SEL-167

PHASE AND GROUND
DIRECTIONAL OVERCURRENT
RELAY WITH RECLOSER
AND FAULT LOCATOR
DATA SHEET

Also Available In LOW-PROFILE Package

- * NINE PHASE-OVERCURRENT RELAYS WITH THREE TIMERS
- * PHASE-TIME-OVERCURRENT ELEMENT WITH SELECTABLE CURVES
- * PHASE DIRECTIONAL ELEMENTS FOR PHASE FAULTS
- * THREE RESIDUAL-OVERCURRENT RELAYS AND TIMERS
- * RESIDUAL-TIME-OVERCURRENT ELEMENT WITH SELECTABLE CURVES
- * NEGATIVE- AND ZERO-SEQUENCE GROUND DIRECTIONAL ELEMENTS
- * PROGRAMMABLE LOGIC FOR OUTPUTS, TRIPPING AND RECLOSING
- * THREE-SHOT RECLOSING WITH PROGRAMMABLE INITIATE AND CANCEL
- * FAULT LOCATING * EVENT REPORTING * METERING
- * AUTOMATIC SELF TESTING * RS232C COMMUNICATIONS
- * DEMAND AMMETER

GENERAL DESCRIPTION

The SEL-167 PHASE AND GROUND DIRECTIONAL OVERCURRENT RELAY WITH FAULT LOCATOR provides high-speed and time-delayed directional overcurrent protection for transmission lines, distribution lines and cables. Its overcurrent elements, directional elements, timers and other data and control bits are combined in a 32-bit Relay Word. Logic, programmable by the applications engineer, combines these bits to control tripping, reclosing (initiation and cancellation) and four general programmable outputs. Forward and reverse looking relay outputs are available.

Because of the many relay elements, the programmability of the SEL-167, and its low cost, the SEL-167 meets the requirements of a broad spectrum of applications. The flexible yet simple programmability provides access to the relay elements (before and after time delays) and logic results such as reclose initiate or cancel, alarm and trip.

The SEL-167 Relay Function Block Diagram (next page) illustrates the basic configuration of the protective capabilities.

Analog inputs from current and voltage transformers are delivered to the protective relaying elements and saved for additional features, such as metering and fault locating.

The relay elements process the analog data. Intermediate logic is performed, such as directional supervision of the residual-overcurrent and phase-overcurrent elements, and grouping of certain elements into zones.

The states of the intermediate results and other information are recorded in the Relay Word.

Logic for tripping, closing and other purposes use the Relay Word data. Most of that logic is programmable by logic masks.

APPLICATIONS

Replacement of Outdated Protective Relays

The SEL-167 is the ideal relay to replace obsolete directional overcurrent electromechanical relay schemes. Compact size and simple field wiring make replacement especially convenient in crowded substations. Event-reporting and fault-locating features economically provide valuable engineering and operating information, eliminating the need for event recorders and oscillographs in most applications. Its instrument transformer burden is negligible.

Feeder Protection

The SEL-167 provides three steps of definite-time overcurrent protection, with separate timers for phase and ground faults in all three steps. It also includes directionally-supervised time-overcurrent elements (one for phase and one for ground) with selectable curves. The exhaustive self-testing and communications capabilities are features which reduce dependence on local and remote backup schemes.

Backup Relaying

Where adequate high-speed primary protection already exists, the SEL-167 can be applied for backup. Programmability and remote-access capabilities allow the relay settings to be adjusted remotely to meet virtually any contingency.

Its application also adds demand ammetering, event reporting and fault locating.

Other Applications

The SEL-167 is cost-effective in these applications: fault locating, temporary installation, bus-tie breaker relaying (where frequent setting changes may be required), and remote control and monitoring.

SPECIFICATIONS

Relay Functions

Directional overcurrent protection for phase faults:

Nine phase-overcurrent elements, in three groups
Three timers, one per group
Polyphase time-overcurrent element with selectable curve shapes
Phase directional element operates on negative- and positive-sequence quantities, with the negative-sequence voltamperes weighted four times the positive-sequence voltamperes.

Directional residual-overcurrent protection for ground faults:

Three definite-time elements
One time-overcurrent element with selectable curve shapes
Negative- and zero-sequence directional elements for
ground faults. Zero-sequence element is dual
polarized.

Automatic reclosing for selectable fault types (3 shots).

Relay Elements

Phase overcurrent:

51P phase time-overcurrent element
Selectable curve shape (4 curves)
Time Dial: 0.50 to 15.00 in steps of 0.01
Pickup: 1 to 12.6 A, +/- 0.05 A +/- 2% of setting

```
50A1, 50B1, 50C1 Zone 1 phase-overcurrent elements (50P1) 50A2, 50B2, 50C2 Zone 2 phase-overcurrent elements (50P2) 50A3, 50B3, 50C3 Zone 3 phase-overcurrent elements (50P3) Pickup: 1 A to 25 times 51P pickup Timers are provided for each zone:

Zone 1 Timer: 0-60 cycles in 0.25 cycle steps Zone 2 Timer: 0-2000 cycles in 0.25 cycle steps Zone 3 Timer: 0-2000 cycles in 0.25 cycle steps
```

Ground Overcurrent:

51N residual time-overcurrent element
Selectable curve shape (4 curves)
Time dial: 0.50 to 15.00 in steps of 0.01
Pickup: 0.25 to 6.3 A, +/- 0.05 A +/- 2% of setting
50N1, 50N2, 50N3 residual-overcurrent elements
Pickup: 0.2 to 47 times 51N pickup
Timers are provided for 50N1, 50N2 and 50N3:
Zone 1 Timer: 0-60 cycles in 0.25 cycle steps
Zone 2 Timer: 0-2000 cycles in 0.25 cycle steps
Zone 3 Timer: 0-2000 cycles in 0.25 cycle steps

Demand Overcurrent:

DCTH phase demand overcurrent element.

Pickup: 0.2 to 15 times phase time-overcurrent
element pickup (51P pickup). (See Metering)

Directional Elements:

Phase directional element: Angle: MTA (maximum torque angle) setting (47-90 degrees in 1 degree steps) Sensitivity: 1 VA of positive-sequence and 0.25 VA of negative-sequence at MTA Memory: Eight cycles Negative-sequence directional element: Angle: MTA setting (47-90 degrees in 1 degree steps) Sensitivity: Proportional to 51P pickup: 0.35 VA at 12.6 A pickup at MTA 0.04 VA at 1 A pickup at MTA Zero-sequence directional element: Voltage polarization: Angle: MTA setting (47-90 degrees in 1 deg. steps) Sensitivity:(0.125 volts) * (51N pickup setting) at MTA in units of zero-sequence volts times residual amps, and VO > 0.17 VCurrent polarization: Angle: Zero degrees Sensitivity: (0.5 amps) * (51N pickup setting), at zero degrees, in units of residual amps squared, and Ipol > 0.5 amps

Note: The MTA setting is common to all three directional elements.

Three-shot reclosing relay: 790Il open interval 1, 79012 open interval 2, and

79013 open interval 3: Timer ranges: 0 - 10,000 cycles in 1/4 cycle steps; A setting of 0 disables that shot and successive shots.

79RS reset interval:

Timer range: 60 - 10,000 cycles in 1/4 cycle steps

Fault Location

Fault location is computed from event reports stored following each fault. Algorithm compensates for prefault current, improving accuracy for high-resistance faults.

Metering

All metered quantities are displayed in primary units. Voltage: Phase-neutral voltages are measured, scaled to primary and displayed upon command. Calculated phase-tophase voltages are also displayed.

Current: Each phase current is measured, scaled to primary

and displayed upon command.

Demand: Current demand is computed with a 5 to 60 minute time constant, and displayed upon command. Peak demand is determined and stored, and is resettable by command. A demand threshold setting is provided. When the demand exceeds the setting, the DCTH bit in the Relay Word is It can be used for tripping, annunciation, alarm, set.

Power: MW and MVAR are determined by a three-phase, fourwire calculation and displayed by command.

Event Reporting

A data record is retained for each of the 12 most-recent faults, which includes current, voltage, relay element, input contact and output contact information. The report may also be triggered by command or contact closure. When tripping occurs after the end of the event report, a second report is triggered at tripping.

Self Testing

Analog AC channel offset errors Stall timer monitors processor Power supply voltage checks Setting checks RAM, ROM, and A/D converter tests

Rated Input Voltage

120 volts phase-to-phase, 3-phase 4-wire connection

Rated Input Current

5 amps per phase nominal 15 amps per phase continuous 390 amps for one second thermal rating

Output Contact Ratings

30 amp make per IEEE C37-90 para 6.6.2 6 amp carry continuous MOV protection provided

Logic Input
Ratings

60 - 200 VDC for 250 VDC relays
60 - 200 VDC for 125 VDC relays
25 - 60 VDC for 48 VDC relays
Input current: 6 mA at nominal voltage

Power Supply

85 - 200 VDC or 85 - 200 VAC: 12 watts

Power Supply 85 - 200 VDC or 85 - 200 VAC; 12 watts for 250 VDC relays 85 - 200 VAC or VDC; 12 watts for 125 VDC relays

20 - 60 VDC; 12 watts for 48 VDC relays

Dielectric Routine tested: Strength V. I inputs:

V, I inputs: 2500 VAC for 10 seconds

Other: 3000 VDC for 10 seconds (excludes RS-232 and time

code input)

Interference Tests IEEE C37-90 SWC test (type tested)
IEC 255-6 interference test (type tested)

Impulse Tests

IEC 255-5 0.5 joule 5000 volt test (type tested)

RFI Tests

Type-tested in field from a 1/4-wave antenna driven by 20 watts at 150 MHz and 450 MHz, randomly keyed on and off, at a distance of 1 meter from relay.

Dimensions

5 1/4" x 19" x 13". Mounts in standard 19" relay rack.

Unit Weight

21 pounds

Shipping Weight

32 pounds, including two instruction manuals

Operating Temperature -20 deg C to + 55 deg C

Burn-in

Temperature

Each SEL-167 is burned in at 60 deg C for 100 hours

LOGIC DESCRIPTION

Relay Elements

single-phase overcurrent relays 50Al 50Bl 50Cl nondirectional 50A2 50B2 50C2 nondirectional 50A3 50B3 50C3 nondirectional

polyphase time-overcurrent relay (driven by maximum phase current)

pickup 51PP T.C or nondirectional trip 51PT T.C or nondirectional

residual time-overcurrent relay

pickup 51NP T.C. or nondirectional trip 51NT T.C. or nondirectional

residual inst-overcurrent 50N1 nondirectional residual inst-overcurrent 50N2 nondirectional residual inst-overcurrent 50N3 nondirectional

phase directional	32PQ	32PQF=forward; 32PQR=reverse
negative-sequence directional	32Q	32QF =forward; 32QR =reverse
zero-seg pol directional	32D	32DF =forward; 32DR =reverse

Note: The 32D is equivalent to 32V when 32VE is enabled and 32IE is disabled. The 32D is equivalent to 32I when 32IE is enabled and 32VE is disabled. The 32D is dual polarized when both 32VE and 32IE are enabled.

<u>Timers</u>

Z1GTMR	Zone 1 ground timer timeout operated by 67N1	(Z1DG setting)
Z2GTMR	Zone 2 ground timer timeout operated by 67N2	(Z2DG setting)
Z3GTMR	Zone 3 ground timer timeout operated by 67N3	(Z3DG setting)
Z1PTMR	Zone 1 phase timer timeout operated by 67P1	(Z1DP setting)
Z2PTMR	Zone 2 phase timer timeout operated by 67P2	(Z2DP setting)
Z3PTMR	Zone 3 phase timer timeout operated by 67P3	(Z3DP setting)
52AT 52BT	Time-delayed 52A (pickup and dropout) Inverse of 52AT	(52BT setting) (52BT setting)

Note: 52AT follows the 52A input after a settable time delay given by the 52BT setting.

79011	Reclosing relay first open interval expired
79012	Reclosing relay second open interval expired
79013	Reclosing relay third open interval expired
79RS	Reclosing relay reset interval timer expired

Enables from setting procedures

ZONE3	=	F	Zone	3	reach	is	forward
ZONE3	=	R	Zone	3	reach	is	reverse

32QE 32VE 32IE	Enables 32Q Enables voltage polarization of 32D Enables current polarization of 32D	
ETHE	Fachiar disentianal taxaga control for 67N1	2

67NE		directional						
67PE	Enables	directional	torque	control	for	67P1,	2,	3

51NTC	Selects	directional	torque	control	for	51N
		directional				

Contact Inputs

direct trip	DT
permissive transfer trip	PT
block trip	BT
direct close	DC
circuit breaker monitor	52A
external trigger for event report	EXT

Contact Outputs

circuit breaker trip	TRIP
circuit breaker close	CLOSE
programmable output 1	A1
programmable output 2	A2
programmable output 3	A3
programmable output 4	A4
system alarm	ALARM

INTERMEDIATE LOGIC

The logic equations developed below represent combinations of the relay elements and other conditions.

```
Zone 3 phase fault
50P3 = 50A3 + 50B3 + 50C3
50P2 = 50A2 + 50B2 + 50C2
                                          Zone 2 phase fault
50P1 = 50A1 + 50B1 + 50C1
                                          Zone 1 phase fault
     = 51NP + 50N1 + 50N2 + 50N3
                                          Ground fault
                                          Phase fault
     = 51PP + 50P1 + 50P2 + 50P3
PF
DFP = 32PQF * PF
                                          Phase forward direction
DRP = 32PQR * PF
D3P = DFP   1f Z
                                          Phase reverse direction
            if ZONE 3 is forward
D3P = DRP
             if ZONE 3 is reverse
67P3 = (D3P + NOT (67PE)) * 50P3
                                          Zone 3 directional phase-overcurrent
                                            element, reversible
67P2 = (DFP + NOT (67PE)) * 50P2
                                          Zone 2 directional phase-overcurrent
                                            element
67P1 = (DFP + NOT (67PE)) * 50P1
                                          Zone 1 directional phase-overcurrent
                                            element
                                         Ground forward direction
DFG = 32QF * 32QE * (PF + GF)
     + 32DF * (32IE + 32VE) * GF
     + NOT (320E + 32IE + 32VE)
DRG = 32QR * 32QE * (PF + GF)
                                         Ground reverse direction
     + 32DR * (32IE + 32VE) * GF
D3G = DFG
             if ZONE 3 is forward
D3G = DRG
             if ZONE 3 is reverse
67N3 = [D3G + NOT (67NE)] * 50N3
                                         Zone 3 directional ground-overcurrent
                                            element, reversible
67N2 = [DFG + NOT (67NE)] * 50N2
                                         Zone 2 directional ground-overcurrent
                                            element
67N1 = [DFG + NOT (67NE)] * 50N1
                                         Zone 1 directional ground-overcurrent
                                           element
Z3PT = 67P3 * Z3PTMR
                                         Zone 3 timeout-phase
Z2PT - 67P2 * Z2PTMR
                                         Zone 2 timeout-phase
Z1PT = 67P1 * Z1PTMR
                                         Zone 1 timeout-phase
```

Z3GT = 67N3 * Z3GTMR	Zone 3 timeout-ground
Z2GT = 67N2 * Z2GTMR	Zone 2 timeout-ground
Z1GT = 67N1 * Z1GTMR	Zone 1 timeout-ground

RELAY WORD

Relay elements and intermediate logic results are represented in a 32-bit relay word (grouped into four 8-bit words). The user selects bits in this word to perform the desired functions for controlling outputs and for initiating or cancelling reclose. The selected bits are stored in masks for each function. The user programs the bits in these masks with the LOGIC command.

RELAY WORD

DRP DRG 51NT	67N1	67N2	67N3	DFG	67P1	50P2 67P2 Z2PT	67P3
DIMI	2161	7201	2341	FORT	ESAT	TOCE	DCTH
AIRM	IRIP	10	וט	32D i	DZAI	TOCP	DCIN

The meaning of each bit in the relay word is explained in the Relay Word Bit Summary Table listed below.

SEL-167 RELAY WORD BIT SUMMARY TABLE

DRP	_	Direction reversephase fault
50N1	_	Residual instantaneous-overcurrent element
50N2	_	Residual instantaneous-overcurrent element
50N3	_	Residual instantaneous-overcurrent element
DFP	_	Direction forwardphase fault
50P1	-	Phase instantaneous-overcurrent element
50P2	-	Phase instantaneous-overcurrent element
50P3	-	Phase instantaneous-overcurrent element
•••		
DRG	-	Direction reverseground fault
67N1	_	Zone 1 ground directional overcurrent element
67N2	-	Zone 2 ground directional overcurrent element
67N3	-	Zone 3 ground directional overcurrent element
DFG	_	Direction forwardground fault
67P1	-	Zone 1 phase directional overcurrent element
67P2	-	Zone 2 phase directional overcurrent element
67P3	-	Zone 3 phase directional overcurrent element
		·
51NT	-	Ground time-overcurrent trip
Z1GT	-	Zone 1 timeout-ground
Z2GT	-	Zone 2 timeout-ground
Z3GT	-	Zone 3 timeout-ground
51PT	-	Phase time-overcurrent trip
ZIPT	-	Zone l timeout-phase
Z2PT	-	Zone 2 timeout-phase
Z3PT	-	Zone 3 timeout-phase

```
ALRM - System alarm
TRIP - Circuit breaker trip
TC - Trip (OPEN) command
DT - Direct trip from DT input
52BT - Inverse of 52AT
52AT - Time delayed 52A
TOCP - Time-overcurrent pickup indicator (51PP + 51NP)
DCTH - Demand current threshold exceeded
```

The use of the relay word and programmable masks provide the user with great flexibility in applying the SEL-167, without rewiring panels or changing jumpers on circuit boards.

OUTPUT EQUATIONS

The logic for controlling the TRIP, Al, A2, A3 and A4 output relays is program-mable for flexibility and for testing. The logic is programmed by setting masks for various conditions, which are applied to the general relay word.

The general forms for each of the output equations follow:

```
Let R = relay word
  MTU = mask for trip (unconditional)
MPT = mask for trip (permissive trip)
  MTB = mask for trip (with no blocking)
  MTO = mask for trip (with breaker open)
then: TRIP = R * MTU
              + R * MPT * PT
              + R * MTB * NOT (BT)
              + R * MTO * 52BT
close TRIP = TRIP
              = NOT (TRIP) * NOT(52A + TARGET RESET button pushed) * (60 ms
open TRIP
                minimum TRIP)
close CLOSE = (DC + 790I1 + 790I2 + 790I3 + CLOSE command) * NOT(52A) open CLOSE = NOT (CLOSE) + 79RS
A1 = R * MA1
A2 = R * MA2
A3 = R * MA3
A4 = R * MA4
```

The "*" symbol indicates logical "and", and the "+" indicates logical "or".

RECLOSING RELAY

The reclosing relay provides up to three shots of automatic reclosing for selectable fault types and relay elements contained in the 32-bit Relay Word. The programmable logic provides access to the internally derived reclose

initiate and cancel signals. Either external initiation or cancellation of reclosing is also allowed. The three open intervals and the reset timer are individually settable through the SET command.

To provide flexibility in applying the SEL-167 to various reclosing schemes, the conditions for reclose initiation and cancellation are selected in a similar way to the programming of the output relays:

RI = R * MRIRC = R * MRC

where MRI is the mask for reclose initiation, and MRC is the mask for reclose cancellation.

The open intervals do not begin until the TRIP output unasserts. Since the TRIP output never asserts for less than 60 ms, the open interval may start several milliseconds after the fault has actually cleared and the breaker opened.

Reclose is automatically cancelled when the circuit breaker is observed to trip when a fault condition is not present or for faults during the open interval of any shot.

SETTING PROCEDURE

The SET command invokes the relay setting procedure. Each setting is presented and prompted for in turn. If a new setting value is desired, it is entered in response to the appropriate prompt, while just pressing carriage return retains the old setting and prompts for the next one.

In the example beginning on the next page only the XO value was changed. It was changed from 152.34 to 143.07. Note that the new value of 143.07 is presented at the end of the procedure before enabling, along with all other settings. This provides a final inspection for typographical or other errors.

As a convenience, the operator could have typed END in response to the prompt for Line Length (or any other setting except Relay ID), and gone directly to the final presentation of settings, without having to scroll through the rest of the prompts.

The operator could have also typed any setting descriptor as an option (except for the ID setting) for the SET command. All settings prior to the specified setting are skipped when the command is executed in this manner. For example, typing "SET Z3DP <CR>" will skip all settings prior to the Z3DP setting.

=>>SET

SET clears events. CTRL-X cancels. Enter data, or RETURN for no change

```
: Example 69 kV Line
ID
                                  ?
   : (Ohms pri)..... = 49.83
R1
    : ..... = 56.32
                                  ?
X1
   : ..... = 56.07
R0
                                  ? 143.07 <- operator changes X0
   : ..... = 152.34
XO
                                         <- could type END here
    : Line Length (mi).... = 60.00
LL
                                  ?
CTR : ..... = 60.00
                                  ?
PTR : ..... = 600.00
MTA : Max Torque Angle (deg) = 49.00
                                  ?
LOCAT: Locate faults (Y/N)... = Y
DATC: Demand TC (5-60min)... = 15
DCTH: Dmd Thresh (Amps pri). = 120.00
                                  ?
790I1: Open Int 1 (cyc).... = 40.00
                                  ?
79012: ..... = 60.00
                                  ?
79013: ..... = 80.00
                                  ?
79RS : Reset Int..... = 240.00
                                  ?
51PP: PU (Amps pri)..... = 120.00
                                  ?
51PTD: Time Dial..... = 1.00

51PC: Curve (1,2,3,or4).... = 2

51PTC: Torque Ctrl (Y/N).... = N
                                  ?
                                  ?
                                  ?
                                  ?
50P1 : PU (Amps pri)..... = 1158.00
50P2 : ..... = 516.00
                                  ?
50P3 : ..... = 210.00
                                  ?
                                  ?
Z1DP: Dly-Phase (cyc).... = 0.00
Z2DP : ..... = 160.00
                                  ?
Z3DP : ..... = 30.00
                                  ?
51NP : PU (Amps pri).... = 30.00
                                  ?
51NTD: Time Dial..... = 2.00
                                  ?
51NC : Curve (1,2,3,or4).... = 2
                                  ?
51NTC: Torque Ctrl (Y/N).... = N
                                  ?
                                  ?
50N1 : PU (Amps pri).... = 1008.00
50N2 : ..... = 450.00
                                  ?
                                  ?
50N3 : ..... = 30.00
                                  ?
Z1DG: Dly-Gnd (cyc).... = 0.00
Z2DG : ..... = 30.00
                                  ?
Z3DG : .... = 10.00
```

```
52BT : Dly (cyc)..... = 30

ZONE3: Dir (F=fwd or R=rvs).. = R

67NE : GND Flt Dir (Y/N).... = Y
                                           ?
67PE: Phase Flt Dir (Y/N)... = Y
32QE : Enable (Y/N).... - N
32VE : ..... = Y
                                           ?
32IE : ..... = Y
TIME1: Port 1 timeout (min).. = 5
TIME2: .... = 0
AUTO : Auto port (1,2,3).... = 2
                                           ?
RINGS: (1-30).... = 3
New settings for: Example 69 kV Line
                                                               LL =60.00
DATC =15
               X1 -56.32
PTR -600.00
                               RO -56.07
                                               X0 = 143.07
R1
   -49.83
                               MTA =49.00
CTR -60.00
                                               LOCAT-Y
DCTH =120.00
                79011-40.00
                               79012-60.00
                                               79013-80.00
                                                               79RS -240.00
                                               51PTC-N
                               51PC = 2
51PP = 120.00
                51PTD=1.00
50P1 =1158.00
               50P2 -516.00
                               50P3 -210.00
                Z2DP =160.00
                               Z3DP -30.00
Z1DP =0.00
51NP =30.00
50N1 =1008.00
                               51NC -2
                                               51NTC-N
                51NTD=2.00
                                50N3 =30.00
                50N2 =450.00
                               Z3DG =10.00
Z1DG = 0.00
                Z2DG =30.00
52BT =30
32QE =N
                               67NE =Y
                                               67PE =Y
                ZONE3=R
                               32IE =Y
                32VE =Y
                                               RINGS=3
TIME1-5
                TIME2=0
                               AUTO =2
OK (Y/N) ? Y
Please wait...
```

Enabled

Example 69 kV Line

Date: 3/28/88 Time: 08:45:09.366

FID=SEL-167-R100-V656m-D880327

LID-255-101-4100-1400W-D900351												
Currents (amps)						Voltages (kV)			_	Outputs	•	
IPO	L	IR	IA	. 18	10	•	VA	VB	VC		TCAAAAA PL1234L	
	0 0 0	0 0 0	0 1 0 -1	0	-1	40	.0 .6	-33.1 -22.3 33.1 22.3	36.0 -17.8 -36.0 17.8			*****
	0 0 0	0	-1 1 1 -1	Ö	0 -1	40 2	.0 .6	-33.1 -22.3 33.1 22.3	36.0 -17.8 -36.0 17.8			*****
	0 0 0	0	-1 1 1 -1	0	0 -1	40 2	.0 .6	-33.1 -22.2 33.2 22.2	36.0 -17.8 -36.0 17.8			*. *.
	0 0 0	0 0 37 -7	-1 1 37 -8	0	-1	38 0	. 8 . 4	-33.2 -22.8 33.2 25.4	36.0 -18.4 -35.9 20.9	3		· · · · * · · · · · * · · · · · * ·
	0	420 246 886 506	-418 248 886 -505	0	-1	20 1	.8 .0	-34.2 -27.9 35.4 28.5	34.8 -23.2 -33.6 23.7		******	*.
	0 1	024 526 025 527	-1024 526 1024 -526	0	0 ~1	17 1	. 2 . 1	-35.6 -28.6 35.6 28.6	33.4 -23.7 -33.4 23.8	22.11. 22.11.	*.* *.* *.*	*.
	1 1	025 526 012 530	-1025 526 1012 -530	0	-1	18 3	.3 .2	-35.6 -28.0 35.6 25.3	33.4 -23.2 -33.4 20.7	11.11.	*.* *.* *.*	
	0 - 0 0	631 289 166 -32	-629 289 162 -32	-1 1	0 -1	36 2	. 4 . 5	-34.6 -22.8 33.4 22.2	34.6 -18.5 -35.8 18.0	22.22.	*.* *.* *	
	0 0 0	-24 3 4 -1	-22 4 3 -1	-1 1	. 0 -1	40	.0	-33.2 -22.2 33.2 22.1	35.9 -17.9 -35.9 17.9	3	* * *	
	0 0 0 0	-1 0 0 0	-1 1 1 -1	-1 1	-1	40 2	.0 .4	-33.2 -22.1 33.2 22.1	35.9 -17.9 -35.9 18.0			
	0 0 0	0	-1 1 1 -1	. 0	-1	40	.0 .4	-33.2 -22.1 33.3 22.1	35.9 -18.0 -35.9 18.0			
Event Durat	ion:	AG 4.75			: 9.02 t: 1154				hms sec			
R1 CTR DCTH 51PP 50P1 Z1DP	=120. =1158	00 .00 .00 3.00	PTR 79011 51PT0 50P2	-56.32 -600.00 -40.00 -1.00 -516.00	7901 51PC 50P3 23DP	=210 =30.	00 00 .00	51PT	3-80.00 C-N	DATO	-60.00 : -15 \$ -240.00)
51NP 50N1 Z1DG 52BT 32QE TIME1	=1008 =0.00 =30 =N	3.00	50N2	=Y		=30. =10. =Y		51NT 67PE RING	-Y			
Logic	seti	ings	:									
NTU 44 44 FF 30	MPT 44 66 FF 00	MTB 00 00 00 00	MTO 77 77 FF 30	MA1 MA 44 00 66 00 FF 00 00 01	00 00 00 00 00 00 00 00 00 00 00 00 00	MA4 00 00 08 00	MRI 00 44 00 00	MRC 00 00 88 30				

EXPLANATION OF EVENT REPORT

Example 69 kV Line Date: 3/28/88 Time: 08:45:09.366

FID=SEL-167-R100-V656m-D880327

	Currents (amps)	Vo	ltages (kV)	Relays Outputs Inputs
IPOL IR	IA IB	IC VA	VB VC	565565 TCAAAAA DPBD5E 071071 PL1234L TTTC2T PPPNNN A
0 886 0 -506			35.4 -33.6 28.5 23.7	222**. 22.22**.
0 -1024 0 526 0 1025 -1 -527	526 0 1024 0	0 17.2 - -1 1.1	35.6 33.4 28.6 -23.7 35.6 -33.4 28.6 23.8	22.11. *.**.
Event : AG Duration: 4.7	Location : 5 Flt Current:	9.02 mi 1.1 1154.4 Target		
R1 =49.83 CTR =60.00 DCTH =120.00 51PP =120.00 50P1 =1158.00		RO =56.07 MTA =49.00 79012=60.00 51PC =2 50P3 =210.00	X0 =143.0 LOCAT=Y 790I3=80.00 51PTC=N	DATC =15
Z1DP =0.00 51NP =30.00 50N1 =1008.00 Z1DG =0.00 52BT =30 32QE =N	Z2DP =160.00 51NTD=2.00 50N2 =450.00 Z2DG =30.00 Z0NE3=R 32VE =Y	Z3DP =30.00 51NC =2 50N3 =30.00 Z3DG =10.00 67NE =Y 32IE =Y	51NTC=N 67PE =Y	,
TIME1=5	TIME2=0	AUTO =2	RINGS=3	

Currents and voltages are in primary Amps and kV. Rows are 1/4 cycle apart. Time runs down page. Obtain phasor RMS value and angle using any entry as the Y-component, and the entry immediately underneath as the X-component. For example, from bottom rows, IAY = 1024, IAX = -526. Therefore, IA = 1151 amps RMS primary, at an angle of ATAN(1024/-526) = 117 degrees, with respect to the sampling clock.

```
Columns show states of output contacts: ON = "*"
                                                                         OFF = "."
<Outputs>
               TP=TRIP, CL=CLOSE, A1-A4=PROGRAMMABLE, AL=ALARM Columns show states of input contacts:
<Inputs>
                                                            BT=BLOCK TRIP, DC=DIRECT
                  DT=DIRECT TRIP, PT=PERMISSIVE TRIP,
                    CLOSE, 52A=PCB A-CONTACT, ET=EXTERNAL TRIGGER (event
                    report)
               Event type is one of the following:
<Event>
                  AG,BG,CG = single-phase, AB,BC,CA = 2-phase
ABG,BCG,CAG = 2-phase to ground, ABC = 3-phase followed by a
"T" if a TRIP triggered the report
               Other indications are TRIP = triggered by TRIP output
                  and EXT = externally or otherwise triggered
               Distance to fault in miles. Indeterminate distance is 999999.
<Location>
               Distance to fault in secondary ohms. Indeterminate ohms is
<Ohms Sec>
                Fault duration determined from relay element(s) pickup time
<Duration>
               Max phase current (primary amps) taken near middle of fault
<Flt Current>
               The targets indicate the relay elements that caused the trip.
<Targets>
                  These targets are the same as the targets displayed on the front panel of the SEL-167 via the TARGET 0 command. The
                  targets field indicates any combination of the following:
                                                  P3: Zone 3 phase fault
                  P1: Zone 1 phase fault
                                                  G3: Zone 3 ground fault
                  G1: Zone 1 ground fault
                                                  51P: Phase time-overcurrent trip
                  P2:
                        Zone 2 phase fault
                                                  51N: Residual time-overcurrent trip
                       Zone 2 ground fault
                  G2:
                Primary series impedance settings for transmission line
R1,X1,R0,X0
                Line length corresponding to specified line impedances
LL
                Current and potential transformer ratios (XTR:1)
CTR, PTR
                Maximum torque angle for the directional elements
MTA
                Enable or disable fault locator (Y/N)
LOCAT
                Demand ammeter time constant
DATC
                Demand current threshold
DCTH
                Three-shot recloser Open and Reset intervals
790I1,2,3,RS
                Phase time-overcurrent pickup, Time-Dial, Curve, Torque Control
51PP, TD, C, TC
                Phase inst-overcurrent pickup settings Zones 1, 2 and 3
50P1,2,3
                Zones 1, 2 and 3 timer settings for 3- and 2-phase faults GND time-overcurrent Pickup, Time-Dial, Curve, Torque Control
Z1DP,2,3
51NP, TD, C, TC
                Ground inst-overcurrent pickup settings Zones 1, 2 and 3
50N1,2,3
                Zone timers for ground faults
Z1DG,2,3
                52B delay setting (for switch-onto-fault coordination)
52BT
                Directional orientation of ALL Zone 3 elements (Fwd/Rvs)
ZONE3
                Ground and phase fault torque control enables
67NE, PE
                Ground fault directionality from (V2,I2), or (V0/IP,I0) Communications port timeout intervals (automatic log-off)
32QE, VE, IE
TIME1,2
                Port assignment for automatic message transmissions
AUTO
                Number of rings to wait before modem answers telephone
RINGS
<Logic Settings> See LOGIC command for a description of mask setting.
```

SAMPLE COMMAND DISPLAYS

=>> HISTORY

The date, time, and type of event are shown for each of the twelve most recent events. If the event is a fault, the distance, duration, current and fault targets (if the fault caused a trip) are also shown. An example of the display is shown below.

Date: 12/21/87

Time: 11:12:12

Example 69 kV Line

 					•	-
12/21/87 12/21/87	TIME 11:11:28.829 11:11:28.429 11:09:50.346 11:08:58.787	TYPE AGT AG BC AG	54.54 9.20	7.50 4.00	CURR 366.5 365.7 1320.9 1155.9	P1

12

Note: Only four events have occurred since the relay was set or powered on.

=>>METER

Example 69	kV Line		Date: 1	2/21/87	Time: 01:24:56		
I (A) D (A) PD (A)	A 105 100 107	B 102 100 105	C 104 100 105	AB 180	BC 177	CA 182	
V (kV) P (MW) Q (MVAR)	40.0 12.45 -0.08	39.9	40.1	69.3	69.2	69.4	

P and Q are positive when the power flow is in the direction of the reach of the relay, i.e., out from the bus and into the line.

The second row of the meter command shows the demand current for each phase current. Peak demand current for each phase is shown in the third row.

=>>STATUS

Example 69 kV Line Date: 12/21/87 Time: 01:04:56

SELF-TESTS

W=Warn F=Fail

=>TARGETS

The eight-LED display on the front panel can be programmed to show targets (default), Relay Word bits, contact inputs and contact outputs, as shown below. This feature is especially useful in testing individual relay elements.

LED:	1	2	3	4	5	6	7	8	
N									
0	PH1	G1	PH2	G2	PH3	G3	51P	51N	RELAY TARGETS
1	DRP	50N1	50N2	50N3	DFP	50P1	50P2	50P3	RELAY WORD #1
2	DRG	67N1	67N2	67N3	DFG	67P1	67P2	67P3	RELAY WORD #2
3	51NT	Z1GT	Z2GT	Z3GT	51PT	Z1PT	Z2PT	Z3PT	RELAY WORD #3
4	ALRM	TRIP	TC	DT	52BT	52AT	TOCP	DCTH	RELAY WORD #4
5	52AT		ET	52A	DC	BT	PT	DT	CONTACT INPUTS
6		TRIP	CLOS	A1	A2	A3	A4	ALRM	CONTACT OUTPUTS

The front panel targets can be reset and cleared remotely or locally using the target command. Type "TARGET R <RETURN>" to reset and clear the targets.

TYPICAL INSTANTANEOUS ELEMENT OPERATING TIMES

I, Multiples of Pickup

	_2	_4	_10_	20
50N1,2,3	24ms	16ms	15ms	12ms
50P1,2,3	23ms	17ms	14ms	12ms
67N1,2,3(32V)	27ms	21ms	19ms	19ms
67N1,2,3(32I)	32ms	28ms	25ms	20ms
67N1,2,3(32Q)	31ms	25ms	22ms	20ms
67P1,2,3(32Q)	30ms	24ms	22ms	19ms
67P1,2,3(32P)	27ms	24ms	22ms	21ms

MULTIPLES OF PICKUP CURRENT SEL-167 RESIDUAL OR PHASE TIME-OVERCURRENT ELEMENT (51N OF 51P) YERY INVERSE TIME CHARACTERISTIC (CURVE INDEX 3)

DMG. NO. A7-0242 DA1E: 02-26-88

DHG. NO. A7-0244 DATE: 02-26-88

DIAL

SEL- 167 EXTERNAL CURRENT AND VOLTAGE CONNECTIONS

SEL-167 DC EXTERNAL CONNECTION DIAGRAM (TYPICAL)

DWG. NO. A7-0284 DATE: 04-27-88 REV. 11-14-88

NOTICE OF PROPRETARY INFORMATION INFORMATION IS PROPERTY OF SCHWEITZER ENCINEERING INFORMATION CONTINUED BEEN IS PROPERTY OF SCHWEITZER ENCINEERING LABORATORIES. WHERE FIRMSHED WITH A PROPOSES, THE RECIPIENT SHALL USE IT SOLELY FOR PURPOSES OF INSPECTION, INSTALLATION, OR MANIEMANCE. WHERE FURNISHED TO A SUPPLIER, IT SHALL SHE USED SOLELY IN THE PERFORMANCE OF WORK CONTRACTED FOR BY THIS COMPANY. THE INFORMATION SHALL NOT BE USED OR DISCLOSED BY THE RECIPIENT FOR ANY OTHER PURPOSE WHATSOEVER.

SEL-167 COMMUNICATIONS AND CLOCK CONNECTIONS ONE UNIT AT ONE LOCATION

NOTICE OF PROPRICIARY INFORMATION

NEOPRACTION CONTAINED HEREIN IS PROPRIETARY AND IS PROPERTY OF SCHWEITZER ENGINEERING
LABORATORIES, WHERE FURNISHED WITH A PROPOSAL, THE RECIPIENT SHALL USE IT SOLELY FOR
PURPOSES OF INSPECTION, MISTALLATION, OR MANTEMANCE WHERE FURNISHED TO A SUPPLIER, IT
SHALL BE USED SOLELY IN THE PERFORMANCE OF WORK CONTRACTED FOR BY THIS COMPANY.
THE INFORMATION SHALL NOT BE USED OR DISCLOSED BY THE RECIPIENT FOR ANY OTHER PURPOSE
WHATSOEVER.

SEL-167 COMMUNICATIONS AND CLOCK CONNECTIONS MULTIPLE UNITS AT ONE LOCATION

MOTICE OF PROPRETARY INCORMATION
INFORMATION CONTAINED HEREIN IS PROPRIETARY AND IS PROPERTY OF SCHWEITZER ENGINEERING
LABORATION CONTAINED HEREIN IS PROPRIETARY AND IS PROPERTY OF SCHWEITZER ENGINEERING
LABORESS OF INSPECTION, INSTALLATION, OR WANTENWICE. WHERE FURNISHED TO A SUPPLIER, IT
SHALL BE USED SOLELY IN THE PERFORMANCE OF WORK CONTRACTED FOR BY THIS COMPANY.
THE INFORMATION SHALL NOT BE USED OR DISCLOSED BY THE RECIPIENT FOR ANY OTHER PURPOSE
WHATSORVER.

DWG. NO. A7-0224 DATE: 10-14-88 REV. 11-11-88

NOTE: SEL-DTA DISPLAY/TRANSDUCER ADAPTER (DTA)
DATA AND CONTROL POWER

SEL RELAY COMMUNICATIONS DIAGRAM FOR CONNECTION TO THE SEL-DTA

DWG. NO. A7-0413 DATE: 10-07-88

SEL-167 HORIZONTAL FRONT PANEL DRAWING

NOTICE OF PROPRICIARY INFORMATION

WICH AND MAJOR SCHOOL PERIN IS PROPRETARY AND IS PROPERTY OF SCHWETZER ENGINEERING
LABORATORIES, WHERE PRINISHED WITH A PROPOSAL, THE RECEPENT SALL LOSE IT SOLELY FOR
PURPOSES OF INSPECTION, NESTALATION, OR MAINTENANCE, WHERE FURMESHED TO A SUPPLIER,
THE INED SOLELY BY THE PERFORMANCE OF WORK CONTRACTED FOR BY THIS COMPANY.
THE INFORMATION SHALL NOT BE USED OR DISCLOSED BY THE RECIPIENT FOR ANY OTHER PURPOSE
WHATSOEVER.

SEL-167 HORIZONTAL REAR PANEL DRAWING

MOTICE OF PROPRIETARY INFORMATION
INFORMATION FOR THERE IS PROPRETARY AND IS PROPERTY OF SCHWEITZER ENGINEERING
LABORATORIES. CHARGE FUNNISHED WITH A PROPOSAL, THE RECIPIENT SHALL USE IT SOLETY FOR
LABORATORIES. WHERE FUNNISHED WITH A PROPOSAL, THE RECIPIENT SHALL USE IT SOLETY FOR
SHALL BE USED SOLETY IN THE PERFORMANCE OF WORK CONTRACTED FOR BY THIS COMPANY.
THE INFORMATION SHALL NOT BE USED OR DISCLOSED BY THE RECIPIENT FOR ANY OTHER PURPOSE

SEL-167 VERTICAL REAR PANEL DRAWING

NOTICE OF PROPRIETARY INFORMATION
INFORMATION CONTAINED HEREIN IS PROPRIETARY
AND IS PROPERTY OF SCHWEITZER ENGINEERING
LABORATORIES. WHERE FURNISHED WITH A
PROPOSAL THE RECIPIENT SHALL USE IT SOLELY
FOR PURPOSES OF INSPECTION, INSTALLATION,
OR MAINTENENCE. WHERE FURNISHED TO A
SUPPLIER, IT SHALL BE USED SOLELY IN THE
PERFORMANCE OF WORK CONTRACTED FOR
BY THIS COMPANY. THE INFORMATION SHALL
NOT BE USED FOR ANY OTHER PURPOSE
WHATSOEVER.

DWG. NO. A7-0234 DATE: 01-28-88 REV. 11-10-88

DIMENSION A:

CASE: 17. 00"

CUT OUT: 17. 25" - 17.875" 17.375" PREFERRED

DIMENSION B:

CASE: 8.5"

CUT OUT: 8.625" - 8.9375" 8.688" PREFERRED

DIMENSION C:

CASE: 5.25"
CUT OUT: 5.35" - 5.45"

DIMENSION D:

CASE: 2.625"

CUT OUT: 2.675" - 2.725"

NOTE: ALL INSTRUMENTS MAY BE MOUNTED HORIZONTALLY (AS SHOWN)

OR VERTICALLY.

PANEL CUTOUT AND DRILL PLAN FOR SEMI-FLUSH MOUNTING OF 5.25 INCH HIGH CASE

DWG. NO. A7-0174 DATE 5/11/87 JS REV. 3/9/88

SEL-167 DIRECTIONAL OVERCURRENT RELAY/FAULT LOCATOR COMMAND SUMMARY

Level 0

Answer password prompt (if password protection enabled) to gain ACCESS access to Level 1. Three unsuccessful attempts pulses ALARM relay.

Level 1

Answer password prompt (if password protection enabled) to gain 2ACCESS

access to Level 2. This command always pulses the ALARM relay.

Show or set date. DAT 2/3/86 sets date to Feb. 3, 1986. DATE setting is overridden when IRIG-B synchronization occurs. Pulses the ALARM relay momentarily when a different year is entered than the one

previously stored.

Show event record. EVE 1 shows long form of most-recent event. Show DATE, TIME, EVENT TYPE, FAULT LOCATION, DURATION, CURRENT and TARGETS for the 12 most-recent faults. **EVENT** HISTORY

IRIG

Force immediate execution of time-code synchronization task. Show primary current, demand current, peak demand, voltage, and real and reactive power. METER runs once. METER N runs N times. METER R METER

QUIT

resets the peak demand currents.
Return to Access Level O and reset targets to Target O.
Show the relay settings and logic settings--does not affect the set-SHOWSET tings. The logic settings are shown in hexadecimal format for each.

Show self-test status. STATUS

Show data and set target lights as follows: TARGETS

TAR 1: RELAY WORD #1 TAR 0: Relay Targets TAR 2: RELAY WORD #2 TAR 3: RELAY WORD #3 TAR 5: Contact Inputs TAR 4: RELAY WORD #4

TAR 6: Contact Outputs

TAR R: Returns to TAR 0 and clears.

Be sure to return to TAR 0 when done, so LEDs display fault targets.

Show or set time. TIM 13/32/00 sets clock to 1:32:00 PM. Thi

TIME

setting is overridden when IRIG-B synchronization occurs.

Trigger and save an event record. (Type of event is EXT). TRIGGER

Level 2

Close circuit breaker, if allowed by jumper setting. CLOSE

Show or set logic masks MTU, MPT, MTO, MTB, MRI, MRC, MA1-MA4 LOGIC*

Open circuit breaker, if allowed by jumper setting. OPEN

Show or set passwords. Pulses the ALARM momentarily when new PASSWORD

passwords are set.

PAS 1 OTTER sets Level 1 password to OTTER. PAS 2 TAIL sets Level 2 password to TAIL.

Initiate setting procedure. SET*

Use the following to separate commands and their parameters: space, comma, semicolon, colon, slash.

* ALARM relay closes momentarily while the new settings are stored in EEPROM and event data buffers are cleared.

SCHWEITZER ENGINEERING LABORATORIES, INC. 2350 NE Hopkins Court

Pullman, WA 99163-5603

TEL: (509) 332-1890 FAX: (509) 332-7990 Copyright 1988. All rights reserved.

SEL/11-88