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The Impact of Synchronous Generators 
Excitation Supply on Protection and Relays 

Gabriel Benmouyal, Schweitzer Engineering Laboratories, Inc. 

Abstract—Synchronous generators have two types of 
operational limits: thermal and stability. These limits are 
commonly defined in the P-Q plane and, consequently, the point 
of operation of a generator should not lie beyond any of these 
limits. The functions that prevent the generator from infringing 
into the forbidden zones are known as limiters and are normally 
embedded in the generator automatic voltage regulator (AVR). 
The combination of these limiters and the nature of the AVR 
itself will have an impact on some generator protective functions 
like the loss-of-field (LOF) or out-of-step protection. The purpose 
of this paper is not to review generator protection principles, 
because this has been done extensively elsewhere, but rather to 
revisit the basic physical and engineering principles behind the 
interaction between a synchronous generator AVR and its 
associated limiters and some of the generator protective 
functions. We review the technology of the limiters embedded in 
a generator AVR. In LOF coordination studies, the steady-state 
stability limit (SSSL) used most often has been traditionally 
based on a generator system with a constant-voltage excitation 
(or manual SSSL). In this paper, we discuss the impact of the 
excitation system with an AVR or a power system stabilizer 
(PSS) on the generator stability limits. A new numerical 
technique is introduced to determine the stability limits of a 
generator system where the excitation supply could be regulated 
using either an AVR or an AVR supplemented by a PSS. 

I.  GENERATOR THERMAL AND  
STEADY-STATE STABILITY LIMITS 

There are three types of thermal limits [1] [2] [3] [4] in a 
generator: the armature current limit that is directly related to 
the generator rated power, the field current limit, and the end 
core limit. The steady-state stability limit is a direct 
consequence of the power transfer equation between a 
generator and the network that it is supplying. These different 
limits are reviewed in the next section. 

A.  Generator Thermal Operational Limits 
In Fig. 1, the three types of thermal limits found on a 

generator are represented. Assuming that the power is 
measured in per unit (pu) values, a half-circle with unit radius 
represents the generator theoretical maximum capability 
(GTMC). This limit is caused by the armature current ohmic 
losses and corresponds simply to the generator MVA rating.  

The end core limit is a consequence of the end turn leakage 
flux existing in the end region of a generator. The end turn 
leakage flux enters and leaves in a direction perpendicular to 
the stator lamination. Eddy currents will then flow in the 
lamination and will be the cause of localized heating in the 
end region. In overexcited mode, the field current is high, and 
as a consequence, the retaining ring will get saturated so that 
the end flux leakage will be small. In the underexcited mode, 
the field current will be reduced and the flux caused by the 
armature current will add up to the flux produced by the field 
current. This will exacerbate the end region heating and will 
severely limit the generator output. The end core limit depends 
upon the turbine construction and geometry. The limitation 
could be particularly severe for gas turbines, yet could be 
nonexistent for hydro units as shown in Fig. 1; steam units 
would have a limiting characteristic in the middle [1]. 

The field and armature current limits are dependent upon 
the generator voltage. All three limits are dependent upon the 
generator cooling system. For hydrogen-cooled generators, the 
most tolerant limit will occur at the maximum coolant 
pressure (see Fig. 2). 
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Fig. 1. Generator operation thermal limits 
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Fig. 2. Capability curve at nominal voltage of a 312 MW, 347 MVA, 20 kV, 
0.9 PF, 3600 rpm, 60 Hz, hydrogen-cooled steam-turbine generator 

B.  Classic Steady-State Stability Limit of Round Rotor 
Generator 

The steady-state stability limit (SSSL) of a generator 
determines the region in the P-Q plane where the generator 
operation will be stable in a normal mode of operation. 
Normal mode of operation is defined here as a mode where 
only small and minor disturbances are occurring on the 
network, as opposed to major disturbances such as faults, 
significant addition of load, or loss of generation. The SSSL is 
used by protection engineers in some coordination studies and 
for the adjustment of the underexcitation limiter (UEL) 
function in the automatic voltage regulator (AVR) [1] [5]. 
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Fig. 3. Elementary generator system 

The manual SSSL is derived for a generator system 
corresponding to Fig. 3, where the generator supplies its load 
to an infinite bus through a line with impedance Xe. The 
generator excitation is assumed to be supplied with a constant 
voltage. The power transfer equation for a salient-pole 
machine is provided in steady state by the conventional 
formula: 
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In this last equation, the angle δ is the angle between the 
generator internal voltage Eq and the infinite bus voltage Es. It 
is a well-established principle that the generator stability limit 

is reached when the derivative of the real power P with respect 
to the angle δ becomes equal to zero. 
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Trying to solve (2) will lead to nonlinear equations, and 
there is no algebraic equation for the SSSL. The problem can 
be simplified, however, by considering a round-rotor machine, 
for which Xd equals Xq equals the synchronous reactance Xs 
so that the power transfer equation becomes: 

 δ
+

= sin
XX
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P
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sq  (3) 

In this case, the stability limit is reached when the angle δ 
reaches the value of 90 degrees. A circle with a center and 
radius, as shown in Fig. 4, provides the stability limit under 
manual operation in the P-Q plane [1]. 
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Fig. 4. Manual SSSL circle for generator system with constant excitation 

Fig. 5 in the per-unit P-Q plane provides a better picture of 
the practical issues associated with the manual SSSL. A half-
circle of radius 1 and center (0,0) has been drawn and 
represents the already defined GTMC limit. The generator 
operating point will normally be inside the GTMC circle or on 
its circumference in the allowed region, so that the generator 
operation does not exceed the generator ratings. 

Assuming the generator terminal voltage Et to be 1.0 pu, 
the intersection of the manual SSSL curve with the imaginary 
axis is equal to –1/Xd. This indicates that for a generator with 
Xd greater than one, the manual SSSL will automatically 
infringe into the GTMC circle and the generator will become 
unstable when it becomes heavily underexcited. The 
intersection with the real axis is at point 1/√(Xd+Xe). This 
indicates that as the value of the external line impedance Xe 
increases, the manual SSSL becomes closer to the GTMC 
circle. With both Xd and Xe being equal to one, the SSSL and 
the GTMC circle coincide. There are high values of Xe for 
which the generator could not supply its rated power without 
becoming unstable: the manual SSSL infringes inside the 
GTMC limit. 
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Fig. 5. Manual SSSL with respect to the GTMC circle 

    1)  Impact of the Saliency on the Manual SSSL 
As already noted, when saliency is taken into account, 

there is no algebraic equation available to plot the manual 
SSSL circle. This is probably the reason why saliency is never 
taken into account. However, the SSSL of a salient pole 
generator can be determined numerically by solving 
numerically (2). A program has been written to solve 
numerically (1) and (2). Fig. 6 shows the SSSL of both a 
salient pole and round-rotor generators with the indicated 
characteristics. The difference between the two curves lies 
only in the area close to the imaginary axis where the point of 
intersection is at point –1/Xq for the salient pole generator 
rather than –1/Xd for the round-rotor generator. Therefore the 
difference between the two SSSL curves should be considered 
as negligible for practical purposes. 
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Fig. 6. Impact of the saliency on the manual SSSL 

II.  THE SYNCHRONOUS GENERATOR EXCITATION SYSTEM 

A.  The Nature of the Generator Excitation 
The primary function of a synchronous generator excitation 

system is to regulate the voltage at the generator output. In a 
synchronous machine, the rotating magnetic field necessary to 
induce voltage in the stator windings is produced by the dc 
current that circulates in the rotor or field winding. A 
synchronous generator excitation voltage is the voltage 
measured at the generator terminals when the load current is 
equal to zero. Its root-mean-square (rms) value is proportional 
to the current flowing in the rotor winding: 

 
2

iLE faf
f

ω
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This dc current flowing in the rotor winding is produced by 
the excitation system. At steady state, it is equal to the dc 
excitation voltage supplied to the rotor winding divided by the 
winding resistance: 

 
f

fd
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The field winding has a self-inductance Lff. A fundamental 
characteristic of a synchronous generator is the direct-axis 
open-circuit transient time constant Tdo', the ratio of the field 
self inductance over its dc resistance: 

 
f

ff'
do r

L
T =  (6) 

This time constant, which has the value of a few seconds, 
typically indicates that the voltage at the synchronous 
generator terminals cannot be changed instantaneously; in 
other words, the current in the field winding varies according 
to the field open-circuit time constant. 

B.  The Automatic Voltage Regulator 
This paper focuses on present day excitation static systems,  

as shown in Fig. 7. In these systems, the input power for the 
static exciter is commonly derived from the machine 
terminals. A step-down transformer (excitation transformer 
PPT) feeds a three-phase controlled rectifier bridge that 
converts ac voltage into dc voltage. The dc output is 
connected to the machine field winding by brushes and 
collector rings. 

In automatic mode, a voltage set point is introduced in the 
summing point of the AVR. This voltage set point is 
compared to the generator output voltage measurement and 
the comparison produces an error signal that adjusts the timing 
of the firing of the silicon-controlled rectifiers until the output 
voltage becomes equal to the voltage set point. In steady state, 
the generator output voltage is equal to the voltage set point. 
In manual mode, either the level of the generator output 
voltage or the field current level (as shown Fig. 7) is under the 
manual control of the operator. Although still applied on some 
old machines, manual control of the excitation systems is not 
recommended by bodies like the North American Electric 
Reliability Corporation (NERC), given the drawbacks and 
shortcomings that this mode of operation will entail. 
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Fig. 7. AVR principle with self-exciting generator 

Fig. 8 represents the generic model of a static excitation as 
provided among others by [11]. Such models are intended as 
guidelines for stability studies. Vref is the voltage setting, and 
Vc is the voltage measurement from the generator terminals. 
The difference between these two quantities constitutes the 
basic error signal. Provision is made for additional error 
signals at the AVR summing point. Vs is the error signal from 
a power system stabilizer (PSS). VUEL is the error signal from 
an underexcitation limiter to be described later.  

Vref

EFD

Terminal voltage  Vc

Ke

1+sTe

 

Fig. 8. Simplified representation of a static excitation system 

In the excitation system of Fig. 8, an auction is taking place 
between some signals; in other words, a high-voltage (HV) 
gate will pick out the input signal that has the highest level 
when a low-voltage (LV) gate picks out the signal that has the 
smaller one. When used, this auctioneering action allows some 
signals to take control of the AVR loop. As an example, 
following the AVR summing point, if the error signal from the 
UEL circuit is larger than the error signal from the summing 

point, priority is given to the UEL signal that takes control of 
the AVR loop. The output of the AVR is the voltage supplied 
to the field circuit. This voltage is bounded and is of primary 
importance. The maximum voltage supplied by the excitation 
system is commonly called the AVR ceiling. In small signal 
analysis, as described later, a static AVR can simply be 
represented by a gain with a time constant as shown in Fig. 9. 

III.  PROTECTIVE LIMITERS EMBEDDED IN THE AVR 
Generator thermal protective functions are embedded in the 

AVR by way of limiters. Using limiters means that these 
functions do not trip the generator, but keep it away from 
operating outside the boundaries indicated in Fig. 1. There are 
usually three limiters that can be implemented in the AVR: the 
underexcitation (or minimum) limiter (UEL or MEL), the 
overexcitation limiter (OEL), and the volt/hertz limiter (VHL). 
The UEL prevents the generator from operating below the end 
core limits shown in Fig. 1. It could also, depending upon 
which is the most constraining, prevent the generator from 
operating below the SSSL. The OEL prevents the generator 
from operating above the field limit of Fig.1. The VHL 
prevents the generator from operating above a volt/hertz 
maximum threshold. The next section presents examples of 
means for implementing these different limiters. 

A.  The Underexcitation Limiter Implementation 

    1)  The Control of the Generator Reactive Power 
Consider the system in Fig. 10 representing a generator 

connected to an infinite bus through an impedance Ze. Assume 
that the infinite bus has unity voltage, the impedance is 
15 percent and the generator voltage takes the three values 
0.95, 1.0, and 1.05 pu. The circle diagram of Fig. 11 
represents the relationship between the real and reactive power 
at the generator for all three cases. For each case, the circle 
has the next coordinates for the center and next radius value: 
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Fig. 9. IEEE type ST1A excitation system
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Fig. 10. Generator supplying an infinite bus 

Examining Fig. 11, one can see that when the generator 
voltage is above the system voltage, the generator produces 
positive volt-amperes reactive (VARs). When the generator 
voltage is equal to the system voltage, the generator has a 
power factor close to one (it does not produce any VARs at 
all). Finally, when the generator voltage is below the system 
voltage, the generator will absorb VARs. 

This observation indicates that when a generator goes 
underexcited to the point that the negative VARs might get 
below the generator capability limit, the solution is to increase 
the generator output voltage until the absorbed VARs get 
above the limit. This is precisely what a UEL will do by 
producing a positive error signal that will be supplied to the 
AVR summing point when it requires the generator AVR to 
increase the output voltage. 
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Fig. 11. Control of the generator reactive power by its output voltage 

    2)  The Underexcitation Limiter Embedment in the AVR 
Consider the UEL model (type UEL2) as shown in Fig. 12. 

In this model, k1, k2, KUP, KUV and KUQ are settings 
introduced by the user. TUV, TUQ and TUP are the circuit time 
constants that determine its dynamics. This circuit comes from 
the recommended models in [8]. The UEL static or steady-
state characteristic can be determined by setting the Laplacian 

operator “s” to zero and by looking at the condition when the 
error signal from the UEL circuit will be zero [1]. This 
condition is provided by: 

 0KUQEQKUVEKUPEP 1k
t

2k
t

1k
t =−− −−  (8) 

Expressing Q as a function of P, we obtain: 

 
KUQ
KUVE

KUQ
KUPPQ )2k1k(

t
+−=  (9) 

Equation (9) is the equation of a straight line as shown in 
Fig. 13 and represents the UEL characteristic in the P-Q plane. 
When the generator operating point gets below the line 
segment, the UEL will produce a positive error that will be 
supplied to the AVR summing point. This positive error will, 
in turn, have the effect of increasing the voltage setting or 
AVR voltage reference so that the generator terminal voltage 
will also increase until the generator operating point goes 
above the UEL limit straight-line characteristic. Later, we will 
show how the exponent (k1 + k2) allows having coordination 
with the loss of field (LOF) function in the P-Q plane that is 
not affected by the generator voltage. 
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Fig. 12. Example of a type UEL2 straight line underexcitation limiter 
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Fig. 13. Type UEL2 straight line characteristic 

Reference [8] describes two additional UEL characteristics, 
one circular (type UEL1) and one multisegment straight line 
(type UEL3), working on the same principles as type UEL2. 

B.  The Overexcitation Limiter Implementation 
The OEL purpose is to essentially limit the field current 

value so that the generator operating point does not go above 
the field current limit of Fig. 1. Fig. 14 provides an example 
[18] of an OEL providing an error signal to the AVR summing 
point. 

When the field current Ifd is below some pickup value, 
shown here to be 1.05 times the field current at full load, a 
negative signal through path “a” will drive the integrator (1/s) 
to its lowest value – A and this will provide a null error signal 
to the AVR summing point. 
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When the field current goes above the pickup value, a 
positive signal through path “b” will be supplied to the 
integrator so that a negative error will be supplied to the AVR 
summing point. This negative error signal will reduce the field 
voltage Efd until the field current goes below the pickup value. 
For a step current increase above the pickup, [18] provides the 
time for the field current to start to be a limiter: 

 
)ratedI05.1I(GG

At
fdfd32 −

=  (10) 

Equation (10) is the equation of an inverse curve. The 
parameters can be adjusted so that the inverse characteristic 
will coordinate with the generator field capacity that is defined 
as a time-inverse current curve by standards [9]. 

 

Fig. 14. Example of an OEL model 

C.  The Volt/Hertz Limiter Implementation 
Fig. 15 represents an example of a VHL model [2] that will 

provide an error signal to the AVR summing point. This 
example assumes that a measurement of the generator terminal 
voltage Et and frequency “freq” are available to the circuit. 
When the ratio of generator output voltage divided by the 
frequency goes above a maximum volt/hertz threshold, shown 
here as 1.07 pu, the difference is integrated and a negative 
signal is sent to the AVR summing point. The negative signal 
reduces the generator output voltage until the voltage to 
frequency ratio goes below the threshold. When the difference 
becomes negative, the integrator is reset to zero so that the 
error signal becomes null. Therefore, a VHL will change the 
generator output voltage but will have no effect on the 
generator frequency. 

 

Fig. 15. Example of a volt/hertz limiter model 

IV.  THE IMPACT OF THE AVR ON THE  
GENERATOR SYSTEM SSSL 

The only simple formula hitherto available to protection 
engineers for plotting the SSSL of a generator system is for 
the case of a generator with constant excitation. This limit 
type was assumed to be conservative enough that it could be 
applicable without any restriction to generator systems with 
AVR or PSS [5]. In the next paragraphs, we will introduce a 
new technique to derive the small-signal stability limit of a 
generator system with either an AVR or an AVR-PSS 
combination. Before presenting the new technique, we will 

introduce basic notions of small signal analysis (SSA) and 
small signal stability (SSS). 

A.  Fundamental Notions of Generator Small Signal Stability 
Using the Classical Generator Model 

The simplest (and approximate) representation of a 
generator is the so-called classical model [2], consisting of a 
constant voltage source behind the generator transient direct 
axis reactance, as shown in Fig. 16. 

 

Fig. 16. Elementary power network with classical representation of 
generator 

In the per unit system, because the rotor speed is equal to 
one, the power P is equivalent to the electrical torque, and 
they are both provided by the classical power transfer 
equation: 

 0
T

s
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A small increment of the electrical torque around the 
quiescent point of operation can be expressed as: 

 ( )δΔδ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=δΔ

δ∂
Δ

=Δ 0
T

s
'

e
e cos

X
EETT  (12) 

Equation (12) can be otherwise expressed as: 
 δΔ=Δ 1sync KT  (13) 

with K1 equal to: 
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Because the electrical torque variation in (13) is 
proportional to the variation of the generator internal angle δ, 
this electrical torque type is called the synchronous torque. 
Only the synchronous torque is apparent with the simplistic 
classical model of a synchronous generator. In reality, another 
electrical torque exists in a machine that is proportional to the 
speed variation of the machine. This electrical torque is called 
the damping torque and can be expressed as: 
 ωΔ=Δ Ddamp KT  (15) 

The total electrical torque produced by the synchronous 
machine is the sum of the synchronous and damping torques 
and is equal to: 
 ωΔ+δΔ=Δ+Δ=Δ D1dampsynce KKTTT  (16) 
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The dynamic equation of the machine rotor corresponds to 
the acceleration law of the rotating bodies and can be 
expressed as: 

 )TTT(
M
1s dampsyncm Δ−Δ−Δ=ωΔ  (17) 

 ωΔω=δΔ 0s  (18) 

where: 
ΔTm is the variation of the mechanical power input to the 
generator in pu. 
H is the inertia constant in seconds. 
M is the inertia coefficient = 2H in seconds. 
ω0 is the base rotor electrical speed in radians per second 
(377 rad/s). 

Given (13), (15), (17), and (18), the next block diagram 
shown in Fig. 18 represents the dynamics of the elementary 
power system of Fig. 16. 

Δω Δδ

 

Fig. 17. Simplest possible representation of an elemental power system 

Using Δω and Δδ as the state variables, we can model the 
elementary power system dynamics using state-space 
representation by the next matrix equation, as taught by 
modern control theory [2]: 
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This system matrix equation in the state-space corresponds 
to the general form: 

 uBxAx
o

+=  (20) 

where: 
x is the state vector. 
A is the state matrix.  
B is the control or input matrix. 
u is the input or control vector.  
For the purpose of establishing the system output vector y, 

two additional matrices, C and D, are commonly defined. 
They are: 
 uDxCy +=  (21) 

In (21), C is defined as the output matrix and D is defined 
as a coefficient matrix. For the purpose of assessing the SSS 
of the system, we will discuss only the state matrix A. 

The characteristic equation of the state matrix A is 
expressed by: 

 0
M

Ks
M

Ks 01D2 =
ω

++  (22) 

By identification with the classical parameters of a second 
order system given as: 

 0s2s 2
nn

2 =ω+ωζ+  (23) 

The undamped natural frequency ωn and the damping ratio 
ζ are found to be: 

 s/rad
M

K 01
n

ω
=ω  (24) 
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D

MK
K

2
1

ω
=ζ  (25) 

The two characteristic equation roots or system are plotted 
in Fig. 18. 
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Fig. 18. Location of characteristic equation roots 

The roots of the characteristic equation are identical to the 
state matrix A eigenvalues. For the system to be stable, both 
roots of the characteristic equation have to lie in the left-hand 
side of the complex plane, as shown in Fig. 18. This implies 
that the undamped natural frequency ωn and the damping 
factor ζ have to be positive. This, in turn, implies that the 
synchronizing and damping torque values have to be positive. 
If one of the two electrical torques becomes negative, the 
system will be unstable. The situation is illustrated in Table I, 
which displays the variation of the internal angle δ depending 
upon the sign of K1 and KD and following an impulse change 
of 5 percent of the mechanical torque ΔTm. 



8 

 

TABLE I 
INTERNAL ANGLE RESPONSE TO A 5% IMPULSE OF MECHANICAL POWER ΔTM 
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B.  SSS of a Generator With Constant Excitation Voltage 

    1)  Advanced Generator Model 
The classical model of generators has obvious limitations 

because it assumes that the flux linkage inside the generator is 
constant. We will use the more advanced model defined by 
DeMello and Concordia in [13] to study the impact of a solid-
state modern excitation system on the stability of a 
synchronous salient-pole generator connected to an infinite 
bus through a reactance Xe. The model is based on the two-
axis representation of a generator and is represented in Fig. 19. 
The K parameters are identical to the ones used in [13] and are 
defined in Appendix A. The obvious change with respect to 
the classical model is that the damping torque is now 
produced by the generator physics. 

The additional variables with respect to the classical model 
are: 

• Δet is the variation of the generator terminal voltage in 
pu. 

• ΔEfd is the variation of the field excitation voltage in 
pu. 

• ΔE′q is the flux variation in the direct axis. 
• Tdo′ is the generator field open circuit time constant. 

ΔδΔω

 

Fig. 19. Linearized model of a generator with constant excitation supply 

The generator block diagram model of Fig. 19 can be 
represented in the state space using three state variables, Δδ, 
Δω, and ΔE'q, as expressed in the next matrix equation: 

 
1 2 m

' ' ' '
q 3 4 3 d0 3 d0 q

0 377 0 0
d K / M 0 K / M 1/ M T
dt

0E K K / K T 0 1/ K T E

⎡ ⎤ ⎡ ⎤⎡ ⎤Δδ Δδ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Δω = − − Δω + Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ − − Δ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (26) 

C.  SSS Limit Using the Damping and Synchronizing Torque 
Limits 

In the model of Fig. 19, the sum of the torques is defined as 
the electrical torque opposing the mechanical torque. It can be 
expressed, based upon Fig. 19, as: 

 2 3 4
e 1 '

3 d0

K K K
T K (s)

1 s K T
⎛ ⎞

Δ = − Δδ⎜ ⎟⎜ ⎟+⎝ ⎠
 (27) 

After a few manipulations, (27) can be expressed as: 

 
2 '

2 3 4 2 3 4 d0
e 1 2 2 ' 2 2 2 ' 2

3 d0 3 d0

K K K K K K T
T K (s) s (s)

1 s K T 1 s K T
⎛ ⎞ ⎛ ⎞

Δ = − Δδ + Δδ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (28) 

Obviously, the electrical torque contains a synchronizing 
component proportional to the angular deviation and a 
damping component proportional to the derivative of the 
angular deviation or speed. After s is given the value jω, the 
two component can be expressed as: 

 2'
0d

2
3

2
432

1sync_e
TK1

KKK
KT

ω+
−=Δ  (29) 

 2'
0d

2
3

2

'
0d4

2
32

damp_e
TK1

TKKK
jT

ω+
ω=Δ  (30) 

In [1], the SSS limit of the system in Fig. 19 is determined 
by the condition when both the synchronizing and damping 
torques become zero. The SSS limit is therefore determined in 
the P-Q plane by plotting the two curves when the two 
synchronizing and damping torques equal zero and then by 
determining the area where both torques are positive. In the 
same reference, the synchronizing torque limit is determined 
by solving the next equation when ω = 0: 

 0KKKKT 43210sync_e =−=Δ
=ω

 (31) 

The damping torque limit is determined by solving the next 
equation when ω is equal to the undamped frequency 
corresponding to (24): 

 0
TK1

TKKKjT

M
K377

2'
0d

2
3

2

'
0d4

2
32

M
K377damp_e

1

1
=

ω+
ω=Δ

=ω
=ω

 (32) 

The damping torque equation corresponding to (32) does 
not have a solution because the damping torque is always 
positive. Therefore, the stability of the system is determined 
by the synchronizing torque limit only corresponding to the 
solution of (31). 
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    1)  New Method for Determining the SSS Limits Using the 
Eigenvalues Real Part Sign 

For an approach to the stability limit of the Fig. 19 model 
that is simpler than the two electrical torques limits, consider 
that the generator system is stable if the eigenvalues of the A 
matrix have all their real parts as negative. The new method, 
dubbed “eigenvalues-based limit,” consists then in 
determining for each value of the real power Pi in the complex 
plane the corresponding value of imaginary power Qi for 
which all the real parts of the A matrix eigenvalues switch to 
negative (Fig. 20). Remember that for each pair of points 
(P,Q), there are different values for the K’s parameters and 
therefore different eigenvalues for matrix A. After we scan a 
set of P values inside a chosen interval, the corresponding set 
of Q values as defined previously constitutes the SSS limit. 

 

Fig. 20. Principles for determining eigenvalues-based limit 

    2)  Equivalence Between the Manual SSSL and the 
Eigenvalues-Based SSS Limit 

At this stage, we have described three methods to 
determine the stability limit of the generator system of Fig. 19 
with constant excitation: 

• The manual SSSL corresponding to a circle with 
characteristics given in Fig. 4. 

• The synchronizing torque limit only (given that the 
damping torque is always positive), the equation of 
which is provided by (31). 

• The newly defined eigenvalues-based limit. 
In Fig. 21, the three stability limits obtained with the three 

methods are plotted for the system with constant excitation 
with the parameters shown. All three limits are practically 
identical. This demonstrates that the SSA approach, together 
with the eigenvalues-based limit, is viable for determining a 
generator system stability limit. 
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0 0.5 1 1.5
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K1 – K2 * K3 * K4 = 0
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Fig. 21. Trio of stability limits for constant excitation generator system 

D.  SSS Limit of a Generator With Automatic Voltage 
Regulator 

    1)  Generator Model With AVR 
All the preceding analysis has been for a generator 

operated under constant field voltage. When an AVR is added 
to the system, an additional transfer function has to be added 
to the system, as shown in Fig. 22. It is assumed here that a 
self-excited generator with a simple static excitation system is 
being used with transfer function: 

 
e

e

t

fd

sT1
K

e
E

+
=

Δ
Δ

 (33) 

where: 
Ke is the exciter gain. 
Te is the exciter time constant. 

Δω Δδ

 

Fig. 22. Elementary power system block diagram with regulated solid-state 
excitation supply 
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The next matrix equation provides the representation of the 
generator system of Fig. 22 in the state-space domain: 

 
m

fd

'
q

e

'
do

e6e

'
do3

2

e5e

'
do4

1

fd

'
q

T

0
0
M/1

0

E
E

T/1
T/1
0
0

T/)KK(
)TK/(1

M/K
0

0
0
0

377

T/)KK(
T/K
M/K

0

E
Edt

d
Δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ
Δ

ωΔ
δΔ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−

−
−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ
Δ

ωΔ
δΔ  (34) 

    2)  Stability Limits Using the Eigenvalues Method 
Using the eigenvalues limit method, Fig. 23 shows the 

stability limits of the elementary power system when the 
generator has an AVR and the AVR gain is varied from zero 
to higher values. It is not a surprise that for an AVR gain of 
zero, the stability limit corresponds to the manual SSSL. As 
the gain increases, there is a limit to be given to the gain 
before the stability starts infringing inside the GTMC circle. It 
is a well-established principle that the AVR gain has to be 
limited to prevent the generator from falling into instability 
due to the lack of damping torque [2] [13]. Based on Fig.23, 
the AVR gain would have to be less than 25. Note here that 
the manual SSSL does not turn out to be the limit case as the 
gain increases. For high values of the AVR gain, the SSS limit 
will go above the manual SSSL and will start infringing inside 
the GTMC limit circle. 

Appendix B lists the numerical program in the MATLAB® 
language [19] used for plotting the SSS limits in Fig. 23 and 
that can be used to plot further applications.  
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Fig. 23. Impact of the AVR gain on generator stability limit 

E.  SSS Limit of a Generator System With AVR and PSS 

    1)  Generator Model With PSS 
As shown in the previous paragraph, the AVR gain has to 

be limited to keep the damping torque to an acceptable value. 

Increasing the generator transient stability requires the highest 
possible AVR gain to produce the highest possible excitation 
voltage following a major disturbance. Transient stability is 
defined here as the ability of the generator to maintain 
synchronism when subjected to a severe transient disturbance 
such as a fault on an adjacent transmission line. To fulfill this 
requirement, power engineers have developed high-speed 
exciters equipped with power system stabilizers (PSS). 
Basically, a PSS derives an error signal based on the speed of 
the machine and injects this error signal into the summing 
point of the AVR. The net effect of the PSS is to substantially 
increase the generator damping torque and this, in turn, 
enables an increase in the gain. 

The generator system block diagram with the PSS added is 
shown in Fig. 24. The PSS transfer function consists of a gain, 
a high-pass filter, and a phase compensation filter. In reality, a 
PSS could entail more complex circuitry and does not 
necessarily measure the speed directly [2]. 

 

Fig. 24. Linearized elementary power system with AVR and PSS 

The representation of the PSS in the state space domain 
imposes the addition of two state variables ΔVs and ΔV2, as 
shown in (35). 

    2)  Stability Limit of a Generator With a PSS Using the 
Eigenvalues-Based Method 

The SSS limit correction caused by the addition of a PSS 
has been studied using the eigenvalues limit method. Fig. 25 
demonstrates the dramatic improvement of the system SSS 
limit because of the PSS. Without the PSS and with an AVR 
gain of 50, the stability limit is infringing into the GTMC 
circle, as shown in Fig. 25. With a gain (Ke) of 50 and the 
addition of the PSS, the stability limit has moved deeply to the 
left of the GTMC circle and well below the manual SSSL. For 
the case considered, the AVR gain could be set to 200 and 
even higher without compromising the normal operation of 
the generator. As for the previous analysis with an AVR only, 
with the addition of a PSS, the manual SSSL does not seem to 
constitute a “limit-case”: as the gain (Ke) increases, the SSS 
limit will begin infringing on the GTMC circle more and more 
deeply.  
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 (35)

Fig. 26 shows the impact of the external impedance Xe 
increase of the SSS. With a gain (Ke) of 150, as Xe increases 
from 0.4 to 0.8 pu, notice that the SSS limit shrinks toward the 
left and eventually will infringe inside the GTMC limit circle 
for higher values of Xe. The same phenomenon has been 
observed with the manual SSSL of Fig. 5. Increases of the 
following factors contribute to the shrinking of the SSS limit: 
the AVR gain Ke, the external impedance Xe, or the AVR 
time-constant Te. Reducing the following factors will lead to 
the same result: the generator voltage Et, the field open-circuit 
time constant T′d0, or the machine inertia M. As already 
observed, a combination of factors could exist where the SSS 
limit could infringe deeply into the GTMC circle. The only 
common point between all the two types of stability limits 
(manual SSSL and SSS limit) is that they both seem to be 
starting on the vertical axis on the point (0, –1/Xd). 
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Fig. 25. Impact of PSS on generator stability limit 
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Fig. 26. Impact of Xe on generator stability limit with a PSS 

V.  THE EXCITATION SYSTEM IMPACT ON PROTECTION 

A.  Stability Limits Issues 
Protection engineers have traditionally used the manual 

SSSL in their generator coordination studies because it was 
considered conservative enough even when an AVR or an 
AVR-PSS combination was added to the system. Manual 
operation has been and still is considered as the backup to an 
AVR failure. Furthermore, it has been the only simple (in the 
mathematical sense) limit available to protection engineers. In 
some instances, the manual SSSL has been presented as too 
conservative and counterproductive for a sound protection [3]. 
In some modern designs, the backup for an AVR failure could 
be another AVR and not manual operation. In this situation, 
manual operation could never occur and the traditional SSSL 
use loses its justification. In the preceding sections, a new 
technique has been tested to determine the SSS limit of a 
generator system with or without an AVR or with an AVR-
PSS combination. From the simulation presented, one could 
infer that the manual SSSL, derived for a generator with 
constant voltage excitation, does not automatically constitute 
the “limit-case” to be referred to when an AVR or a PSS are 
considered. For reasonable values of the AVR gain and strong 
systems (small external impedance Xe), the manual SSSL is 
probably a conservative design. However, this assumption is 
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no longer true when some factors combine together to restrain 
the SSS limit (high AVR gain, weak system with a high 
external impedance Xe, etc.). Based on these considerations, 
there is certainly an actual requirement for simple techniques 
to establish a generator system stability limit irrespective of 
the excitation system operation mode. 

B.  Volt/Hertz Issues 
As described previously, a VHL is normally implemented 

in the excitation system. When a volt/hertz maximum 
threshold is exceeded, this VHL will send a negative error 
signal to the AVR summation point until the generator voltage 
at the terminals goes back to an acceptable voltage level. The 
VHL does not preclude the implementation of volt/hertz 
protection on the generator and the step-up transformer. On 
the contrary, this backup protection is desirable and 
recommended [5]. Bear in mind that the error signal 
originating from the VHL can come into conflict with the 
error signal from the UEL in some particular situations. As an 
example, in an islanding situation or during light load with a 
high level of charging current, the generator could be driven 
into an underexcited state so that the UEL will send a positive 
error signal to the AVR summing point. This signal will 
increase the generator output voltage until the generator 
moves out of the forbidden underexcited zone. In doing so, the 
voltage could go to a level high enough that the volt/hertz 
threshold will be exceeded and the VHL will start sending a 
negative error signal to lower the voltage. The outcome of this 
conflicting situation could be an unstable oscillation in the 
generator output voltage. 

C.  Overvoltage Issues 
The primary contribution of an AVR is to keep constant the 

generator output voltage under a normal mode of operation. 
Overvoltage could occur on a transient basis during network 
disturbances, however. At rated frequency, the volt-hertz 
protection constitutes a de-facto overvoltage protection; this is 
probably the reason why generator overvoltage protection is 
not widely used in North America. A classical situation exists 
where overvoltage could develop without being accompanied 
by overfluxing: the islanding of a hydro unit or its load 
rejection is normally followed by a voltage build up together 
with an acceleration of the machine. The only protection then 
against machine dielectric stress is a conventional definite-
time delay or inverse-time overvoltage protection. 

D.  Loss-of-Field Protection Issues 
The main issue with the LOF protection is to ensure that 

when the generator goes into the underexcited region, an 
infringement into the LOF characteristics will not occur, with 
the possible consequence of the generator tripping. Two types 
of coordination should be considered here: static (or steady 
state) and dynamic coordination. Steady-state coordination 
corresponds to the situation where there are no disturbances 
on the network. Dynamic coordination corresponds to the 
situation where there is a disturbance and when the UEL 
circuit might allow the generator operating point to infringe 

into the forbidden underexcited region on a transient or 
temporary basis. 

    1)  Steady-State Coordination 
This is accomplished by coordinating the LOF 

characteristics with the UEL. We will assume in the next 
example that the manual SSSL is more constraining that the 
end core limit as would happen with a hydro unit. This 
constitutes the worst-case scenario for the LOF protection. We 
limit the analysis to the conventional two-zone offset mho 
relay represented in Fig. 27. The coordination will be set in 
the P-Q plane. In the example, Xd = 1.6, X′d = 0.32, and 
Xe = 0.18. 

In the R-X plane, the most important point with respect to 
the coordination is point “a” in Fig. 27 because it will map to 
the upper-most position in the P-Q plane. Recall that a point in 
the R-X plane will map into a point into the P-Q plane 
following the next transformation: 

 
2 2
t t

2 2 2 2
E r E x

RX (r, x) PQ ,
r x r x

⎛ ⎞
⇒ ⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (36) 

Assume first that the generator voltage is Et = 1.0. Point 
“a,” with coordinates (0, –Xd–X'd/2) in the R-X plane, 
corresponds  to the following point “A” in the P-Q plane: 

 
' 2
d t

d '
d

d

X E
RX 0, X PQ 0, PQ(0, 0.568)

2 X X
2

⎛ ⎞
⎜ ⎟⎛ ⎞ −⎜ ⎟− − ⇒ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

 (37) 

The intersection of the manual SSSL with the vertical axis 
is: 

 
2
t

d

E
PQ 0,

X
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

=PQ(0,–0.625) (38) 

As shown in Fig. 28, the intersection of the SSSL curve 
with the vertical axis will automatically be lower than point 
“A.” Assume that the UEL is implemented using a straight 
line, the equation of which is provided by (9) with the settings 
shown below and assuming that k1 and k2 have been set each 
to 1: 

 2
t

2
t E483.0P2195.0

KUQ
KUVE

KUQ
KUPPQ −=−=  (39) 

The intersection of the UEL segment with the vertical axis 
is chosen to be 15 percent higher than point “A”. The 
intersection of the UEL segment with the horizontal axis is 
arbitrarily set to 2.2. Fig. 28 shows the overall coordination. 
Figs. 29 and 30 show how the coordination is maintained 
when the generator terminal voltage undergoes a maximum 
variation of 5 percent with respect to its nominal value. The 
moving UEL characteristic with the generator voltage Et 
allows keeping coordination with the mapped LOF 
characteristic in P-Q plane that moves also in the same fashion 
with the voltage variation. 
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Fig. 27. Conventional offset-mho two-zone LOF characteristics 

 

Fig. 28. Coordination of LOF and UEL for Et = 1.0 
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Fig. 29. Coordination of LOF and UEL for Et = 0.95 

 

Fig. 30. Coordination of LOF and UEL for Et = 1.05 

    2)  Dynamic Coordination 
Static coordination as described in the preceding paragraph 

does not guarantee that the UEL will prevent the operating 
point from temporarily infringing into the LOF characteristics 
during a network disturbance. Such infringement could lead to 
the unit tripping. This could happen with a slow-acting UEL, 
the time constants of which would be too long. The only way 
to verify the proper dynamic coordination is by simulations 
[3] [17]. 

E.  Out-of-Step Protection Issues 
Generator out-of-step protection responds to the 

disturbances resulting from a major event like a line fault or a 
loss of generation. This type of protection should recognize 
whether the subsequent power swing is stable. Normally, the 
unit will trip after detecting an unstable swing. High-speed 
static excitation systems substantially improve the transient 
stability of a power network and, in many cases, contribute to 
the stability of the power system, as compared to less 
advanced or constant voltage excitation. Therefore, the main 
impact of the generator excitation system is on the dynamic 
response of the generator during a network disturbance and, 
consequently, the trajectories of the power swings. These 
trajectories could, in turn, affect the out-of-step relay’s 
settings. In view of these considerations, we can infer that 
modeling of the excitation system should be complete and 
accurate before performing out-of-step simulations using 
programs like electromagnetic transients program (EMTP) or 
transient stability programs. 

VI.  CONCLUSIONS 
1. Limiters embedded in generators AVR do not trip the unit 

but prevent the generator from operating in operation 
zones that are thermally dangerous to the machine. 

2. A UEL is normally embedded in the generator AVR and 
prevents the generator from operating on the forbidden 
underexcited region by sending an error signal to the 
AVR. This error signal in turn increases the AVR voltage 
reference so that ultimately the generator output voltage 
will be increased. The consequence of a UEL taking 
action is therefore to increase the generator output 
voltage. 

3. A VHL could be embedded in the generator AVR. When 
called upon, it normally sends an error signal to the AVR, 
the consequence of which is to reduce the AVR voltage 
reference. This reduces the generator output voltage to 
bring the volt/hertz ratio back to the allowed limit. The 
VHL does not modify the generator speed or frequency 
value. 

4. An UEL and a VHL oppose each other. One has a 
tendency to increase the generator output voltage, the 
other one works to reduce it. Situations could develop 
where the AVR will send opposite error signals, resulting 
in oscillations in the generator output voltage. 

5. The limiters normally embedded in the AVR are not 
effective in a manual mode of operation of a generator 
excitation system. The corresponding protection will be 
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removed unless there is a backup independent of the 
AVR. The UEL will be lost during manual mode because 
it does not normally have a backup. 

6. When coordinating the LOF characteristic with the UEL, 
remember that static or steady-state coordination is not a 
guarantee for proper dynamic coordination. A slow-acting 
UEL could lead to the infringement of the LOF 
characteristic during a network disturbance. 

7. Conditions could develop where the stability limits of a 
generator with an AVR could be worse than the manual 
SSSL. In some situations, manual operation could never 
occur. The use of the manual SSSL in protection studies 
should be revisited and reassessed. Simple techniques to 
derive the stability limits of generator systems are needed 
and should be developed by standard bodies. 

VII.  APPENDIX A: K CONSTANTS CALCULATION PRINCIPLES 
The generator model used in this paper is the same as the 

one in [13]. Assuming no amortisseur windings (which 
normally increase the damping effect), armature resistance 
neglected, no “dψ/dt” terms in generator equations, and no 
saturation, the synchronous generator can be modeled using 
the following equations: 

 

Fig. A1. Elementary power system 
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Fig. A2. Elementary power circuit vector diagram 
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For small variations of the three variables Δet, ΔE'q, and 
Δδ, the following relations can be derived: 
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For the point of operation defined by eto, Po, and Qo, the 
steady-state values do, Eqo, Eo, edo, eqo, ido, and iqo can be 
calculated as: 
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The six constants, K1 to K6, in the previous three equation 
constants appearing in the model are defined as follows [13]: 

'
qE

e
1

TK
δΔ

Δ
=  

Ratio of the change in the electrical 
torque over the change in the rotor angle 
when the flux linkages in the d axis are 
constant. 

δ
Δ
Δ

= '
q

e
2 E

TK  
Ratio of the change in the electrical 
torque over the change in the flux 
linkages in the d axis when the rotor 
angle is constant. 

ed

e
'
d

3 XX
XXK

+
+

=  
Impedance factor. Formula shown when 
the external impedance is a pure 
reactance. 

δΔ

Δ
=

'
q

3
4

E
K
1K  

Demagnetizing effect of a change in 
rotor angle. 

'
qE

t
5

eK
δΔ

Δ
=  

Ratio of the change in terminal voltage 
over the change in rotor angle with 
constant Eq', the voltage proportional to 
the direct axis flux linkages. 

δ
Δ
Δ

= '
q

t
6 E

eK  

Ratio of change in terminal voltage over 
the change in Eq' for constant rotor 
angle. 

The six constants, K1 to K6, can be computed 
mathematically as: 
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'
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e
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+
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VIII.  APPENDIX B: ROUTINE TO GENERATE THE STABILITY 
LIMIT OF A REGULATED GENERATOR USING  

MATLAB LANGUAGE 
The next listing in MATLAB language allows plotting the 

stability limit of a generator with an AVR using the author’s 
method based on the matrix A eigenvalues real part becoming 
negative. When processed as listed, the routine will plot the 

stability limit appearing in Fig. 23 with the AVR gain equal to 
10. Adapting the routine to the PSS case is straightforward. 

 
M=3;Td0=6;Ke=10;Te=0.05; 
Xd=1.6;Xq=1.55;Xpd=0.32;Xe=0.4;re=0;et0=1.0; 
m=1;k=0.02;Q=-2.1;FORW=1; 
 
while (FORW==1) | ((FORW==0) & (k > 0.01)); 
    while ((Q < 3) & (FORW==1)) |  ((k > 0.01) & 
(FORW==0)) 
        PP(m)=k; 
        P=PP(m); 
        if FORW==1 
            Q=-2.1; 
        else 
            Q=3; 
        end 
        Test=0; 
        while ((Test==0) & (Q < 3) & (FORW==1)) | 
((Test==0) & (k > 0.01) & (FORW==0)) 
            if FORW==1 
                Q=Q+0.01; 
            else 
                Q=Q-0.01; 
            end 
            et0=abs(et0); 
            Ip0=P/et0; 
            Iq0=Q/et0; 
            Eq0=sqrt((et0+Iq0*Xq)^2+(Ip0*Xq)^2); 
            E0=sqrt((et0-Ip0*re-Iq0*Xe)^2+(Ip0*Xe-
Iq0*re)^2); 
            sind0=(et0*Ip0*(Xq+Xe)-re*Xq*(Ip0^2+Iq0^2)-
et0*Iq0*re)/(Eq0*E0); 
            cosd0=(1/(Eq0*E0))*(et0*(et0+Iq0*(Xq-Xe)-
Ip0*re)-Xe*Xq*((Ip0^2)+(Iq0^2))); 
            iq0=(1/Eq0)*(Ip0*(et0+Iq0*Xq)-Iq0*Ip0*Xq); 
            id0=(1/Eq0)*((Ip0^2)*Xq+Iq0*(et0+Iq0*Xq)); 
            eq0=et0*((et0+Iq0*Xq)/Eq0); 
            ed0=iq0*Xq; 
             
            A=(re^2)+(Xe+Xpd)*(Xq+Xe); 
             
            
K1=(Eq0*E0/A)*(re*sind0+(Xe+Xpd)*cosd0)+(iq0*E0/
A)*((Xq-Xpd)*(Xe+Xq)*sind0-re*(Xq-Xpd)*cosd0); 
            K2=(re*Eq0/A)+iq0*(1+(Xe+Xq)*(Xq-Xpd)/A); 
            K3=1/(1+(Xe+Xq)*(Xd-Xpd)/A); 
            K4=(E0*(Xd-Xpd)/A)*((Xe+Xq)*sind0-
re*cosd0); 
            
K5=(ed0/et0)*(Xq/A)*(re*E0*sind0+(Xe+Xpd)*E0*cosd
0)+(eq0/et0)*(Xpd/A)*(re*E0*cosd0-
(Xe+Xq)*E0*sind0); 
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            K6=(eq0/et0)*(1-
Xpd*(Xe+Xq)/A)+(ed0/et0)*Xq*(re/A); 
            A3=[0 377 0 0;-K1/M 0 -K2/M 0;-K4/Td0 0 -
1/(K3*Td0) 1/(Td0); -(Ke*K5)/Te 0 -Ke*K6/Te -1/Te]; 
            H3=eig(A3); 
            x1=real(H3(1,1)); 
            x2=real(H3(2,1)); 
            x3=real(H3(3,1)); 
            x4=real(H3(4,1)); 
             
            Test= (x1 < 0) & (x2 < 0) & (x3 < 0) & (x4 < 0); 
        end 
if FORW==1 & Q > 2.8 
            m=m-2; 
            k=k-0.02; 
        else 
            QQ(m)=Q; 
        end 
        m=m+1; 
         
        if FORW==1 
            k=k+0.01; 
        else 
            k=k-0.01; 
        end 
    end 
    FORW=0; 
end 
 
plot(PP,QQ) 
grid 
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