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COMPARING MOTOR THERMAL MODELS 
Stanley E. Zocholl 

Schweitzer Engineering Laboratories, Inc. 
Pullman, WA  USA 

ABSTRACT 
Protection engineers are quite familiar with coordinating overcurrent relays to provide fault 
protection.  In addition to fault protection, induction motors require thermal protection to prevent 
overheating during starting and running conditions.  Manufacturers specify the thermal limitation 
using thermal limit curves.  The IEEE Std 620-1996 IEEE Guide for the Presentation of Thermal 
Limit Curves for Squirrel Cage Induction Machines requires the manufacturer to provide a 
running overload and a locked rotor thermal limit curve.  The thermal limit curves of a Reliance 
400-hp, 3600-rpm motor are shown in Figure 1.  The curves represent two initial conditions: the 
machine initially at ambient temperature and the machine initially at rated load operating 
temperature. 

The thermal limit curves show only two of the possible conditions for a first-order thermal 
process in which the balance of heat storage and heat loss determine temperature.  It is apparent 
that the simple dynamics of an overcurrent relay cannot provide adequate thermal protection for a 
motor.  Consequently, we will analyze the ability of the microprocessor-based thermal models to 
provide optimum thermal protection. To do this, we will compare the performance of a thermal 
model that ignores heat loss with one that considers heat loss when applied to the same motor. 

 
Figure 1 Thermal Limit Curves for a 400-hp, 3600-rpm Induction Motor 
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ADIABATIC PRINCIPLE USED IN RELAY TYPE A 

The paper by Lance Grainger and Michael C. McDonald, “Increasing Refinery Production by 
Using Motor Thermal Capacity for Protection and Control,” IEEE Transactions on Industry 
Applications, Vol. 33, No. 3, May/June 1997, page 858, shows the derivation of the Relay 
Type A thermal model.  Here the authors state, “Regardless of where the heating occurs, due to 
its rapidity, the motor can be considered an adiabatic system which absorbs energy from the 
equivalent stator current, but does not give off heat.  Under these idealistic assumptions the 
temperature of the motor will increase as it absorbs energy over time.” 

Then for adiabatic heating: 

 ∫ ∫ ωθ==⋅ cdtiRdtq 2
eq  (1) 

where:  c is the specific heat of the motor winding 
  ω is the weight of the motor winding metal 
  θ is the temperature of the winding 
  R is the electrical resistance of the winding 
  ieq is the stator current adjusted for negative sequence 
  q is the heat flow 

From this basic relation: 

 ∫ω
=θ dti

c
R 2

eq
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For constant current: 

 ti
c
R 2

eqω
=θ  (3) 

Consequently, the time-current curve for a maximum temperature θmax is a simple I2t relation 
where k = (θmaxcω/R): 

 2
eqi
k)I(t =  (4) 

The authors state that if current is sampled periodically over some interval of time, ∆t, then the 
time to damage the motor can be calculated from the following recursive relationship (provided 
ieq is greater than IFL): 

For heating while the motor is running, ieq > IFL, the temperature θ is: 
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∆
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For cooling while the motor is running, ieq < IFL 
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The temperature θn+1 in Equation (5) and TCn+1 in Equation (8) represents the rise above normal 
ambient.  Consequently, θFLC and TCFLC are zero for a motor at ambient.  In the relay, θn+1 is 
called the thermal capacity TCn+1 expressed in percent of the trip value.  The equation given in the 
literature is: 

For cooling while the motor is running, ieq < IFL 
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For heating while the motor is running, ieq > IFL 
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Equation (4) is not really the time-current curve used.  If it were, 1/t(I) would equal I2/k, and 
Equation (6) or (8) would be simply the integration of the current squared, and any value of 
current greater than zero would eventually produce a trip. 

If Equation (4) is not used, what is the time-current curve?  A clue is given by the parenthetical 
phrase “provided ieq is greater than IFL” quoted above.  The points of the actual time-current curve 
are listed in the relay instruction manual, where 30 points are listed for each of 15 curves.  A 
Mathcad® study of the points will show that the points are an exact fit of the equation: 
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where:  t  is the trip time in seconds 
  I is the relay current in per unit of FLA 
   TM is a curve multiplier (integers from 1 to 15) 

 
Figure 2 Curve No. 1 of Relay Type A 
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The time-current curve used is consistent in that it has no response for current below IFL.  
However, Equation (9) inserted in Equation (5) or (8) as the t(I) implements the dynamics of an 
overcurrent relay rather than that of a thermal model.  See IEEE C37.112 - 1996, IEEE Standard 
Inverse-Time Characteristic Equations for Overcurrent Relays, Equation (3), page 4. 

Consequently, the Type A thermal model is an overcurrent model that cannot calculate 
temperature and will trip for cyclic overloads that do not overheat the motor. 

FIRST ORDER MODEL USED IN RELAY TYPE B 
The thermal model is described in and covered by U.S. Patent No. 5,436,784.  It is a first-order 
thermal model derived from the following settings: 

FLA Rated full load motor current in secondary amps 
LRA Rated locked rotor current in secondary amps 
LRT Thermal limit time at rated locked rotor current 
TD  Time dial to trip temperature in per unit of LRT 
SF  Motor rated service factor 

It is a rotor thermal model shown as an electrical analog in Figure 3 that has a starting state 
asserted when the current is greater than 2.5 per unit of full load current and a running state 
asserted when the motor current is less than 2.5 per unit of full load current.  The ratio R1/R0 is set 
equal to 3.0 in the rating method. 
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Figure 3 Thermal Model Used in Relay Type B 

The parameters of the thermal model are defined as follows: 

R1  = Locked rotor electrical resistance (per unit ohms) 
R0  = Running rotor electrical resistance also rated slip (per unit ohms) 
R1/R0 = 3 
IL  = Locked rotor current in per unit of full load current 
Ta  = Locked rotor time with motor initial at ambient 
To  = Locked rotor time with motor initially at operating temperature  
TD  = Locked rotor time dial 
I1  = Positive-sequence motor current in per unit of FLA 
I2  = Negative-sequence motor current in per unit of FLA 
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TDR is a factor that equalizes trip times of ambient-running and hot-start curves at IL when the 
running time constant setting RTC = AUTO where:  
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The user has the option of setting RTC to the time constant of the stator if the value is known. 

The type B first order thermal model is implemented as follows where θ is defined as the winding 
temperature rise above ambient: 

 Aw θ−θ=θ  (11) 

The rate of increase of the temperature is given by the equation expressing the thermal 
equilibrium: 

 Power Supplied – Losses 
dt
dmC

dt
dmC s

W
s

θ
=

θ
=  (12) 

In this equation, Cs is the specific heat of the winding and m is the mass.  The specific heat 
corresponds to the amount of energy needed to raise 1 kilogram of that material 1 degree 
centigrade.  The losses or the quantity of heat transferred to the surrounding environment is 
expressed as: 

 
R

Losses W θ−θ
=  (13) 

where R is the thermal resistance in °C/Watt 

Equation 12 can be otherwise expressed as: 
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R
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or: 
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θ

⋅=⋅
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dRmCRrI s

2  (15) 

The mass m multiplied by the specific heat Cs is known as C, the thermal capacity of the system 
with units of joules/°C.  It represents the amount of energy in joules required to raise the system 
temperature by 1 degree centigrade. 

The product of the thermal resistance R and the thermal capacitance C has units of seconds and 
represents the thermal time constant Tth of the system: 

 sth CmRT ⋅⋅=  (16) 
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The fundamental Equation (15) can be expressed in a simpler form: 
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where: Tth = thermal time constant  
  U  = virtual temperature in units of I2 

The time-discrete form of Equation (21) can be written as: 
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Solving for Un provides the following iterative equation for virtual temperature: 
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where Un is the virtual temperature at sample n 
  Un-1 is the virtual temperature at the previous sample 

 
Figure 4 Dynamic Response of the First Order Thermal Model 

Equation (23) is the basis of the algorithm that enables a microprocessor-based relay to 
continuously calculate the temperature of a thermal process.  The algorithm also monitors the 
temperature and asserts a trip or an alarm signal when it exceeds predetermined thresholds.  It 
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should be kept in mind that when thermal protection is implemented using this equation, the cold 
and the hot time-limit curves are intrinsically embedded in the process.  In reality, the protection 
responds properly, irrespective of the starting current.  Figure 4 shows the dynamic response of 
the algorithm to a high pulse of current followed by a lower constant current.  The temperature 
shows an exponential rise to a peak followed by an exponential decay to the final value. 

COMPARING THE RELAY TYPE A AND RELAY TYPE B DYNAMIC RESPONSE 
Figure 5 shows the time-current characteristics of the Type A and the Type B relays applied to 
the thermal limit curves of a 400-hp motor.  Relay Type B is applied by entering, as settings, the 
full load current, the locked rotor current, the hot locked rotor time, and the service factor of the 
motor.  Relay Type A is applied by selecting a curve to coordinate with the locked rotor limit 
curve.  The curves indicate trip time for when a constant current is applied for the specified initial 
condition as would be the case for any overcurrent curve coordinated in a like manner.  However, 
the test of a thermal model is its ability to adequately protect the motor from overheating during 
cyclic overloads.  Consequently, in this paper we will describe the results of a series of 
simulations in which both relays are subjected to constant and cyclic overloads. 

 

 
Figure 5 Time-Current Characteristics Applied to a 400-hp, 3600-rpm Motor 
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Figure 6 Responses to a Current Less Than the Service Factor 

 

 
Figure 7 Response to Cyclic Overload RTC = AUTO  
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Figure 8 Response of Relay Type B to a Cyclic Current RTC = 1370 

 

 
Figure 9 Premature Trip of Relay Type A to a Cyclic Current RTC = 1370 
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CONCLUSIONS 
1. The derivation by Grainger shows that the Relay Type A is inadvertently implemented as an

overcurrent relay with thermal reset and not as a thermal model.

2. Grainger implies the integration of I2.  Actually it is the integration of (I2 – 1) that produces
the extremely inverse time-current characteristic t = A/(I2 –1).

3. Relay Type B uses a first-order thermal model that is the differential equation for heat rise in
a conductor that calculates temperature in real time.

4. As shown in Figure 6, the Relay Type A model cannot measure temperature and has no
response to any current below the pickup current.  In contrast, the Relay Type B thermal
model calculates the temperature rise at all times and for any current.

5. The Relay Type B responds to cyclic current as shown in Figure 7.  In this case, the current
switches between 1.2 and 0.7483 per unit current every 550 seconds.  The waveform has a
1.0 per unit RMS value and produces 1.0 per unit heat.  In contrast, the Relay Type A hardly
responds.

6. The Relay Type B thermal model provides optimum thermal protection when RTC is set to
match the time constant of the 400-hp motor.  Figure 8 shows the Relay Type B response to
the maximum cyclic overload that can be sustained without overheating the motor.

7. Figure 9 shows that the Relay Type A causes a premature shutdown when subjected to the
same cyclic current.
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