distance elements, multiple 
zones are required. Zone 1 is typically set to see 80 percent of 
the line impedance. This element should operate instantane-
ously. Zone 2 is set to see past the remote line terminals, pro-
viding coverage for the remaining 20 percent of the line plus 
backup protection for the adjacent line. This relay should be 
set with a time delay in order to coordinate with the Zone 1 
relay on the adjacent line. 

The event was triggered at Cycle 4, when the phase-to-
phase distance element, 21P, asserted. Note two problems 
with this event: The phase distance element asserted for a line-
to-ground fault, and the relay tripped instantaneously. 

The assertion of the phase distance element for a phase-to-
ground fault can be explained by a known behavioral charac-
teristic of some phase distance elements when they are ex-
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posed to certain fault conditions. Phase distance elements, 
such as the one in this relay, may operate for a close-in line-
to-ground fault with high fault resistance if the relay is applied 
on a line with a strong source [4] [5]. 

From the settings, the source impedance ratio (SIR) was 
0.2, indicating a strong source. The reach of the phase distance 
element was set to 348 percent of the line impedance to allow 
the relay to cover the adjacent line. The fault occurred at ap-
proximately 95 percent of the line, making it a relatively 
close-in fault. The final condition of high fault resistance was 
also met, as a boom truck caused the fault. Therefore, consid-
ering the conditions, the operation of the phase distance ele-
ment is not a surprise. But the element operation explanation 
still does not account for the instantaneous trip. The relay was 
supposed to provide backup for the adjacent line and, hence, 
should have had a time delay. The setting of 100 cycles, or 
1.67 seconds, shows that a time delay was intended for this 
element. So why was there an instantaneous trip? 

The relay logic must be investigated to determine the an-
swer. The trip logic equation, MT, was set to 66 hexadeci-
mals. The logic was set using a mask, where the eight bits 
corresponded to eight elements in the relay. Fig. 11 shows the 
elements in the relay and which elements are included in a 66-
hexadecimal mask.  

50L
0

ZABC
1

ZP 67NP 67NT 67NI 67DT
1 0

ZPT
0 1 1 0

6 6  
Fig. 11. MT Logic Mask 66 Hexadecimal 

A mask of 66 hexadecimals caused the assertion of ZABC, 
ZP, 67NT, and 67N1 to issue a TRIP command. These ele-
ments are described in Table I. 

In this event, the ZP element asserted and issued the trip. 
This is the pickup of this element and not the time delay out-
put, ZPT. Therefore, any time the phase-to-phase distance 
element asserted, the relay issued an instantaneous trip. 

This event proves that the logic was not understood and, 
thus, not tested correctly during commissioning. Proper docu-
mentation would have made the logic more comprehensible 
and simplified testing. 

In this case, a logic diagram would have made it clear that 
the phase-to-phase element would trip the breaker without a 
time delay. Fig. 12 shows a logic diagram for the MT logic 
equation. 

TRIP OUTPUT 
CONTACT

pu
do

50L

MT 
BIT 7

MT 
BIT 6

MT 
BIT 5

ZABC

ZP

MT 
BIT 3
67NP

MT 
BIT 1
67NI

MT 
BIT 4

pu
do

MT 
BIT 2

pu
do

MT 
BIT 0

67DT

67NT

ZPT

TRIP

 
Fig. 12. MT Logic Diagram 

Table I gives a description of each element shown in 
Fig. 12. This table can be found in the relay’s instruction man-
ual. 

TABLE I: 
RELAY ELEMENT BIT DESCRIPTIONS 

50L Phase fault current supervision 

ZABC Three-phase mho element 

ZP Phase-to-phase mho element 

ZPT Phase or three-phase fault timeout 

67NP Residual time-overcurrent element 

67NT Residual time-overcurrent trip 

67NI Residual instantaneous overcurrent  
(directional or nondirectional) 

67DT Definite-time ground timeout 
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To determine which elements are enabled, use the setting 
MT, and convert from hexadecimal to binary. The instruction 
manual for this relay has a table similar to Table II. Some cal-
culators also provide this functionality. Then match the bits to 
the elements, with the 0 bit on the right-hand side. 

TABLE II: 
HEXADECIMAL TO BINARY CONVERSION 

Hexadecimal Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 

C.  Fast Bus Trip Scheme Event 
A fast bus trip scheme is a simple, inexpensive method of 

protecting a bus. The scheme uses the main and feeder relays 
that already exist to also protect the bus. The system configu-
ration for this event is shown in Fig. 13. 

CTR
240

Main Trip

Bus 2

Trip & 
Close

Output Contact 
A2

Input IN6

Block
Trip

PTR
120

F1

SEL-251C

MAIN

FEEDER

F2

 
Fig. 13. Fast Bus Trip Scheme One-Line Diagram 

For a fault at F2, the feeder relay detects fault current and 
sends a blocking signal to the main relay. The main relay is set 
with a small delay to allow time for the block trip signal to 
arrive. 

For a fault at F1, the feeder relay does not detect any fault 
current. Therefore, it does not send the blocking signal to the 
main relay, allowing the main relay to trip with a small time 
delay for bus faults. The use of this blocking signal provides 
fast clearing times for bus faults, where coordination of time 
overcurrent elements would further delay the main relay trip. 

The feeder relay in this event is set with a trip equation of 
TR = 51T + 51NT. The elements in this equation correspond 
to the timeout of the phase and ground inverse-time overcur-
rent elements, respectively. The relay is also programmed with 
output contact A2 to send the blocking signal. The logic equa-
tion for this output is A2 = 50L + 50NL, which are phase and 
ground instantaneous overcurrent elements, respectively. 
These elements are set to match the fast bus trip scheme ele-
ments in the main relay. 

The main relay is set as follows: TR = 51T + 51NT + V, 
where 51T and 51NT provide backup protection to the feeder. 
The V is a logic element programmed for the fast bus trip 
scheme. It is equal to E*!L, where E = ST and L = IN6. ST is 
the timeout of logic variable timer S, which is equal to 
50NH + 50H. The timer is set with a three-cycle pickup delay. 
IN6 is the input wired to receive the blocking signal from the 
feeder relay. 

For this event, a fault occurred on the feeder, but the main 
relay tripped. Why? 

Both relays detected the fault and captured event reports. 
Fig. 14 shows the event reports from both relays combined, 
where Event 1 is from the main relay and Event 2 is from the 
feeder relay. 

1_50LP p T
1_IN 1&2 2
1_IN 5&6 5
2_50LP T
2_51P p
2_OUT 1&2 2

-5000

0

5000

-5000

0

5000
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_I
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2_
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 2
_I

B
 2

_I
C

D
ig

ita
ls

Event Time (Sec)  06:56

1_IA 1_IB 1_IC 2_IA 2_IB 2_IC

 
Fig. 14. Fast Bus Trip Scheme Event 

The event reports confirmed that the fault was on the 
feeder. Fig. 14 shows that the feeder relay 51P element was 
timing to trip. The fast bus trip scheme in the feeder relay also 
functioned as expected. The 50L element asserted at the same 
time as the 51P element, and as a result, OUT2 asserted, send-
ing the block signal to the main relay. 

On the main relay, IN2 asserted approximately 5 ms later. 
However, the main relay monitored IN6 for the block input 
signal, which did not assert, leading to the fast trip. The 
breaker opened approximately 50 ms after the end of this 
event.  

Because the scheme logic was not properly documented, 
the commissioning of these relays did not involve testing the 
entire scheme, allowing this wiring error to go undetected. 
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In this case, a dc schematic that included the logic inside 
the relays would have assisted in commissioning this scheme. 
Fig. 15 shows a dc schematic for this case. 

50L 50NL

A2

A2

IN6

IN6

L S

MAIN 
TC

50NH V50H

62

S

A3

TRIP

V

E

L

51T 51NT

MAIN 
52A

FDR 
RELAY

MAIN 
RELAY

A3

TRE

ST

 
Fig. 15. Fast Bus Trip Scheme DC Schematic 

Seeing the logic in the relay combined with the wiring be-
tween the relays would have made testing this scheme simple. 
Had the scheme been fully tested, instead of only individual 
elements, this error would have been discovered. 

D.  Ground Distance Element Testing 
This example occurred while testing the ground distance 

element of a line protection relay. The relay did not have a 
breaker status input wired to it. The phase distance and ground 
overcurrent elements tested as expected, but not the ground 
distance element. The technician applied a fault for over one 
minute, and the instantaneous Z2G element did not operate. 

Initially, the lack of breaker status to the relay was thought 
to be the cause. Investigation of the Z2G logic showed that the 
Z2G element is blocked if the relay detects a three-pole open 
(3PO) condition. The A-phase Z2G logic also requires either 
SPO (single-pole open condition) or FSA (A-phase-to-ground 
fault-detection logic) to assert. Additionally, SPOA (A-phase 
single-pole open condition) must remain deasserted. These are 
the only elements used in the Z2G logic that are connected to 
the breaker status. Fig. 16 shows the Z2G logic diagram from 
the relay’s instruction manual. 

SPO

FSA

MCG2

MAG2
MBG2

Z2GT

Z2G

(Setting)
Z2GD

0

DIR2=F
(Setting)

VPOLV
3PO

PARA
ILOP
32QF
50G2

50AL2
21AG2
SPOA

 
Fig. 16. Z2G Logic Diagram 

Does the pole-open logic require the breaker status to oper-
ate correctly? Fig. 17 shows the logic diagram for the relay’s 
pole-open logic. 

SPOA

SPOB

SPOC

SPO

3PO

ESPO = Y
(Setting)

52AA

52AB

52AC

(Setting)
Reset

0

SPOD

3POD

0

(Setting)
50CL

(Input) 52AC2
(Input) 52AC1

50BL

50AL

(Input) 52AB2
(Input) 52AB1

(Input) 52AA2
(Input) 52AA1

 
Fig. 17. Pole-Open Logic Diagram 

The diagram shows that both the SPO and the 3PO condi-
tions are determined from the same inputs. For 3PO to assert, 
the breaker status must be deasserted for each phase, and the 
current must be below the pickup of the phase overcurrent 
element 50L on all three phases, indicating that no current is 
flowing. With no breaker status input to the relay, the 3PO 
logic operates only on current input. The single-pole logic 
operates in the same fashion, but on a per-phase basis. Thus 
the logic can operate correctly without a breaker status input. 

The final piece of this logic diagram is a dropout timer. 
Once current returns and 50L asserts, 3PO remains asserted 
for 3POD cycles. This timer accounts for pole scatter that may 
exist between the breakers on the three phases. A typical set-
ting is three cycles. In this relay, 3POD was set to the maxi-
mum of 8,000 cycles or 2.22 minutes. 

Because the current was stopped between tests, the 3PO 
element asserted. When the new test started, the element was 
blocked for 2.22 minutes. The other elements that tested cor-
rectly were not blocked by the 3PO element. 

In this example, the erroneous setting resulted from not un-
derstanding how the relay operates. Figs. 16 and 17 show that 
the logic was properly documented in the relay’s instruction 
manual. Therefore, this example shows the importance of us-
ing the logic documentation provided. Had the above logic 
diagrams been used when setting the relay, the settings error 
could have been avoided. 

V.  CONCLUSIONS 
As the logic required to implement protection and control 

schemes is being transferred from physical wiring and auxil-
iary relays to programming inside microprocessor-based de-
vices, it is extremely important that standards are developed 
on the documentation of this logic.  

The complexity of the logic, as well as the diversity of the 
functions being performed, is continually increasing. This is 
causing setting, testing, and troubleshooting schemes and de-
vices to become more difficult, and as a result, sections of 
logic are missed in testing, and incorrect settings are entered.  
Therefore, in order to simplify the understanding of logic 
schemes and to ensure complete and accurate testing, it is es-
sential that companies develop standards for documenting 
logic that allow the schemes to be understood and visualized. 

This paper has presented several methods used to docu-
ment logic. In some cases, a combination of the methods dis-
cussed may be required. 
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