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Abstract: 
 
This paper provides an overview of the first order thermal model and discusses how to apply this model to 
motor protection in starting and running state. This paper also demonstrates the first order thermal 
model’s response to cyclic load. 
 
Introduction: 
 
Many industry segments have processes that are categorized as cyclic. Typical examples include the 
following: 

• Crushers 
• Pulverizers 
• Positive displacement compressors 
• Chippers 
• Some conveyer belts 

 
If the relay thermal model protecting the motor of a specific cyclic process is inadequately designed, it will 
eventually cause a nuisance motor trip, disrupting the process. This is not an acceptable condition.  
 
This paper will demonstrate that the first order thermal model is superior for protecting motors with cyclic 
loads. 
 
Overview of the First Order Thermal Model: 
 
Fig. 1 illustrates the first order thermal model. The major components of the model are as follows: 

• Heat Source: Heat flow from the source is I2r watts (J/s). 
• Thermal Capacitance (Cth): Thermal capacitance represents a motor that has the capacity (Cth) to 

absorb heat from the heat source. The unit of thermal capacitance is J/°C. 
• Thermal Resistance (Rth): Thermal resistance represents the heat dissipated by a motor to its 

surroundings. The unit of thermal resistance is °C/W. 
• Comparator: The comparator’s function is to compare the calculated motor per unit temperature 

with a preset value based on the motor manufacturer’s data. 
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Fig. 1. First Order Thermal Model 
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For simplicity sake, the heat source in Fig. 1 and subsequent figures and equations is represented by I2r. 
In reality, this term consists of two parts—heat flow due to a balanced set of current phasors (positive-
sequence currents) and heat flow due to unbalance in current phasors (negative-sequence currents). 
 
The terms are defined as: 

I1 = Motor positive-sequence current 
r1 = Motor positive-sequence resistance 
I2 = Motor negative-sequence current 
r2 = Motor negative-sequence resistance 

 
Thus the complete expression for I2r is: 

 I2r = I12r1 + I22r2 
 
Qualitative analysis of this model states that heat produced by the heat source is transferred to the motor, 
which, in turn, dissipates the heat to the surrounding environment. 
 
Quantitative analysis is defined by a first order linear differential equation similar to a parallel RC electrical 
circuit and is: 

 
th

th
2

R
U

dt
dUCrI +⋅=                (W) (1) 

A further step was taken in refining the above thermal model. 
 
Motors are comprised of two major components—stator and rotor. 
 
The stator component’s function is to produce a rotating magnetic field (at line frequency) in the air gap 
and induce voltage in the rotor bars that produces current flow in those bars. 
 
The rotor current produces a magnetic field of its own. The rotor magnetic field is at 90° to the air-gap 
magnetic field, thus generating torque tangential to the rotor surface and producing rotational force, which 
turns the shaft. 
 
Because the construction of the stator and rotor is different, so is their thermal characteristic. To 
accommodate this major difference in stator and rotor thermal properties, the first order thermal model 
was refined into the following two elements: 

• The starting element protects the rotor during the starting sequence. 
• The running element protects the stator when the motor is up to speed and running. 

 
Transition from one element to the other was set at 2.5 times the rated full-load current of the motor. 
 
The high-inertia starting solution uses the slip-dependent thermal model and affects the starting element 
design only. The detailed design of the slip-dependent thermal model is not discussed in this paper. 
 
Applying First Order Thermal Model to Motor Starting (Rotor Protection): 
 
Even though this paper deals with motors in the running state, starting is discussed briefly for 
completeness. 
 
It is universally accepted that the starting sequence of an ac motor is regarded as an adiabatic (loss less) 
process. Starting deposits an immense amount of heat (up to a hundred times the rated heating) in rotor 
bars. Also, the duration of the starting sequence is magnitudes shorter than motor thermal time constants. 
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Thus it is regarded that any heat deposited in the rotor will not dissipate to the surroundings during the 
starting sequence (it will dissipate later when the motor is up to speed and running). 
 
If we apply this assumption to the first order thermal model depicted in Fig. 1, we are effectively saying 
that the thermal resistance of the motor during starting is infinity (R = ∞). 
 
Substituting this condition into (1) yields: 

 
dt
dUCU

dt
dUCrI thth

2 ⋅=
∞

+⋅=⋅                (W) (2) 

 
Rearranging (2): 

 dt
C

rIdU
th

2

⋅
⋅

=                (°C) 

 
Convert the above expression to per unit quantity by substituting the following: 

 pu1Cr th ==  

 
Thus: 

 dtIdU 2 ⋅=                (pu °C) 

 
Integrating the expression: 

 ∫∫ ∫ =⋅= dtIdtIdU 22  

 
The solution to this general integral is: 

 tIU 2 ⋅=                (pu °C) (3) 
 
Motor manufacturers supply rotor thermal limit information as part of motor data. The rotor thermal limit is 
expressed in terms of the maximum time (TSTALL) that corresponding locked-rotor current (ILRA) can be 
applied to a motor. 
 
Applying this to (3): 
 LRAII =  (per unit locked-rotor amperes) 

 STALLTt =  (safe stall time, s) 

 STALL
2
LRA TIU ⋅=                (pu °C) (4) 
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Incorporating all the above changes to Fig. 1 results in the starting element of the first order thermal 
model as illustrated in Fig. 2. 
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Fig. 2. Starting Element 
 
Applying First Order Thermal Model to Running Motor (Stator Protection): 
 
Once the motor reaches full speed and the current drops below 2.5 • FLA, the first order thermal model 
switches from starting element to running element. 
 
Equation (1) and Fig. 1 apply to the running element. 
 
To see the response of the running element to current flow, let us solve (1): 
 
Rearrange the terms in (1): 

 U
dt
dURCRrI ththth

2 +⋅⋅=⋅⋅                (°C) (5) 

 
The above equation can be further simplified by converting it to a per unit quantity. The base quantities 
are: 

Current = IFLA (full-load current)  
Temperature at rated current = IFLA

2 • r • Rth 
Convert (5) to a per unit quantity: 

 U
dt
dURCI

RrI
RrI

thth
2

th
2
FLA

th
2

+⋅⋅==
⋅⋅

⋅⋅
               (pu °C) (6) 

 
Now substitute motor thermal time constant τth for Cth and Rth: 

 thth CR ⋅=τ  

 U
dt
dUI2 +⋅τ=                (pu °C) (7) 

 
It is extremely important to note that the quantity I2 represents per unit temperature; in other words, per 
unit temperature is proportional to the square of the per unit current! 
 
Equation (7) is a first order linear differential equation whose solution is: 

 )e1(IeI)t(U thth

t
2

t
2
0

τ
−

τ
−

−⋅+⋅=                (pu °C) (8) 
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Where: 

 U(t)  = Per unit temperature as a function of time 
 I0  = Per unit initial current  
 I  = Per unit final current 
 τth = Motor running thermal time constant 
 
Another useful presentation of (8) to motor relay engineers is the time (t) in which the running element will 
reach temperature U(t).  
 
Rewriting (8) yields: 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

⋅τ=
)t(UI

IIlnt 2

2
0

2

               (s) (9) 

 
In plain language, (9) states that the time it takes to reach per unit temperature, U(t), is calculated by 
multiplying the thermal time constant of the motor by the natural logarithm of the difference between final 
per unit temperature and initial per unit temperature, divided by the difference between final per unit 
temperature and the per unit temperature, U(t), in question. 
 
Two important reminders are: 

• The base for this per unit system is motor full-load current (FLA). 
• A valid range for per unit temperature, U(t), is anywhere between initial per unit temperature, I0

2, 
and final per unit temperature, I2. 

 
Let us further simplify (9) to make it more suitable for motor protection applications. 
 
Manufacturers state the service factor (SF) of the machine on every motor nameplate. Even though the 
exact interpretation of the SF is vague, one thing is certain—any motor current greater than SF • FLA is 
considered a running overload condition. Translate this into a maximum per unit temperature that the 
motor is designed for and can sustain at any time (t): 

 2
FLA )ISF()t(U ⋅=                (pu °C) (10) 

 
Because IFLA = 1 per unit, the above expression is further simplified to: 

 2SF)t(U =                (pu °C) (11) 
 
Substituting (11) into (9) results in the final equation of the first order thermal model running element: 

 
⎥
⎥
⎦
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⎢
⎢
⎣
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−
−

⋅τ= 22

2
0

2

SFI
IIlnt                (s) (12) 

 
A closer examination of (12) reveals that in order for t to be a rational number, the overload current, I, has 
to be greater than SF • IFLA. 
 
The question then is: what happens in a case where I is less than SF • IFLA? 
 
This situation does not constitute an overload condition, but rather reflects the element’s response to a 
load change. 
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Let us resort back to (9). Because the denominator of (9) has to be greater than zero to maintain t, a 
rational number, let us postulate (using the three time constants rule, which states that it takes three time 
constants for a quantity to exponentially decay to 5% of its original) that once the per unit temperature 
U(t) reaches within 5% (0.05 per unit) of the final per unit temperature I2, the equation is satisfied, i.e.: 

 05.0)t(UI2 =−                (pu °C) (13) 
 
Substituting (13) into (9) and using absolute values to account for increasing or decreasing load yields: 

 ( )2
0

2
2
0

2

II20ln
05.0

II
lnt −⋅⋅τ=

⎥
⎥
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⎤
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⎢

⎣

⎡ −
⋅τ=                (s) (14) 

 
Equations (12) and (14) represent the running element dynamic response to any current magnitude. 
 
Running Element Response to Cyclic Load: 
 
Cyclic loads are defined as loads varying from one load level to another load level at constant periodic 
intervals. 
 
In terms of motor current, cyclic load represents motor currents that fluctuate from one value to another 
and then back to the original value at constant intervals. 
 
Equipped with the running model described by (12) and (14), we can now proceed and apply the model to 
a cyclic load. 
 
Two case motors were chosen: case motor #1 has an SF equal to 1.0 and a running thermal time 
constant (RTC) equal to 1,200 seconds, as shown in Figs. 3 and 4, and case motor #2 has an SF equal 
to 1.15 and an RTC equal to 1,200 seconds, as shown in Figs. 5 and 6. 
 
The cyclic currents were selected to exceed the service factors, yet still be realistic. 
 
For each case motor two conditions are shown: 

• The cyclic current period is 600 seconds (Figs. 3 and 5). 
• The cyclic current period is 1,200 seconds (Figs. 4 and 6). 
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Fig. 3. Response to Cyclic Load: SF Equal to 1.01 and Current Period Equal to 600 Seconds 
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Fig. 4. Response to Cyclic Load: SF Equal to 1.01 and Current Period Equal to 1,200 Seconds 
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Fig. 5. Response to Cyclic Load: SF Equal to 1.15 and Current Period Equal to 600 Seconds 
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Fig. 6. Response to Cyclic Load: SF Equal to 1.15 and Current Period Equal to 1,200 Seconds 
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Conclusions: 

As demonstrated, the first order thermal model faithfully tracks cyclic load without a premature process 
interruption due to motor trip, even though the maximum current exceeds the SF rating, as long as the 
motor pu temperature stays below the design limit of SF2. 

As the period of the cyclic current approaches the motor RTC and the maximum current exceeds the SF 
rating, the motor temperature will approach the motor design limit pu temperature and will result in motor 
trip and process interruption. 

It is imperative that when applying a motor to a cyclic load application the motor thermal, as well as the 
electrical characteristics need to be scrutinized and compared to the mechanical process characteristics 
to ensure compatibility. 
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