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I.  INTRODUCTION 
A problem occurred while a customer was testing the 

motor relay that provides protection using a thermal model. 
This occurred when the relay SF was set at 1.0 and the relay 
tested with 1.0 p.u. of FLA. The complaint was that the relay 
tripped instantly on overload when the thermal damage curve 
showed considerable time delay available in the overload 
region. 

Our task was to prove that the thermal damage curve did 
not apply with the current at 1.0 p.u. and that it was plotted for 
a specific current that was less than 1.0 p.u. Here is how the 
initial current was determined. 

II.  MOTOR ANALYSIS 
Fig. 1 shows the thermal limit curve for WEG 1600 kW 

motor with SF = 1 and Fig. 2 shows the Current and Torque 
versus speed curve for the motor. Note that in Fig. 1, the 
starting current goes below 1.0 p.u. Also, in Fig. 2, the load 
torque curve intersects the motor torque curve at 78.6% at full 
speed. A motor study determined that the running current for 
this torque is 0.9695 p.u. 

 
Fig. 1 Thermal Damage Curve for WEG 6600V, 1600 kW, 1000rpm 
Induction Motor 

 

 
The Mathcad® plot of Equation (1) superimposed on the 

WEG graph in Fig. 1 proves it to be a perfect match. 
According to the Thermal Relay Standard IEC-255-8, 

when a hot curve is given, the manufacturer is obligated to 
state the initial current for which the curve is plotted. In this 
case the initial current is 0.9695, and not the service factor 
current of 1.00 used to test the relay. 

 
Fig. 2 Current and Torque versus Speed for the WEG 1600 kW Induction 
Motor 

The heating time constant of 130 minutes (7800 seconds) is 
given in the manufacturer’s motor data. Using this initial 
current, the time constant, and the SF = 1 in the heat equation 
gives the overload curve: 
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III.  THERMAL MODEL OVERLOAD RESPONSE 
It is instructive to compare the thermal model response 

with that of a competitive relay when both relays are applied 
to provide overload protection. Fig. 3 shows the thermal 
model and the competitive relay superimposed on the thermal 
damage curve. The second relay characteristic with its TD 
setting of five has a similar shape and coordinates closely with 
the thermal damage. However, as explained in [1], the thermal 
model derives its dynamic properties from a first order 
differential equation while the second relay has the dynamic 
response of the adiabatic model explained in [1]. 
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Fig. 3 Thermal Damage Curve with Thermal Model and a Coordinated 
Motor Relay Characteristic 

Fig. 4 and Fig. 5 show the response of each of the test 
relays to a cyclic overload where the current alternates 
between a maximum of 1.4 p.u. to a minimum of 0.48 p.u. 
every 500 seconds. The cyclic current has an rms value of 
0.98 p.u. current. The current produces an average heat value 
of 0.96 p.u. and consequently does not constitute an overload. 

Fig. 4 clearly shows the dynamics of the thermal model 
where the response is the rise and fall of the temperature. Its 
0.96 p.u. average allows the motor to run. 

 
Fig. 4 Response of the Thermal Model to Cyclic Overload 

In contrast, Fig. 5 shows that the overcurrent characteristic 
trips and disconnects the motor prematurely for cyclic currents 
that do not overheat the motor. 

 
Fig. 5 Response and Premature Trip of the Overcurrent Relay to Cyclic 
Overload. 

IV.  ANNEX—THE FIRST ORDER THERMAL MODEL 
The first order thermal model is derived as follows: 

 Aw θθθ −=  (2) 

where  θ is defined as the winding temperature rise 
above ambient. 

The rate of increase of the temperature is given by the 
equation expressing the thermal equilibrium. 

 Power Supplied – Losses 
dt
dθmC

dt
dθmC s

W
s ==  (3) 

In this equation, Cs is the specific heat of the winding and 
m is the mass. The specific heat corresponds to the amount of 
energy needed to raise one kilogram of that material 
one degree centigrade. The losses or the quantity of heat 
transferred to the surrounding environment is expressed as: 
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θ
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where R is the thermal resistance in °C/Watt. 

Equation (3) can be otherwise expressed as: 

 
dt
dθmC

R
θrI s

2 =−  (5) 

or: 

 θ
dt
dθRmCRrI s

2 +⋅=⋅  (6) 

The mass m multiplied by the specific heat Cs is known as 
C, the thermal capacity of the system with units of joules/°C. 
It represents the amount of energy in joules required to raise 
the system temperature by one degree centigrade. 

The product of the thermal resistance R and the thermal 
capacitance C has units of seconds and represents the thermal 
time constant τ of the system: 
 sCmRτ ⋅⋅=   (7) 
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The fundamental Equation (6) can be expressed in a 
simpler form: 
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Therefore the first order thermal model equation becomes 
the simple form: 

U
dt
dUI2 +τ=   (12) 

The solution of the first order equation is: 
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Fig. 6 Dynamic Response of the First Order Thermal Model 

When using Equation (13) to calculate U over a small time 
increment ∆t, the exponentials can be replace with the first 
two terms of the infinite series as follows: 
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Substituting Equation (15) in Equation (14) gives 
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This incremental form of the equation is ideal for use in the 
processor for the continuous real-time calculation of 
temperature: 
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where nU is the virtual temperature at sample n 

1nU −  is the virtual temperature at the 
previous sample. 

V.  CONCLUSIONS 
1. Induction motors require thermal protection to prevent

overheating to cyclic as well as steady state overloads.
2. The heat rise in a motor due to I2R watts is a first order

process described by a first order difference equation. The
equation constitutes the thermal model that a motor relay
uses to continuously calculate the temperature in real
time. The virtual temperature is monitored and trips to
prevent overheating.

3. An overcurrent implementation used in motor relay
cannot measure temperature. Such characteristics appear
to coordinate well with motor thermal damage curves.
However, such relays trip prematurely when subjected to
cyclic loads that do not overheat the motor.
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