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The Trajectories of Line Current Differential 
Faults in the Alpha Plane 

Gabriel Benmouyal, Schweitzer Engineering Laboratories, Inc.

Abstract—For a long time, the Alpha Plane has been a tool 
available to protection engineers to study line current differential 
characteristics and faults. The Alpha Plane constitutes a 
geometrical representation of the ratio of the two phase currents 
(or sequence currents) entering and leaving a transmission line in 
the complex plane. More recently, digital line current differential 
relays have been put into the market that have characteristics 
directly implemented into the Alpha Plane. A fault exists when 
the ratio locus gets outside a defined stability area. This paper 
studies the different trajectories of the current ratio depending 
upon contingency conditions: the type of element (phase or 
sequence), the line loading, the line length, the level of fault 
resistance, the level of current transformer (CT) saturation, if 
any, the presence of an open pole, or similar conditions. 

I.  INTRODUCTION 
Protection engineers are familiar with the concept of 

representing an impedance trajectory in the complex or R-X 
plane within the context of a distance-type transmission line 
protection scheme. They are less familiar with the concept of 
representing a current-ratio trajectory within the context of a 
transmission-line current differential protection scheme. The 
Alpha Plane was defined many decades ago for that very 
purpose. 

The Alpha Plane is a geometrical representation of the ratio 
of the two phase currents (or sequence currents) phasors 
entering and leaving a transmission line in the complex plane. 
It has been, for a long time, a tool available to protection 
engineers to study line current differential characteristics and 
faults. It is also well established that any percentage 
differential characteristic can be mapped into the Alpha Plane 
so that both areas of stability and tripping can be determined 
as a function of the basic characteristic parameters. 

More recently, digital line current differential relays have 
been put on the market the characteristics of which are directly 
implemented into the Alpha Plane. Basically, these relays 
compute the ratio of the phase (or sequence) currents entering 
and leaving the transmission line and determine whether the 
location of this ratio falls within a stability area directly 
embedded into the Alpha Plane. In order to accurately 
determine the limits of the stability area, it is necessary to 
study the trajectories of faults in the Alpha Plane and to ensure 
that these trajectories do not infringe into the stability area. 

The trajectory of the current ratio corresponding to a 
particular fault will depend upon a number of factors, which 
could include: 

• The nature of the current ratio: phase or sequence 
currents 

• The line loading 

• The line length 
• The level of fault resistance 
• The level of current transformer (CT) saturation, if 

any  
• The presence of an open pole 
• The presence of capacitive series compensation 

The most complex trajectories will depend upon a 
combination of these factors. As an example, a long line with 
an open pole and a subsequent resistive fault will undergo a 
fault trajectory found in no other situation. Equally interesting, 
a series-compensated line will undergo a unique trajectory 
affected by the subsynchronous frequency present in the 
currents during the fault. 

It is the purpose of this paper to review and study these 
different situations and to present basic rules for how to define 
line current differential characteristics in the Alpha Plane in 
order to optimize relay sensitivity, security, and reliability. 

II.  REVIEW OF LINE CURRENT DIFFERENTIAL PHASE AND 
SEQUENCE ELEMENTS ALPHA PLANE CHARACTERISTICS 
Reference [1] introduced the concept of a digital 

characteristic implemented into the current-ratio plane for line 
current differential elements. This is represented in Fig. 1. It 
consisted of computing the ratio of the remote current, IR, 
(phase or sequence current) over the local current, IL, and 
verifying that it lies inside the shown stability area.  

α

 
Fig. 1. Differential element characteristic embedded in the current-ratio 
plane 

In a no-fault situation, the ratio would be close to the minus 
one point (–1,0). There are two settings for this characteristic, 
the radius, R, of the greater arc (typically between 5 and 10) 
and the angle alpha (typically between 160 and 210 degrees). 
This newly defined characteristic was an improvement with 
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respect to the so-called “rainbow” characteristic covered in [4] 
because of its total digital implementation and the additional 
control over the angle alpha (α) that was set to a fixed value of 
180 degrees in the original concept. It will be shown later in 
this paper, how the additional control on the angle α can be 
useful in situations like CT saturation and series-compensated 
transmission lines. 

How the ratio is performed is irrelevant when studying a 
characteristic performance. The local current on one side of a 
line becomes the remote current on the other side of the line 
and vice versa. Whether the results, therefore, are presented at 
one extremity of the line or the other is strictly equivalent. 

III.  PROTECTION SCHEME BASED ON  
CHARACTERISTICS IN THE ALPHA PLANE 

In the present study, it will be assumed that the line 
protection scheme, as shown in Fig. 2, is composed at each 
line extremity of 5 elements: three phase elements designated 
87LA, 87LB, 87LC, one zero-sequence or ground element 
designated 87LG or 87L0, and one negative-sequence element 
designated 87L2. 
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Fig. 2. Principle of line current differential protection scheme 

A saturation detector supervises both the 87LG and 87L2 
elements so that their operation is blocked if CT saturation is 
detected on any of the six phase currents involved. The 
rationale for and the details of this saturation detector are 
extensively covered in [2] and will be briefly revisited later in 
this paper. 

IV.  TRAJECTORIES OF FAULTS FOR SHORT LINE 
For the purpose of this study, a line is considered to be 

short if it has negligible shunt capacitance. 

A.  Trajectories of Current Ratio in Phase Elements 
Consider the elementary power network shown in Fig. 3. It 

consists of a single transmission line with two generators.  

ZL1 3.458 86
ZL0 12.54 75

= ∠
= ∠

VA 120 kV= VB 1 VA= ∠ − θ

ZS1 1.5 88
ZS0 3.0 70
SIR 0.43

= ∠
= ∠
=

ZR1 1.5 88
ZR0 3.0 70
SIR 0.43

= ∠
= ∠

=  
Fig. 3. 120 kV elementary network 

The angle θ between the two sources determines the 
amount of line loading. Faults are applied at a distance, d, 
from the left bus. As is shown in Appendix A, the phase-A left 
bus current for a phase-A-to-ground fault is provided by: 
 LDIAL C1 I1F C2 I2F C0 I0F I= + + +  (1) 

or: 

 ( ) LDIAL 2 C1 C0 I1F I= + +  (2) 

In (1) and (2), C1 and C0 are the sequence network 
positive- and zero-sequence current distribution factors, I1F is 
the pure fault positive-sequence current at the fault, and ILD is 
the load current. 

Alternatively, the phase-A current at the right bus is 
provided by: 

 ( ) ( ) LDIAR 2 1 C1 1 C0 I1F I= − + − −⎡ ⎤⎣ ⎦  (3) 

Performing the ratio of the two phase-A currents at the 
extremities of the line results in: 

 

( ) ( )
( )

( ) ( )

( )

LD

LD

LD

LD

2 1 C1 1 C0 I1F IIAR
IAL 2 C1 C0 I1F I

I2 1 C1 1 C0
I1F

I2 C1 C0
I1F

− + − −⎡ ⎤⎣ ⎦=
+ +

− + − −⎡ ⎤⎣ ⎦
=

+ +

 (4) 

Examination of (4) shows that the current ratio at the relay 
is dependent on the sequence current distribution factors and 
the ratio of the load current over the pure fault current at the 
fault location. The load current depends only upon the angle 
between the two sources and is equal to: 
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( )j

LD

1 e VA
I

ZS1 ZL1 ZR1

− θ−
=

+ +
 (5) 

The pure fault current depends upon the fault location, d; 
the current distribution factors and the fault resistance; as in: 

 

( )
( ) ( )( )

( ) ( )( )

I1F VA ILD ZS1 d ZL1

2 ZS1 d ZL1 ZR1 1 d ZL1
ZS1 ZL1 ZR1

ZS0 d ZL0 ZR0 1 d ZL0
3 Rf

ZS0 ZL0 ZR0

= − + ÷⎡ ⎤⎣ ⎦
⎡ ⎤+ + −

+⎢ ⎥
+ +⎢ ⎥

⎢ ⎥+ + −
⎢ ⎥+

+ +⎣ ⎦

 (6) 

Obviously, as the fault resistance increases, the pure fault 
current becomes smaller and smaller. Starting from (4), in a 
no-fault situation that is equivalent to a fault with infinite 
resistance, the pure fault current is equal to zero and the 
current ratio is simply equal to minus one, as in the next 
equation. Obviously the current ratio falls within the stability 
area in the Alpha Plane. 

 IAR 1
IAL

= −  (7) 

Also from (4), if the load current is equal to zero, the 
current ratio becomes independent from the pure fault current 
and, therefore, from the fault resistance. In this situation, the 
current ratio is dependent only on the sequence current 
distribution factors, as in: 

 
( ) ( )

( )
2 1 C1 1 C0IAR

IAL 2 C1 C0
− + −⎡ ⎤⎣ ⎦=

+
 (8) 

Let us define the two constants a and b as: 

 ( ) ( )
a 2 C1 C0
b 2 1 C1 1 C0

= +

= − + −
 (9) 

The phase-A current ratio can be expressed as a function of 
the load-to-pure-fault current ratio as: 

 
LD

LD

IbIAR I1F
IIAL a
I1F

−
=

+
 (10) 

The load-to-pure-fault current ratio can, in turn, be 
expressed as a function of phase-current ratio: 

 LD

IARb aI IAL
IARI1F 1
IAL

−
=

+
 (11) 

Based on (11), if, for a particular network and a particular 
stability characteristic in the Alpha Plane, we plot the contour 
corresponding to the load-to-pure-fault ratio when we travel 
around the stability perimeter, we obtain a new perimeter that 
defines the limit of the element sensitivity as a function of the 
load-to-pure-fault current ratio. 

As an example, for the elementary network of Fig. 3, for a 
fault at a distance, d, equal to 0 and 1 from the left bus and for 
a stability perimeter with radius 6 and angle α = 180°, we 

obtain the load-to-pure-fault current ratio sensitivity perimeter 
shown in Fig. 4. If, for a particular network and a given fault, 
the load-to-pure-fault current ratio falls inside the sensitivity 
perimeters, the fault current ratio will fall outside the stability 
perimeter and it will be detected. If the load-to-pure-fault 
current ratio falls outside the sensitivity perimeter, the fault 
will not be detected. We verify that if the load is equal to zero, 
the load-to-pure-fault current ratio falls automatically inside 
the sensitivity perimeter and the fault is detected. 

 
Fig. 4. Load-to-pure-fault current ratio sensitivity perimeter for phase-A-to-
G faults 

Looking at (6), there are two ways the pure fault current 
can be reduced so that the load-to-pure-fault current ratio will 
become larger to the point where the phase element will lose 
its sensitivity and will not detect a fault: 

• Situation I: increase the value of the fault resistance. 
For a phase-to-ground fault, there is always a 
maximum value of fault resistance beyond which the 
phase element will become blind to a fault. 

• Situation II: increase the value of the source 
impedances as would happen in a system where the 
system impedance ratio (SIR) is high at both 
extremities of the line. In such a situation, in order to 
supply the same load current, the load angle between 
the two sources will have to assume a higher value. 

Fig. 5 illustrates Situation I by exhibiting the trajectories of 
the phase-A current ratio for the elementary network of Fig. 3 
when a phase-A-to-ground fault is applied at three different 
locations on the line. In all cases, the load angle between the 
two sources is 5 degrees. For each of the three fault locations, 
the fault resistance is varied from zero to 100 ohms primary, 
with increments of 1 ohm. Obviously, as the fault resistance 
increases, the ratio of the load current over the pure fault 
current becomes high enough that the trajectory enters the 
stability area so that the phase element becomes blind to the 
fault. 
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Fig. 5. 87LA trajectories for a phase-A-to-G fault at three locations and 
variable fault resistance 

L R

d

ZL1 3.458 86
ZL0 12.54 75

= ∠
= ∠

VA 120 kV= VB 1 VA= ∠ − θ

ZS1 5*1.5 88
ZS0 5*3.0 70
SIR 2.17

= ∠
= ∠
=

ZR1 30*1.5 88
ZR0 30*3.0 70
SIR 13

= ∠
= ∠

=  
Fig. 6. 120 kV elementary network with higher SIR 

 
Fig. 7. 87LA trajectories for a phase-A-to-G fault at d = 0.33 with varying 
load angle 

To illustrate Situation II, we multiply the source 
impedances of the network in Fig. 3 by five on the left side 
(SIR of 2.17) and by 30 on the right side (SIR of 13), as 

represented in Fig. 6. To keep the same amount of load 
current, we must then increase the load angle between the two 
sources to keep the load angle between the two sources. Fig. 7 
shows the location of the current ratio for a phase-A-to-ground 
fault at location d = 0.33 when the load angle assumes values 
of 0 to 65 degrees with steps of 5 degrees. 

On the same figure, the corresponding characteristic 
sensitivity perimeter has been drawn. This figure also shows 
the trajectory of the load-over-pure-fault current ratio. As 
indicated by the trajectory entering the stability area, there is a 
value of load angle of about 55 degrees when the load-over-
pure-fault current ratio locus leaves the perimeter of 
sensitivity, indicating that the element has become blind to the 
fault. 

B.  Trajectories of Sequence Elements 
From Appendix A, the ratio of the zero-sequence currents 

at the extremities of the line is provided as: 

 
( ) ( )

( )
1 C0 I0F 1 C0I0R d ZL0 ZS0

I0L C0 I0F C0 1 d ZL0 ZR0
− − +

= = =
− +

 (12) 

In the same fashion, the ratio of the negative-sequence 
current at the two extremities of the line is: 

 
( ) ( )

( )
1 C1 I1F 1 C1I2R d ZL1 ZS1

I2L C1 I1F C1 1 d ZL1 ZR1
− − +

= = =
− +

 (13) 

Looking at (12) and (13), we see that the current ratios of 
the zero- and negative-sequence currents are totally 
independent from the load current and angle, the pure fault 
current, and, consequently, the fault resistance. The ratio 
depends only on the current distribution factors and, 
consequently, upon the fault location d. If the two sources had 
the same impedance and the fault location was the middle of 
the line, the current ratio of both 87LG and 87L2 elements 
would be the points (1,0) in (x,y) coordinates in the trip area. 

It could be said that the 87LG and 87L2 elements have a 
theoretical infinite sensitivity to resistive ground faults. 
However, this could only be stated for perfectly transposed 
networks and perfect CTs. In reality, a limit to this sensitivity 
would be set by a minimum sequence (negative or zero) 
differential pickup current in order to take into account the 
natural unbalances in the network, the CT errors, and so forth. 

As an example, Fig. 8 represents the locus of the negative-
sequence current ratio when a phase-A-to-ground fault is 
applied at locations from 0 to 1, per unit of line length for the 
elementary network of Fig. 3. Note that this current ratio 
trajectory is totally independent from the fault resistance and 
the load angle. Because all the network impedances are 
inductive, the negative-sequence currents ratio is located close 
to the horizontal axis on the right-hand side half-plane that 
belongs to the trip area. Fig. 9 represents the same locus for 
the zero-sequence ratio under the same conditions. 

C.  Phase Element With Removal of the Load Current 
The load current is the current that exists on the line prior 

to the fault. Referring back to (4), subtracting the load current 
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from the fault current prior to computing the current ratio 
would yield: 

 

( ) ( )[ ]
( )

( ) ( )
0C1C2

0C11C12

IIF1I0C1C2
IIF1I0C11C12

IALIAL
IARIAR

LDLD

LDLD

preflt

preflt

+
−+−

=

−++
+−−+−

=
−

−

 (14) 

Equation (14) indicates that the phase current ratio of an 
87LA element where the load current has been removed from 
the fault current is now dependent only on the sequence 
current distribution factors and, therefore, the network 
impedances. This element would have the same insensitivity 
as an 87LG or 87L2 element with respect to resistive faults 
and load angle. 

Fig. 10 represents the trajectory of the 87LA element when 
the prefault current is removed and when a phase-A-to-ground 
fault is applied from distance 0 to 1, with a fault resistance of 
100 ohms. Obviously, the element has become insensitive to 
the fault resistance. 

In the scheme of Fig. 2, it is obvious that there is no 
necessity to remove the load current from the phase elements 
because the high level of sensitivity is already guaranteed by 
the two sequence elements, 87LG and 87L2. 

V.  TRAJECTORIES OF FAULTS FOR A 
SHORT LINE WITH AN OPEN POLE 

A.  Case of a Single-Phase-A-to-Ground Fault With Phase-B 
Open 

Consider the elementary network of Fig. 3 and assume that 
single-pole tripping has been instituted on the line protection 
scheme. Let us further assume, as an example, that phase-B is 
open and that a subsequent phase-A-to-ground fault occurs. 
We want to investigate the sensitivity of the phase and 
sequence elements in this new situation. 

 
Fig. 8. 87L2 trajectories for a phase-A-to-G fault at different locations 

 
Fig. 9. 87LG trajectories for a phase-A-to-ground fault at different locations 

 
Fig. 10. 87LA element trajectories for a phase-A-to-G fault at different 
locations with no load and fault resistance of 100 ohms 

A thorough analysis of a phase-A-to-ground fault during a 
phase-B open is presented in Appendix B, with the 
computation of phase-A and sequence currents during the fault 
using the proper sequence network. 

The current ratio of the 87LA element is provided as: 

 
( )

IF
m
m

n2m
n2m

2
3IAL

IF
m2
m3

n2m
n2m5.0q2p2IAR

IAL
IAR

111
preflt

111
preflt

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+−+

++

=

 (15) 

where the current through the fault IF is given as a function 
[see (60) in Appendix B] of the distance to the fault d, the 
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network impedances, the source voltages, and the fault 
resistance Rf, as in: 
 ( )VB,VA,R,0ZR,0ZL,0ZS,1ZR,1ZL,1ZS,dfuncIF =  (16) 

Variables p, q, m, n, m1, n1 are defined in (52) in 
Appendix B. 

As in the case of the three-pole trip application, (15) 
indicates that the trajectory of the 87LA element in a single-
pole trip application will be dependent upon the distance to the 
fault, the network impedances, the source voltages, and the 
fault resistance Rf. 

For the elementary network of Fig. 3, the plot in Fig. 11 
shows the trajectory in the Alpha Plane of the current ratio for 
the 87LA when a phase-A-to-ground fault is applied at 
33 percent of the line length and phase-B is open. The primary 
fault resistance is varied from 0 to 100 ohms. 

The current ratio for the 87L2 element is provided by: 

 
( )

( ) ( )

( )
( ) IF
m2

a1m
n2m
n2m

2
a1

n2mm
nVa

IF
m2

a1m
n2m
n2m

2
a

n2mm
nVa

R2I
L2I

111
2

111
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

+
+

−+
+

Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

+
+

+
+

Δ−

=  (17) 

The sequence ratio for the 87L0 element is: 

 
IF

n2m
q2p

n2m
Va

IF
n2m
n2m

n2m
Va

R0I
L0I

2

11
2

+
+

+
+
Δ

+
+

−
+

Δ−

=  (18) 

Examining (17) and (18), we can see that, contrary to the 
three-pole tripping application, the current ratio in the 87L2 
and 87LG elements is no longer independent from the fault 
resistance Rf, the source voltages, and the current at the fault 
IF. 

 
Fig. 11. 87LA element trajectory during a phase-B open with a phase-A-to-
G fault with varying fault resistance  

Fig. 12 and Fig. 13 show the trajectory of the current ratio 
for the 87L2 and 87LG elements under the same conditions as 
the phase element. Examining the plots in Fig. 12 and Fig. 13, 
we can see that, contrary to the three-pole trip application, the 
87L2 and 87LG elements lose their sensitivity in a single-pole 
trip application with respect to resistive faults. We could even 
claim that the sequence elements are no more sensitive than 
the phase element itself. 

 
Fig. 12. 87LG element trajectory during a phase-B open with a phase-A-to-
G fault with varying fault resistance 

 
Fig. 13. 87L2 element trajectory during a phase-B open with a phase-A-to-G 
fault with varying fault resistance 

B.  Removal of the Prefault Current in the Sequence Elements 
During an Open Pole 

As shown in Appendix B, during an open pole, there are 
negative- and zero-sequence currents flowing into the line. 
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The 87L2 and 87LG elements will process these sequence 
currents as if they belong to an external fault and, 
consequently, will not pick up. If during an open pole we 
systematically remove the prefault sequence currents when 
computing the current ratio in the 87L2 and 87LG elements, 
we end up with: 

 ( )
q2p

n2m

IF
n2m
q2p

IF
n2m
n2m

R0IR0I
L0IL0I 11

11

preflt

preflt

+
+−

=

+
+
+
+

−
=

−

−
 (19) 

 

( )

( )
m2

a1m
n2m
n2m

2
a1

m2
a1m

n2m
n2m

2
a

R2IR2I
L2IL2I

111
2

111
2

preflt

preflt

−
+

+
+

−

−
−

+
+

=
−

−
 (20) 

Examining (19) and (20), we can see that the removal of 
the prefault current for a fault occurring during an open-pole 
situation has rendered the element independent from the 
current flowing into the fault, and consequently, independent 
from the fault resistance. The sequence elements can be made 
once again to have virtually infinite sensitivity to resistive 
faults. 

Fig. 14 shows the locations of the 87L2 element current 
ratio for a phase-A-to-ground fault at 33 percent of line length 
during a phase-B pole-open situation with a primary fault 
resistance of 50 ohms for the elementary network of Fig. 3. 
Fig. 14 shows two loci: one locus with the prefault currents 
kept in the current ratio and a second locus with the prefault 
currents removed from the current ratio. The obvious 
consequence of the prefault currents removal is to restore the 
87L2 element sensitive by moving the current ratio locus from 
the stability to the trip area. 

 
Fig. 14. 87L2 element current ratio loci during a phase-B open with a phase-
A-to-G fault with prefault current present and removed 

C.  Removal of the Prefault Current in the Phase Elements 
During an Open Pole 

The prefault current can be removed from the phase 
elements as well. For the 87LA element, the resulting current 
ratio is represented in (21). Obviously, the current ratio has 
become dependent only upon the fault location d and the fixed 
network impedances. The compensated 87LA element will be 
able to detect resistive faults with the same sensitivity as the 
sequence elements do. 

 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+−+

+
=

−

−

m
m

n2m
n2m

2
3

m2
m3

n2m
n2m5.0q2p2

IALIAL
IARIAR

111

111

preflt

preflt  (21) 

At this stage, is there justification for removing the prefault 
current from the phase elements during an open pole? For the 
sake of implementation simplicity, it is recommended that the 
prefault current from the two sequence elements, 87LG and 
87L2, be removed only during an open-pole situation. There is 
no need to remove them from the phase elements, since 87LG 
and 87L2 will provide the necessary sensitivity. 

VI.  TRAJECTORIES OF FAULTS FOR LONG LINES 
For the purpose of this study, a long line is defined as one 

having significant shunt capacitance. 

A.  Long Lines Impact on Phase Differential Elements 
The most important impact of long lines on phase 

differential elements is the presence of significant shunt 
capacitance. As a consequence, important current will be 
drawn by this shunt capacitor at the relay location. In a no-
load situation (no current flowing into the line), a phase 
differential element will see the current ratio caused by the 
shunt capacitance at both extremities of the line fall into the 
trip area because the current-ratio phase angle will be close to 
zero. To prevent a misoperation caused by the shunt current, it 
is necessary to impose a threshold that does not allow the 
phase differential element to operate unless the phase current 
is greater than the shunt current. 

B.  Long Lines Impact on Sequence Differential Elements 
In three-pole tripping applications, the impact of shunt 

capacitances on the 87L2 or 87LG elements can be neglected 
because the shunt currents corresponding to the three phases 
are balanced. Consequently, they disappear when the local 
zero- or negative-sequence currents are determined. 

The situation is different in single-pole tripping 
applications. During a pole-open situation, the local negative- 
or zero-sequence current caused by the shunt capacitances will 
not be zero, but will be equal in magnitude to one third of the 
original phase current caused by the shunt capacitance. In an 
open-pole situation, as applied for the phase element in three-
pole-tripping situations, a threshold has to be imposed on the 
local sequence currents before the sequence element is 
allowed to operate. 
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C.  Pole-Open Sequence Elements Compensation for Long 
Lines 

The principle described for the compensation of sequence 
elements during single-pole tripping applications is still valid 
for long lines. The only difference is that the prefault current 
will now have two components: the combination of the local 
sequence current caused by the shunt capacitance plus the 
sequence current caused specifically by the pole-open 
situation [see (54) to (56) in Appendix B]. 

Consider the 500 kV long line of Fig. 15 and a resistive 
phase-A-to-ground fault occurring at 33 percent of the line 
length during a phase-B open condition. The primary fault 
resistance is 150 ohms. None of the 87LA or the sequence 
elements, 87LG and 87L2, will see the fault because the fault 
resistance will keep the different current ratios inside the 
respective stability area. When compensation by removal of 
the prefault current is applied, both the 87L2 and the 87LG 
elements will detect the fault. 

Fig. 16 represents the 87L2 element trajectory without any 
compensation. Obviously, the trajectory remains confined 
inside the stability area. Fig. 17 represents the same element 
trajectory with removal of the prefault current. The element 
detects the fault under the new conditions. 

Length 200 km
ZL1 73.02 87.26
ZL0 274.1 84.12

=
= ∠
= ∠

VA 500 kV= VB 1 39 VA= ∠ −

ZS1 15.94 88
ZS0 15.94 88
SIR 0.22

= ∠
= ∠
=

B1 1102.74
B0 1762.71

=
=

ZR1 15.94 88
ZR0 15.94 88
SIR 0.22

= ∠
= ∠

=  
Fig. 15. 200 km 500 kV long line model 

 
Fig. 16. 87L2 element current ratio loci during a phase-B open phase-A-to-
G fault on a long line with fault resistance of 150 ohms with no compensation 

 
Fig. 17. 87L2 element current ratio loci during a phase-B open phase-A-to-
G fault on a long line with fault resistance of 150 ohms with prefault current 
compensation 

In this example, the compensation has been effective 
because the angle between the two sources has been set to 
39 degrees and is an indication of a high loading level. Had 
the load not been so high, the sequence elements would have 
seen the fault even without any compensation. This result is 
consistent with the study of the impact of the load on short 
lines presented previously. 

D.  Trajectories of Faults With Series Compensation 

    1)  Nature of Subsynchronous Resonance 
The main impact of series-compensated lines on 

differential elements will be the presence of an additional 
frequency component in the currents caused by the presence 
of a well-known phenomenon called subfrequency resonance. 
This subsynchronous resonance typically occurs between 5 
and 20 Hz. It can be apprehended by looking at Fig. 18, which 
represents a simplified model of a series-compensated line 
together with a shunt inductance. This circuit will exhibit a 
pole at the frequency f0 equal to: 

 
( )0

s p s

1f
2 L L C

=
π +

 (22) 

Since the line inductance, Ls, is far smaller than the shunt 
inductance, Lp, the resonance will finally be determined by the 
series capacitance and the shunt inductance as in: 

 
sp

0 CL2
1f

π
=  (23) 

This subsynchronous component will pervade the phase 
currents and is very difficult to remove by filtering, given the 
low value of the frequency component (low-pass filtering will 
impose delays much larger than the required protection 
response time). 
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Rs Ls Cs

Rp

Lp

 
Fig. 18. Simplified representation of series and shunt compensation 

E.  Impact of Subsynchronous Component on Differential 
Element Current Ratio 

To understand the impact of the subsynchronous 
component of the trajectory of the current ratio of the 
differential element, a phase-A-B-to-G fault has been 
simulated on the series-compensated network represented in 
Fig. 19. 

Length 200 km
ZL1 102.23 87.26
ZL0 383.74 84.12

=
= ∠
= ∠

VA 500 kV= VB 1 39 VA= ∠ −

 
Fig. 19. Series-compensated network 

 
Fig. 20. Trajectory of 87LB for series-compensated line A-B-G fault 

Fig. 20 represents the trajectory of the 87LB element. As 
you can see, the presence of the subfrequency component will 
cause the locus of the current ratio to oscillate around the final 
current ratio. The final location of the current ratio is close to 
the stability area because of the high level of loading on the 
line. A situation could develop with higher loading and greater 
oscillations where the trajectory during the fault will infringe 

on the stability area and the element will momentarily not 
detect the fault. Pulling the angle alpha back to a lower value 
can mitigate this situation. 

Fig. 21 represents the trajectory of the 87L2 element during 
the fault. As explained previously, the effect of the sequence 
element is to remove the loading effect present on the phase 
element. Whereas the phase element could momentarily 
infringe on the stability area, the sequence element will 
perform a more secure trip even though its trajectory will 
undergo an equivalent oscillation because of the 
subsynchronous component. 

 
Fig. 21. Trajectory of 87L2 for series-compensated line A-B-G fault 

VII.  THE IMPACT OF EXTERNAL FAULTS WITH SINGLE  
CT SATURATION IN THE ALPHA PLANE 

A.  The Concept of a Saturated Current Phasor 
The concept of the saturated current phasor, introduced in 

[2], allows transforming the essentially nonlinear CT 
saturation phenomenon into a linear problem. In digital relays 
where phasors are computed through a filtering process, the 
phasor of a saturated current can be defined as a linear 
transformation of the nonsaturated current phasor. This 
transformation involves a reduction in the magnitude, 
accompanied by a positive rotation of the phase angle. 

The concept of a saturated current phasor as a linear 
transformation on the true phasor allows for taking into 
account saturation in relays characteristic equations that model 
numerical relays performance in steady state. 

As an example, consider a fault of 20,000 A with an X/R 
ratio of 11.31 when the current is processed through a CT with 
the following characteristics: 

ANSI voltage: 400 V 
Turn ratio: 240 
Burden: 2 ohms (purely resistive) 
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Fig. 22 shows the corresponding saturated secondary 
current together with the true current. This figure also shows 
the magnitudes of both currents as would be acquired by a 
numerical Cosine filtering system. Note that a full-cycle 
Fourier filter would exhibit similar results. Obviously, during 
the saturation interval, the acquired current magnitude is 
falling short of the true value. 

 
Fig. 22. CT saturation effect on a current phasor magnitude 

Fig. 23 shows the ratio of the saturated current phasor 
magnitude over the true current phasor magnitude, as a Cosine 
filter filtering system would acquire them. Fig. 24 shows the 
phase advance of the saturated current phasor with respect to 
the nonsaturated current phasor and exhibits a maximum 
phase angle advance of 57 degrees. 

Fig. 23 exhibits a minimum ratio of approximately 0.4. 
Obviously, the impact of saturation on a current phasor is a 

transient phenomenon. The parameters of this transformation 
will vary with time until the magnitude reduction becomes one 
and the phase angle advance becomes zero when the 
saturation has vanished. However, a saturation level can be 
defined by the minimum magnitudes ratio and the maximum 
phase angle advance reached during the time the saturation 
takes place. 

 
Fig. 23. Ratio of magnitudes of saturated over true current phasors 

 
Fig. 24. Phase advance of saturated over true current phasor 

Reference [2] proposes four levels of saturation as 
convenient definitions from low to extreme saturation. 
Assuming a true current phasor IA, the limits of the 
transformation to be applied to the true phasor to get the 
saturated current phasor, IA_sat, are defined in Table I for the 
four defined levels of saturation. 

TABLE I 
PHASOR TRANSFORMATION AS A FUNCTION OF SATURATION LEVEL 

Saturation Level Transformation 

Low Saturation IA_sat = (1–0.9) ∠ (0–10)° IA 

Moderate Saturation IA_sat = (0.9–0.5) ∠ (10–45)° IA 

High Saturation IA_sat = (0.5–0.2) ∠ (45–85)° IA 

Extreme Saturation IA_sat = (<0.2) ∠ (>85)° IA 

When a CT saturates, the saturation level then will be 
defined as the one for which the minimum magnitude ratio 
found in the transient state does not get below the ratio 
defined for the particular saturation level. Alternatively, the 
maximum phase advance found in the transient state should 
not get above the phase advance defined for the same 
saturation level. 

B.  Performance of Phase Elements During External Faults 
With Single CT Saturation 

For a numerical line current differential relay, the impact of 
a single CT saturation during an external fault on a phase 
current differential element (87LA, 87LB, or 87LC) is easily 
understood if the concept of the saturated current phasor is 
being used. Consider the same elementary network as before 
(Fig. 3) and assume a phase-B-to-ground fault occurs external 
to the line, as shown in Fig. 27. In the situation where there is 
no saturation, the location of any of the three phase current 
ratios IR/IL will be inside the stability area close to the point 
(–1,0). If saturation is present on one side of the line, the 
magnitude of the saturated current phasor will be reduced and 
it will undergo a rotation in proportion to the saturation level 
that could go beyond 90 degrees. As a consequence of the 
transformation imposed on the saturated current phasor, the 
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magnitude of the current ratio, during the time interval the 
saturation occurs, will depart from the stable position [close to 
(–1,0)] and take values that could go up to 0.1 (or 10, 
depending how the ratio is performed) for cases of high 
saturation and beyond for extreme situations. Alternatively, 
the current-ratio phase angle will depart from the stable 
position around 180 degrees and will undergo a rotation that 
will bring it to values close to ±90 degrees for high saturation 
levels and beyond for extreme saturation cases. 

With the present characteristic implemented in the Alpha 
Plane, the user has two settings to cope with the expected level 
of saturation: the greater arc radius R and the angle alpha. As 
an example, a radius R between 8 and 10 and an angle 
between 180 and 210 will sustain high-to-extreme levels of 
saturation, as defined in Table I. 

Fig. 28 shows the trajectory of the phase-B current ratio 
when the fault occurs and the right-hand side CT undergoes 
saturation. Note that the Alpha Plane characteristic will handle 
nicely the CT saturation. Also note that without saturation, the 
element trajectory should be around the point (–1,0). 

C.  Impact of a Distorted Phase Current on the Corresponding 
I0 or I2 Phasor 

During an external ground fault, the zero- and negative-
sequence currents measured at both extremities of a 
transmission line will be opposed in phase, as shown in 
Fig. 25. When the corresponding sequence differential current 
is computed, the result will be close to zero and the 
corresponding current-ratio plane elements 87L0 and 87L2 
will not operate. 

0

I0_Remote
 or I2 _Remote

I0_Local
 or I2 _Local  

Fig. 25. Sequence currents during an external fault 

During an external fault, the faulted phase CT could 
saturate. What is, then, the impact of a saturated CT on both 
sequence elements? The problem is to find the transformation 
on a sequence phasor (negative- or zero-sequence) that is a 
function of the saturated current phasor. This problem has 
been thoroughly analyzed in [2] and will be briefly reviewed 
here. 

Assume that any type of external fault could occur, but that 
only the phase-A CT would saturate. Define two vectors, IS0 
and IS2, as: 
 ICIB0IS +=  (24) 

and: 

 ICaIBa2IS 2 +=  (25) 

so that from (24) and (25), we have: 
 0ISIA0I3 +=  (26) 
 2ISIA2I3 +=  (27) 

Obviously, IS0 and IS2 are the two vectors added to the 
phasor IA in order to obtain 3I0 and 3I2. Equations (26) and 
(27) are general by definition and could apply to any type of 

external fault. In the rest of the text, IS will represent 
interchangeably IS0 or IS2. 

IA is defined as a unit phasor, and in Fig. 26, IS is 
represented with a phase-angle lag of approximately 
120 degrees with respect to faulted phasor IA. By adding IA 
to IS0 or IS2, we obtain the local zero- or negative-sequence 
phasor I0 or I2. Assume that the phase-A current undergoes 
saturation and is subjected to a reduction in magnitude to 0.4 
and a phase advance of 60 degrees. The corresponding 
saturated phasor is then IA_sat. The new zero- and negative-
sequence phasors resulting from the saturation of phase-A are 
shown as I0_sat or I2_sat. For the example shown, we can see 
that I0_sat or I2_sat undergoes a rotation of practically 
180 degrees with respect to the original position of I0 or I2 
when the original rotation imposed by the saturation on IA 
was only 60 degrees. 

This simple example has shown that for any type of 
external fault, it is possible to find locations of IS (IS0 or IS2) 
with respect to IA that will make the corresponding element 
87LG or 87L2 unstable during a moderate saturation of the 
phase-A current. This example demonstrates that the 
possibility of a negative- or zero-sequence phasor undergoing 
a rotation of 180 degrees for a moderate saturation of the 
phase-A current makes it impossible to stabilize a sequence 
element when saturation occurs. This is true whether we use a 
characteristic in the Alpha Plane or a conventional dual-slope 
characteristic to implement the sequence element. 

For this reason, [2] has introduced the concept of a 
saturation detector that blocks the sequence elements (87LG 
and 87L2) when saturation is detected on any of the six 
processed phase currents. This justifies the blocking of the 
sequence elements as represented in the protection scheme of 
Fig. 2. 

Fig. 29 represents the 87LG elements current ratio for the 
same phase-B-to-ground fault. Obviously, the element is 
completely unstable because of the saturation, even though 
radius R has been set to 7 and the angle alpha is equal to 
215 degrees. Although it has been possible to stabilize the 
phase-B element, this is not the case with the 87LG element, 
which is why it is simply blocked to prevent a misoperation. 

IA

IA_sat

I0 or I2IS_0 or IS_2

I0_sat or I2_sat 60 deg.

 
Fig. 26. Principle of sequence phasor rotation 

L R

d

ZL1 3.458 86
ZL0 12.54 75

= ∠
= ∠VA 120 kV= VB 1 VA= ∠ − θ

ZS1 1.5 88
ZS0 3.0 70
SIR 0.43

= ∠
= ∠
=

ZR1 1.5 88
ZR0 3.0 70
SIR 0.43

= ∠
= ∠

=

B-G 
Fault

 
Fig. 27. Elementary network with external phase-B-to-ground fault 
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Fig. 28. 87LB current ratio during external fault with saturation 

 
Fig. 29. 87LG current ratio during external fault with saturation 

VIII.  CONCLUSIONS 
1. In three-pole tripping applications, sensitivity will be 

provided by the 87LG and 87L2 sequence elements. The 
current ratio of these elements will be located entirely in 
the right-hand side of the complex plane close to the 
horizontal axis. They are immune to any load effect. 

2. In three-pole tripping applications, phase elements 
(87LA, 87LB, or 87LC) will be subjected to the effect of 
load and will undergo trajectories that will go inside the 
stability area at high values of fault resistance or at high 
values of load angle. 

3. In single-pole-tripping applications, subtracting the 
prefault current (current during the pole open condition) 
from the fault current will restore the original sensitivity 
of sequence elements.  

4. In all applications, phase element sensitivity equivalent to 
that achieved with sequence elements can be obtained by 
removing the prefault current from the fault current. 
However, it is much simpler to rely on sequence elements 
for sensitivity provided the prefault current is removed 
during pole-open situations only. 

5. The concept of the saturated current phasor allows for 
studying the impact of saturation by its introduction in 
relays steady-state characteristic equations. Because a 
saturated sequence phasor rotation could be as high as 
180 degrees, there is a tendency for both the 87LG and 
87L2 elements to become completely unstable and see 
their trajectory infringe on the right-hand side of the 
current ratio plane. Misoperation could happen even at 
moderate levels of saturation. Due to the fact that an 87L0 
or 87L2 could become irremediably unstable, they should 
be blocked when saturation is detected on any of the 
phase current. 

6. A phase characteristic with a large radius R (equal or 
above 7) and an extended angle alpha (larger than 
180 degrees) will be able to sustain high to extreme levels 
of saturation in phase elements. Immunity to high 
resistive faults and loading effect will then have to be 
achieved by sequence elements. 

7. In long line applications, careful attention should be 
exercised so that the pickup level of an element should be 
above the expected shunt current both in three-pole and 
single-pole tripping situations. 

8. In series-compensated lines applications, a combination 
of loading effect and current ratio oscillations due to 
subsynchronous component could make a phase element 
trajectory infringe into a larger stability characteristic. 
Pulling back the angle alpha to a value smaller than 
180 degrees could be a solution to consider. Special 
studies should be carried out to determine the nature of 
the various elements trajectories, and CTs should be 
properly selected so as to try to avoid saturation. 

IX.  APPENDIX A: RESOLUTION OF AN EXTERNAL  
SINGLE-PHASE-A-TO-GROUND FAULT USING THE  

SEQUENCE NETWORK 
For the single-line network of Fig. 30, a single-phase-A-to-

ground internal fault at location d from the left bus, L, is 
resolved using the sequence network of Fig. 31 where the 
superposition principle is being used. The superposition 
principle consists in applying to the faulted network (sequence 
network) a voltage at the fault location equal to the voltage 
existing at the same point before the fault. The total fault 
current at some location on the network is equal to the load 
current existing before the fault plus the pure-fault current 
(current void of any load) existing on the faulted network.  

VA L R

ZL1
ZL0

dZS1
ZS0

ZR1
ZR0

VB 1 VA= ∠ − θ

 

Fig. 30. Single-line network 
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Ef

ZR1

d ZL1

Rf

N1

ZS1

N0

I1F

ZR1

d ZL1

Rf

ZS1

ZR0

d ZL0

Rf

ZS0

I2F

I0F

 (1-d) ZL1

 (1-d) ZL1

 (1-d) ZL0

 
Fig. 31. Phase-A-to-ground fault at R pure-fault sequence network 

For the circuit of Fig. 30, the voltage at the fault location 
prior to the fault is: 
 M1ZIVAEf LD−=  (28) 

where Z1M is the impedance between the source VA and 
the fault location at distance d is: 
 1ZLd1ZSM1Z +=  (29) 

The load current in the line is provided by: 

 ( )
N1ZM1Z

VAe1I
j

LD +
−

=
θ−

 (30) 

where Z1N is defined as: 
 ( ) 1ZLd11ZRN1Z −+=  (31) 

The total impedance ZSOM in front of the source Ef on the 
faulted circuit is: 

 Rf3
N0ZM0Z

N0ZM0Z
N1ZM1Z
N1ZM1Z2ZSOM +

+
+

+
=  (32) 

with Z0M and Z0N being defined as: 
 0ZLd0ZSM0Z +=  (33) 

 ( ) 0ZLd10ZRN0Z −+=  (34) 

The positive-sequence current at the fault is equal to the 
source voltage divided by the total impedance: 

 
ZSOM

EfF1I =  (35) 

For a single-phase-A-to-ground fault, the negative- and 
zero-sequence current at the fault are equal to the positive-
sequence current: 
 F1IF2I =  (36) 
 F1IF0I =  (37) 

The positive-, negative-, and zero-sequence currents at the 
relay location close to the L bus are provided as: 
 F1I1CL1I =  (38) 

 F1I1CL2I =  (39) 

 F1I0CL0I =  (40) 

where C1 and C0 are the current distribution factors at the 
relay location and are equal to: 

 
N1ZM1Z

N1Z1C
+

=  (41) 

 
N0ZM0Z

N0Z0C
+

=  (42) 

The positive-, negative-, and zero-sequence currents at the 
relay location close to the R bus are provided as: 
 ( ) F1I1C1R1I −=  (43) 

 ( ) F1I1C1R2I −=  (44) 

 ( ) F1I0C1R0I −=  (45) 

The phase-A current at the relay location close to the L bus 
is: 

 ( ) LD

LD

IF1I0C1C2
IF0I0CF2I2CF1I1CIAL

++=
+++=

 (46) 

The phase-A current at the relay close to the R bus is: 
 ( ) ( )[ ] LDIF1I0C11C12IAR −−+−=  (47) 

X.  APPENDIX B: RESOLUTION OF AN INTERNAL  
SINGLE-PHASE-A-TO-GROUND FAULT  

WITH PHASE-B OPEN USING THE SEQUENCE NETWORK 
Consider the elementary network of Fig. 30; the sequence 

network corresponding to a phase-B open situation is 
represented in Fig. 32. 

In order to draw the sequence network for a phase-B open 
situation, two constraints must be embedded into the network: 
a voltage constraint and a current constraint. Assume that 
phase-B is open between two points, x and y. Obviously, the 
sequence voltages between points x and y are provided by the 
following conditions: 
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 (48) 

In (48), “a” is the conventional complex operator 1∠120°. 
Obviously, VAxy and VCxy are zero so that we end up with: 

 

( )
( )
( ) xyxy

xy
2

xy

xyxy

VB310V

VBa312V

VBa311V

=

=

=

 (49) 

Regarding the current constraint, it is expressed by the 
condition that the phase-B current must be equal to zero or: 

 0L0IL2IaL1IaIB 2 =++=  (50) 

 



14 

I1L

x y

ZS1 ZR1

ZL1

N1

I2L

ZL2

I0L

ZS2 ZR2 ZS0

N2

x xy y
ZL0

a:1  a2:1 1:1

VA VB

ZR0

N0

V1xy V2xy V0xy

I1R I2R I0R

 
Fig. 32. Sequence network of phase-B open elementary network 
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 (51) 

The three ideal transformers represented in the sequence 
network of Fig. 32 implement the two voltage and current 
constraints. 

The sequence network of Fig. 32 can be resolved for the 
unknown sequence currents by solving the (51) linear matrix 
equation. 

Let us define the following variables: 

 ( )
( )

0ZS0ZLd0ZS0ZLdnnq
2ZS2ZLd1ZS1ZLdmmp

0ZR0ZLd1n
1ZR1ZLd1m

0ZR0ZS0ZLn
2ZR2ZS2ZL1ZR1ZS1ZLm

VBVAV

1

1

1

1

+=+=+=
+=+=+=

−−−=
−−−=

++=
++=++=

−=Δ

 (52) 

Using the Gaussian elimination process can resolve the 
system of equations in (51) and leads to the solution for the 
three sequence currents as: 

 ( )
( )n2mm

nmVR1IL1I prefltpreflt +
+Δ

=−=  (53) 

 ( )n2mm
nVaR2IL2I prefltpreflt +

Δ
−=−=  (54) 

 
n2m

VaR0IL0I
2

prefltpreflt +
Δ

−=−=  (55) 

It should be borne in mind at this stage of the analysis that 
the three sequence currents determined during the phase-B 
open condition constitute the prefault currents before any 
other fault would occur at a later stage. For this reason, the 
sequence currents have been shown in (53) through (55) with 
a prefault subscript. 

Following the same reasoning, the phase-A prefault current 
on the left side can be computed as the sum of all three 
sequence currents: 

 
( ) ( )

( )

2

preflt

m V 1 a n V 1 a
IAL

m m 2 n

Δ − + Δ −
=

+
 (56) 

The phase-A current on the right side is the opposite of the 
former as: 

 
( ) ( )

( )

2

preflt

m V 1 a n V 1 a
IAR

m m 2 n

Δ − + Δ −
= −

+
 (57) 

Let us assume now that during the open phase-B condition, 
a subsequent phase-A-to-ground fault occurs at a distance, d, 
from the left bus of the line. This faulted sequence network is 
represented in Fig. 33, where the new condition of a phase-A-
to-G has been added to the already represented pole-open B 
condition. The sequence currents can now be resolved by 
solving the next set of linear equations: 
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 (58) 
By using the same Gaussian elimination process as before, the current at the fault IF and the sequence currents at the left-

hand-side line bus can be computed as: 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )n2mmR6n2mmp3n2mqp5.0m2

n2mVAm2n2ma1pVqp5.0Vma2IF
f111

2

+++−+−−
+++−Δ−−−Δ−

=  (59)



15 

 IF
n2m
n2m

n2m
VaL0I 11

2

+
+

−
+

Δ−
=  (60) 

 ( )
( ) IF
m2

a1m
n2m
n2m

2
a

n2mm
nVaL2I 111

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

+
+

+
+

Δ−
=  (61) 

 
( )

( )
( )2

11 1
m a 1V m n m 2 naI1L IF

m m 2 n 2 m 2 n 2 m

⎛ ⎞−Δ + +⎜ ⎟= + +
⎜ ⎟+ +
⎝ ⎠

 (62) 

The phase-A fault current on the left side is equal to the 
sum of the three sequence currents: 
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 (63) 

The sequence currents at the right-hand-side bus can be 
computed as: 
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The phase-A fault current on the right-hand side is equal to 
the sum of the three sequence currents: 
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 (67) 

Looking at (60) through (62) for the left-hand-side bus and 
(64) through (66) for the right-hand-side bus and considering 
(53) through (55) for the sequence currents in the open-pole 
situation only, notice that the sequence currents at both 
extremities of the lines are composed of a prefault term and a 
second term that is proportional to IF, so that we can now 
write: 
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Following the same line of thinking, the two phase-A 
currents in (63) and (67) are at both extremities of the line and 
can be expressed as: 
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 (74) 

and: 
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Following the next identity: 

 1aa 2 −=+  (76) 
Equations (74) and (75) can be rewritten as: 
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Fig. 33. Sequence network of phase-B open with phase-A-to-ground fault 
elementary network 

Looking at (68) through (73) providing the sequence 
currents at both extremities of the line and at (77) and (78) 
providing the phase-A currents, one can see that any current 
can be expressed in the general form corresponding to: 
 ( ) IF0ZR,0ZL,0ZS,1ZR,1ZL,1ZS,dfuncII preflt +=  (79) 

In (79), any current, phase, or sequence can be expressed as 
the sum of the current existing before the fault and the product 
of a function “func” by the current IF flowing into the fault in 
the sequence network. The function “func,” in turn, is a 
function of the distance to the fault and the network 
impedances only. 

The current IF flowing into the fault is a function of the 
distance to the fault, the network impedances, the source 
voltages, and, most important of all, the fault resistance Rf.  
 ( )VB,VA,Rf,0ZR,0ZL,0ZS,1ZR,1ZL,1ZS,dfuncIF =  (80) 
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