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INTRODUCTION 
Recent events have placed a heightened emphasis on the electronic and physical security of our 
electric power infrastructure.  The need to physically secure these critical assets is well 
understood.  The risks posed by electronic attack, however, are not as obvious.  Likewise, the 
procedures and technologies required to implement effective electronic security for our critical 
communications infrastructure are not well known. 

In this paper, we summarize the properties of common communications functions that exist in the 
electric power industry.  We outline the requirements of these systems and discuss some of the 
electronic vulnerabilities found in common implementations of these functions.  Finally, we 
provide an overview of the theory and techniques of modern cryptography and show how we can 
employ these technologies to improve the security of our communications infrastructure. 

COMMUNICATION APPLICATIONS WITHIN THE ELECTRIC POWER INDUSTRY 
The communications infrastructure used within the electric power industry consists of a huge 
mixture of different technologies, protocols, and functionalities.  In the following diagram 
(Figure 1), we have consolidated the common communications functions into three main 
categories:  real-time protection, supervisory control and data acquisition (SCADA)/metering, 
and remote access.  We discuss the distinct properties of each of these categories in the sections 
below. 
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Figure 1 Communications Functions Within the Electric Power Industry 

Real-Time Protection 

Power systems are operating close to their design limits.  These operating conditions leave little 
room for error in the protection and control systems.  We expect this trend to continue until 
significant funding is directed towards the power system infrastructure. System operators rely on 
high-speed fault clearing protection and control systems to preserve the transient stability of the 
power grid.  These high-speed tripping schemes are called pilot protection because they utilize 
end-to-end communications to provide high-speed, simultaneous fault clearing. 

Communication plays a vital role in these pilot schemes.  Recently, SCADA systems have 
received a lot of security attention.  Do the protection systems require the same attention?  Would 
these systems benefit from the same type of electronic security solutions?  We will outline the 
communications properties and requirements of real-time protection systems in this section and 
defer discussions of electronic security recommendations until later in the paper. 

Pilot protection schemes and SCADA control schemes are similar in that either system can 
potentially initiate breaker tripping.  The communications channels and equipment requirements 
for pilot protection schemes differ from those used for SCADA in the following ways: 

�� They are predominantly operated on private, closed, and deterministic networks. 
�� Signal transmission and reception must have known and minimal delays. 
�� With the exception of direct transfer trip schemes, most pilot protection schemes qualify 

received messages with locally measured quantities.  
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We will limit the discussion to two of the most popular pilot protection schemes: directional 
comparison and line current differential. 

The most widely used pilot protection system is directional comparison [2].  Major reasons for 
this wide acceptance are the low channel requirements (i.e., lower data rate, small message sizes, 
etc.) and the inherent redundancy and backup of directional comparison systems. Although the 
channel bandwidth requirements are less than those of current differential schemes, the 
communication channel data integrity requirements are significant.  We may classify directional 
comparison pilot protection systems as blocking or transfer trip.  This classification corresponds 
to the way the local relay uses remote terminal information to generate the tripping signal.  

A current differential (87L) system is another popular pilot protection scheme.  Such schemes 
compare the phase of the currents from all terminals.  This means that 87L schemes require a 
reliable, high-capacity communications channel.  When communication fails, the differential 
protection portion of these schemes must be blocked from operating.  Today, many 87L schemes 
use redundant communications to handle the loss of a single channel. 

Blocking Directional Comparison Systems 

Blocking systems do not require the remote signals to trip.  The relay will generate a trip if an 
overreaching protective element picks up and the relay does not sense a block signal for a settable 
short delay.  Typically, these systems use powerline carrier for communicating the equivalent of 
one bit of information.  Blocking systems tend toward higher dependability than scheme security; 
failure to receive a blocking signal from a remote terminal can result in a misoperation for an 
external fault.  In such a case, the local relay operates dependably but scheme security suffers. 

If we consider electronic security, we must consider the possibility of receiving artificially 
generated blocking signals. In the presence of a block signal, the directional comparison blocking 
scheme trips with a long time delay (i.e., 20 to 30 cycles).  Standing or excessive duration block 
trip signals are not normal.  We can monitor and alarm for such conditions. 

Transfer Trip Directional Comparison Systems 

Transfer trip systems must receive a signal from the remote terminal(s) to issue a local tripping 
signal.  Applicable communications channels include audio tone, microwave, fiber optic, and 
spread spectrum radio.  These schemes exchange a minimum of one information bit.  Unlike 
blocking schemes, precise signal or message timing is usually not critical. The more time it takes 
for a relay at one end to receive notification that the remote terminal relay also senses a forward 
fault, the longer the tripping time.  A slightly delayed trip during an internal fault does not 
constitute a misoperation. 

Transfer trip system requirements tend toward higher scheme security.  It is accepted that a 
failure to receive a valid tripping signal can result in a failure to operate at high-speed for an 
internal fault.  Transfer trip pilot systems are typically faster than blocking systems (because they 
do not require a short delay to wait for the receipt of a block signal for out-of-section faults, and 
because they operate on the premise that the received data check is sufficient to ensure that the 
data are valid). 
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Communications Requirements of Directional Comparison Protection Systems 

Figure 2 shows a schematic diagram of a modern directional comparison system.  This system 
uses directional or directional-distance relay elements to discriminate internal from external 
faults. For an internal fault in the protected line, all relays see the fault in the forward (tripping) 
direction; for an external fault, one relay senses the fault in the reverse (non-tripping) direction. 
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on relay element status
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Figure 2 Schematic Diagram of a Modern Directional Comparison System 

Relays at all terminals require locally measured current and voltage information to determine 
fault direction.  The protection system uses the communications channel to exchange only logic 
information about relay element and contact status. For the patented system shown in Figure 2, 
the relay interface to the communications channel is digital.  With a slight increase in channel 
bandwidth, the protection system communicates the status of eight digital outputs and eight 
inputs.  The advantage of this system is that it can communicate up to eight times the information 
(important for modern trip and control schemes) while simultaneously monitoring the health and 
availability of the communications channel. 

An advantage of these tripping schemes is that channel time delay is not critical. A minor delay in 
receiving the remote signal in a permissive overreaching transfer trip scheme may delay tripping, 
but a reasonably short delay does not affect whether the trip or restrain decision is correct. In 
blocking schemes, you must know and design for your worst-case delay. 

For these systems to be useful, the delays must be kept within reason.  Reference [1] describes the 
number of bits required for the system in Figure 2 to meet the data and command integrity 
requirements of the IEC 834-1 standard.  Table 1 lists the minimum number of noise bursts 
required to produce an undesirable output. 
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Table 1 IEC 834-1 Protection Scheme Security Requirements 

Scheme Type 
Data Integrity/Security 

(bursts/undetected error) 

Blocking 104 

Permissive Tripping 107 

Direct Transfer Tripping 108 

  

As described in [1], transmitting eight data bits with the required integrity requires a total of 36 
bits—24 bits for redundancy.  In protection schemes, if the receiver detects one corrupt bit, it 
rejects the entire message.  Following this condition, many receivers or relays require at least two 
consecutive good messages before accepting the messages as usable.  These requirements 
increase scheme security but decrease dependability.  For example, if the communications 
channel is noisy, a properly designed error detection scheme identifies each corrupt data packet 
and the relays do not accept the corrupted data.  If the frequency of corrupt data packets is such 
that very few, if any, messages are being received as valid, the overall scheme is secure but we do 
not have a viable protection scheme.   Before applying any such system, you should ensure that 
the communication scheme design meets the probability of receiving an unwanted command 
(PUC) requirements listed in Table 1. Increasing message length to improve data integrity or 
electronic security will increase security but may penalize operating speed. 

Line Current Differential Pilot Protection Systems 

Line current differential schemes are a class of unit protection schemes.  Each protective relay 
instrument combines the currents it measures with those currents measured and communicated by 
remote relays on the same power line.   

Figure 3 illustrates the basic principle of current differential protection for internal and external 
faults.  Note that this basic principle is a simple application of Kirchhoff’s Current Law.  If the 
fault is internal, the vector sum of the currents at all line ends does not sum to zero.  For external 
faults, the vector sum equals zero (ignoring the effects of line capacitance and current transformer 
saturation). 
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Figure 3 Basic Line Differential Principle 

All of these schemes require current measurements from all line ends to make a trip decision.  
Data measured at each line end must be communicated to the remote terminal relays.  Line 
current differential (87L) schemes rely on proper channel performance.  Complete channel loss, 
poor data integrity, and excess delays can all defeat the 87L scheme security. 

Line Current Differential Pilot Protection Channel Requirements 

When a protective relay compares local samples or phasors with samples or phasors generated in 
a remote relay for the purposes of differential protection, the local relay must know the relative 
time between the local samples and the remote samples.  Many 87L relays calculate this relative 
channel delay by using time information contained in the received data packets.  Digital line 
differential protection systems typically use independent (non-synchronized) sampling clocks and 
align the computed phasors or resampled data.  The universal technique for aligning data is 
known as the ping-pong technique.  This technique involves measuring the time delay between 
the sampling pulses at two different locations.  Once the relay establishes the delay, it time aligns 
the data by applying the appropriate compensation rotation to the received phasors. 

The ping-pong technique assumes equal delay or symmetry in the communications channel.  In 
some channels, the transmit path and the receive path have a different propagation delay.  This 
asymmetric communication delay can exist, for example, on digital communications networks 
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employing SONET self-healing ring technology.  The level of asymmetry depends on the 
architecture of the communication system.  The delay differences often range from 1 to 2 ms. 

Communications channel asymmetries generate an error in the phase shift angle, �, between local 
and remote phasors.  Excessive phase error can result in unintended breaker operation or 
misoperations. 

Unless the communications channel is direct fiber (i.e., the communications channel delays are 
very symmetric), we must select or design the 87L scheme to tolerate the maximum expected 
error.  

As with directional comparison applications, you must ensure that the communications channel 
equipment has a minimum amount of buffering.  In commercial multiplexers used to exchange 
non-time-critical files, the equipment buffers data until it receives an optimal amount.  Such 
buffering could add an unacceptable delay. 

The amount and type of data used for 87L schemes are much different from the contact 
equivalent data transmitted and used by the directional comparison schemes we described earlier.  
The communications also differ in that the 87L scheme requires time alignment of the data.  A 
common data set used in modern 87L schemes includes three phase currents, timing data for 
measuring channel delay, miscellaneous control bits, and error detection bits. 

SCADA/Metering 

SCADA and metering applications are the backbone of the daily operation of the electric power 
grid.  There is little difference between the two applications; both are characterized by the 
automated gathering of power system information.  The main purpose of such systems is to 
collect data values from many remote points and to concentrate them at a control center where an 
operation function can act on them.  The operation “function” is most often a visual mockup of 
the system intended to give human operators a view of the current grid status. 

Most SCADA systems provide the additional capability of controlling various command points at 
these remote locations.  System operators can then issue commands that operate breakers, enable 
or disable reclosing, add VAR support, and execute various logic functions (i.e., change the 
protection settings group).   

Metering applications are often limited to gathering very accurate power usage measurements for 
the purposes of billing and power management.  The metering devices do not generally offer the 
control capabilities required in a SCADA system.  The amount of security required by a metering 
system may not be the same as that required by a true SCADA system (provided the two 
functions have separate and isolated communications infrastructures).  The amount of security 
applied to a given communications infrastructure should reflect the importance of the function 
and the potential damage that can result from an attack on, or compromise of the system.  One 
can argue that effective security measures are more important in a traditional SCADA system 
because of the added control capability and the importance of the SCADA function. 

The flow of data in a SCADA system is almost always dictated by a communications protocol 
designed specifically for such application.  The most common protocols are open (published) 
standards such as DNP 3.0, MODBUS, and IEC 608701.  Proprietary protocols are also supported 

                                                      
1 Standard protocols are extensively documented.  You can acquire details on all of these algorithms from a 
technical literature distributor. 
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in many remote terminal units (RTUs) and communications processors.  Such protocols, 
however, are similar in function to the open standards.  The vast majority of existing SCADA 
systems in the electric power industry are configured in a master/slave hierarchy.  In such a 
configuration, a master device or a front-end processor in the control center polls the remote 
devices on a periodic schedule.  The polls are requests for information in the form of network 
variable values or register contents held within the slave devices.  Some protocols support 
“report-by-exception” as well.  In such schemes, the remote devices transmit only the data values 
that have changed by some programmable amount.  The variable updates are simply transmitted 
from a remote IED to the central SCADA “server” at the control center.  In both cases, the 
SCADA servers (or master devices) typically are computers or mainframes, and the remote 
devices (or slave devices) typically are RTUs, communications processors, protective relays, or 
other intelligent electronic devices (IEDs). 

Older devices often limit the capacity and speed of existing SCADA communications systems in 
the electric power industry.  Figure 4 shows a typical SCADA architecture with some older 
equipment providing the network connections between the SCADA master and the remote IEDs.  
This scheme employs front-end processors to poll the RTUs with an agreed-upon SCADA 
protocol.  Frequency shift keyed (FSK) modems internal to the front-end processors and matching 
modems internal to the RTUs communicate over 4-wire, twisted pair connections.  The medium 
over which these analog signals travel may be implemented as a leased, permanent circuit, or as a 
stretch of wire owned by the utility.  The limited processing power in these older RTUs and front-
end processors, as well as the relatively low transmission rates of the internal modems effectively 
limit the rate at which the data is transmitted between the SCADA center and the remote IEDs.  
Rates of 1200 bps or less are common.  A utility would have to replace the RTUs and the front-
end processors to retrofit such a system.  Extensive equipment replacement and system redesign 
can be extremely expensive.  If neither equipment nor the system is broken, why fix it?  For this 
reason, a large percentage of existing SCADA systems is limited to transmission rates that would 
be considered unacceptable for most networking applications. 
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Figure 4 Traditional SCADA Communication System 

The properties of the SCADA information transfer and existing communications channels will 
prove important in our discussions on how to secure these systems.  The following observations 
apply to SCADA communication schemes: 

�� The information request packets transmitted by the SCADA master are typically shorter 
than the replies sent by the remote IEDs.  In this sense, the communications load on a 
given network link can be quite asymmetric. 

�� There are seldom any provisions for communications security.  Because the information 
transfer is an automated process, there is no concept of a user “login” inherent in the 
protocols.  Furthermore, most protocols do not include digital authentication or encryption 
technologies. 

�� Polled, master/slave SCADA implementations can be quite sensitive to communication 
delays or latencies.  The system information update rate depends upon the number of 
polled SCADA slaves and the time required to request and receive data from each slave 
device (the two-way transfer time).  Clearly, any latency added to this two-way transfer 
time reduces system polling frequency. 

�� It is very common to have relatively slow communication paths between the SCADA 
center and the remote devices. 
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Remote Access 

Remote access can be defined as any “user-driven” communication with a remote system device.  
The user/device interactions are often implemented through proprietary software applications. It 
is common to implement remote access to protective relays for the purpose of verifying device 
settings, checking device status, or downloading event reports.  Engineering access to common 
protection devices is often an “all or nothing” prospect.  In other words, remote operators often 
have the same capabilities they would have if they were accessing the device locally.   

The following observations apply to remote access communications: 
�� Most security features found in IEDs are limited to user login or password entry schemes.  

The login dialogues are transmitted as plain text (ASCII code) for serial login or TCP/IP 
telnet sessions, and can potentially be intercepted and read from the communications 
media. 

�� Digital authentication and encryption are seldom used in existing relays, RTUs, or other 
IEDs. 

�� On-demand, remote access is often implemented with dialup modems using relatively 
inexpensive public telephone lines.  Unprotected modems are much more common than 
password-protected modems, dialback modems, or cryptographic modems. 

�� Communication delays, within reason, are tolerable in remote access schemes. 
�� Message lengths vary greatly in remote access communications.  A remote user is likely to 

send both short messages(user commands) and long messages (large settings file 
transfers).  Similarly, the communications from the device to the user can also be both 
short (a returned command prompt) and long (a very large event report). 

CRYPTOGRAPHY PRIMER 
Modern communication schemes transmit data between physically separated devices.  The media 
over which these data travel are often insecure.  “Untrusted” individuals can access the media and 
intercept messages exchanged between legitimate system users, or inject data of their own in an 
attempt to gain information or access to devices to which they are not entitled.  Cryptography 
moderates the risks posed by these insecurities. 

Modern cryptography consists of functions and algorithms operating on data to provide the 
necessary security.  The details of the functions and algorithms are published, so the security of 
the data relies on the secrecy of a key value rather than on the secrecy of the algorithms 
themselves.  This allows the algorithm to be publicly scrutinized to discover any weaknesses in 
the underlying functions.  The strength of a cryptographic algorithm is determined by the 
difficulty of deriving the secret key and reversing or bypassing the protection provided by the 
cryptographic functions.  A secret key must take on a very large number of values to be resistant 
to guessing (brute-force) attacks. 

At the most basic level, cryptographic functions provide data confidentiality; encrypted data must 
be decrypted for the information to be read.  Some algorithms ensure data integrity by protecting 
against forgery or tampering.  You can also apply cryptographic functions to provide 
authentication or proof of a message source. 
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ENCRYPTION 

Data Confidentiality:  Two parties should be able to send private messages over an insecure 
medium without exposing the contents of the messages to attackers. 

Encryption is the process of transforming a digital message from its original form into a form that 
cannot be interpreted by an “unauthorized” individual.  The output of the encryption process is a 
function of the message and an encryption key.  This encryption process must be completely 
reversible by an “authorized” individual with access to the secret decryption key.  Authority to 
read a message is only granted by sharing knowledge of the secret decryption key. 

There are two main classes of encryption functions.  Symmetric key encryption relies on the same 
secret key value to perform both the encryption and decryption transformations.  The encryption 
function uses the key, K, to transform the digital message, M, into unreadable ciphertext, C.  The 
decryption function uses the same key, K, to reverse the transformation and recover the original 
message.  Public-key encryption functions, on the other hand, use different keys for encryption 
and decryption. 

The one-time pad is the only encryption method that can provide near perfect security.  The 
process involves generating a truly random encryption stream that is the same length as the 
plaintext.  The encryption stream is then combined with the plaintext to produce the ciphertext.  
This method is not practical because it relies on the secure exchange of volumes of random 
encryption material between the parties involved in the conversation.  Modern encryption 
functions must trade off security for convenience.  For example, to transmit an unlimited amount 
of data between two individuals in a fairly secure manner (more secure than sending the plaintext 
message, but less secure than applying a one-time pad) they can securely exchange a relatively 
short encryption key and apply a modern cryptographic encryption technique. 

Common Encryption Modes 

Most encryption algorithms operate on blocks of data.  These block encryption functions can be 
employed in many different ways.  These “modes” are simply different ways to connect the 
inputs and outputs of the encryption function to get different system performance or data 
properties.  There are several important factors, such as efficiency, fault tolerance, and relative 
security that must be considered when choosing an encryption mode.  

Electronic Codebook Mode (ECB) 

Electronic codebook mode is the simplest mode of encryption.  For every block of plaintext, there 
is one corresponding block of ciphertext.  With these pairs, it is possible to create a table of 
plaintext-ciphertext pairs, or a codebook. 

Figure 5 shows the encryption process using the ECB mode.  Each message, Mi is encrypted with 
the secret key, K, to produce ciphertext Ci. 
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Figure 5 ECB Encrypt 

This method is very fault tolerant.  An error in transmission of the ciphertext (either by random 
sources, or by an intentional attack), will only affect the current data block. 

A serious concern with the security of ECB is the possibility of a replay attack.  For example, if 
attackers monitor the transmission channel and observe that a breaker trips every time a particular 
encrypted packet is sent to a device, they can capture the packet and retransmit (replay) it to the 
device to cause the same action. 

Cipher Block Chaining (CBC) 

A solution to the electronic codebook replay problem is to put a feedback mechanism into the 
block cipher.  The results of the previously encrypted block are fed forward and combined with 
the input of the encryption of the current block.  The encryption operation for CBC mode is 
shown in Figure 6.  The first plaintext message, M1, is XORed with an initial value and 
encrypted.  The resulting ciphertext, C1, is transmitted.  Additionally, this ciphertext is XORed 
with the next plaintext message, M2.  This result is then encrypted to produce ciphertext C2.  This 
process continues for the entire session. 

EncryptK
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• • •EncryptK

C2

EncryptK

CN
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IV CN-1

 

Figure 6 CBC Encrypt 

Note the use of an initial value that is XORed with the first block of plaintext, M1.  Without a 
unique initial value, each session with an identical series of messages would encrypt to the same 
stream. 

This mode suffers the same efficiency problems as EBC.  As with EBC, an entire block must be 
buffered before it can be encrypted.  This may introduce intolerable latency and overhead into the 
communications path. 
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The feedback characteristic of CBC causes a degree of fault intolerance.  Transmission errors in 
the ciphertext propagate beyond the current block.  Errors in the current decrypted block are fed 
forward to the next block.  This causes the following block to be erroneously decrypted as well.  
Blocks after the second erroneously decrypted block are not affected, so CBC is a self-recovering 
mode. 

Cipher Feedback (CFB) 

A stream cipher generates a stream of bits that appear totally random.  This stream is then XORed 
with a stream of plaintext data to produce a stream of ciphertext.  The stream of pseudorandom 
bits, P, is produced using some known encryption algorithm.  On the decryption side, an identical 
stream of pseudorandom bits is generated, and the ciphertext, data, C, is XORed again to recover 
the plaintext, M. 

The strength of this cipher lies in the generation of the random bitstream.  If the stream of bits is 
purely random, you have perfect security (known as the one-time pad).  In reality, the security of 
stream ciphers lies between XORing with a repeating pseudorandom sequence and the one-time 
pad. 

Cipher feedback mode is the first mode discussed so far that can be used to operate a block-based 
cipher as a stream cipher.  Unlike ECB or CBC, which require an entire block before encryption 
or decryption can occur, CFB data can be operated on in any size (one bit, one byte, etc.) up to 
the block size of the base algorithm. 

The CFB operation is shown in Figure 7.  An initial value is first input into the encryption 
algorithm.   The j most significant bits of encrypted output are XORed with j bits of plaintext, M1, 
to product C1.  The remaining encryption output bits are discarded.  The initial value is then 
shifted to the left by j bits, and the j-bit ciphertext, C1, is inserted.  The process repeats for each j-
bit piece of the plaintext message. 
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Figure 7 CFB Encrypt 

The decryption process is identical to the encryption process in the sense that they both produce 
the exact same stream of pseudorandom bits. 

Very little buffering (just j bits) is needed before encryption can occur, and the ciphertext is 
available soon after receipt of the plaintext.  Furthermore, message padding is not required to fill 
an integral number of encryption blocks, so there is potentially no channel overhead associated 
with sending encrypted pad bits. 

The fault tolerance of this system is better than that of CBC and only slightly worse than that of 
ECB.  If an incoming j-bit block of ciphertext is corrupted, it not only affects the current plaintext 
output, but the next n bits (n/j, j-bit blocks) of plaintext as well. 

Output Feedback (OFB) 

Output feedback is another method of operating a block cipher as a stream cipher.  It is almost 
identical to CFB, except that  j-bits of the pseudorandom sequence are fed back into the 
encryption input.  CFB, in comparison, feeds the ciphertext back (the pseudorandom sequence 
XORed with the message). 

The security of this mode, however, suffers.  Several results [2] [6] have shown that this mode 
should only be used when the feedback size, j, is the same as the algorithm block size, n.  For less 
feedback, the pseudorandom sequence will repeat too soon and compromise the security of the 
data. 
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Symmetric-Key Encryption 

The best known types of symmetric encryption are the Data Encryption Standard (DES), Triple 
DES (3DES), the Advanced Encryption Standard (AES), and Rivest Cipher (RC4).  The former 
three are block ciphers (they can, however, be configured in the OFB or CFB stream cipher 
modes), while RC4 is a true stream cipher. 

DES 

DES is a block cipher function that takes in 64 bits of plaintext and outputs 64 bits of ciphertext.  
The key is 56 bits, although it typically is seen as 64 bits (the least significant bit of each byte is 
assumed to be parity).  DES was adopted by the U.S. Government as a standard for the protection 
of data in 1976 and was later adopted by other standardization committees (i.e., ANSI and ISO).  
It has withstood many years of cryptanalysis and has been a worldwide standard for over 20 
years. 

DES uses two basic operations to transform the plaintext: confusion and diffusion.  Confusion 
distorts the relationship between the plaintext and the ciphertext.  The easiest method of doing 
this is substitution, i.e., replacing blocks of data with different data.  The diffusion operation 
spreads redundancies in the plaintext across the ciphertext. 

The real heart of the DES algorithm is the key-dependent transformation function (shown in 
Figure 8).  It consists of three main components:  the expansion-permutation box (E-box), 
substitution box (S-box), and permutation box (P-box).  These three components form a single 
round of the DES function.  There are 16 such rounds. 

R (32 BITS)

E-box

48 BITS K (48 BITS)

S1-box S2-box S3-box S4-box S5-box S6-box S7-box S8-box

P-box

32 BITS  

Figure 8 Diagram of a Single Round of DES 

The expansion-permutation not only shuffles the bits, but also duplicates some.  This transforms 
each 32-bit input into a scrambled, 48-bit result.  The P-box is a simple bit shuffling or 
permutation.  It does nothing more than move bits around.  However, the positioning of the bits in 
the shuffling done by the P-box was carefully designed and far from arbitrary. 
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The complex part of the design is in the S-boxes.  After public analysis of the DES algorithm, 
IBM published the design criteria for these boxes.  A significant amount of effort went into the 
development of the S-boxes in the DES standard.  Now, it is fairly simple to compute S-boxes to 
meet these criteria, but in the 1970s when DES was developed, it was much more difficult. 

For decryption, the operation runs in reverse.  The ciphertext initially enters the inverse 
permutation.  The data then flows through the 16 rounds with the key schedule applied in reverse. 

The security of DES has been heavily scrutinized over the years, and while an aged algorithm, it 
has proven quite effective.  Even the most successful  attacks require 243 known plaintexts.  This 
has been accomplished in 50 days using 12 HP9000/735 workstations.  The algorithm itself is 
very strong, but the small, 56-bit key is susceptible to brute-force attacks.  Frequent key 
exchanges can easily defeat this attack.   

3DES 

Triple DES (3DES) is a chaining of DES that uses three DES encryption/decryption units to 
provide a greater degree of security.  Applying DES three times, with three different keys, 
increases the effective key length.  One might think that this makes the 3DES algorithm three 
times more resistant to brute force key guessing attacks than the original DES algorithm.  In 
reality, there are attack techniques that reduce the effective key length of this scheme to about 
twice that of single DES [2].   

AES 

The Advanced Encryption Standard (AES) was developed as a replacement for DES and 3DES.  
It supports key lengths of 128, 192, and 256 bits and a variable block length.  AES is based on the 
Rijndael encryption algorithm, developed by Joan Daemen and Vincent Rijmen. 

The Rijndael algorithm is a symmetric block cipher that supports block sizes of 128, 192, and 256 
bits.  It is highly efficient and well suited to software implementations. 

During the evaluation of candidates for the AES standard, Rijndael was analyzed by some of the 
world’s best cryptanalysts.  It has proven to be very effective against known attacks, very 
efficient, and simple to implement. 

RC4 

RC4 is a stream cipher developed by Ron Rivest for RSA Data Security Inc.  It was a proprietary 
algorithm until 1994 when an anonymous person posted the source code on the Cypherpunks 
mailing list.  Current users verified the compatibility, and RC4 became a publicly analyzed 
algorithm. 

RC4 was initially designed to operate in software.  It operates in OFB mode so the pseudorandom 
sequence can be pre-generated.  It is also very fast (about 10 times faster than DES). 

RC4 does have some security vulnerabilities.  There is a known bias in the output of the first few 
bytes.  With this statistical aberration, it is possible to glean information about the key from the 
first few bytes of the pseudorandom sequence.  The severe security flaws in the IEEE 802.11 
wireless LAN standard [4] were a direct consequence of this weakness in RC4 and some poor 
security protocol design principles on the part of the 802.11 standards committee. 
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Public-Key Encryption 

Public-key encryption algorithms are based on the concept of a “one-way” function.  Such a 
function has the following properties: 

�� Given x, it is easy to compute f(x). 

�� Even with all of the knowledge required to compute f(x) from x (i.e., the “forward” 
direction), it is extremely difficult to compute x from f(x). 

This is in stark contrast to the properties of the symmetric encryption algorithms previously 
outlined.  Namely, if an individual has the knowledge required to perform the forward 
computation (encryption), it is trivial to perform the reverse computation (decryption).  This is a 
direct consequence of the fact that the keys necessary to perform the forward and reverse 
transformations are one and the same. 

For public-key encryption, on the other hand, the knowledge necessary to perform the forward 
transformation does not make the reverse transformation computationally feasible.  Clearly, if the 
one-way function is to be useful in an encryption scheme, the legitimate receiver must be able to 
calculate the reverse transformation in a timely manner.  Fortunately, there are several classes of 
functions that contain mathematical “trapdoors”.  A trapdoor, in this context, is a piece of secret 
knowledge that makes the reverse transformation mathematically tractable. 

In the context of public-key encryption, the knowledge required to perform the encryption is 
known as the public key, and the trapdoor required to perform the decryption is known as the 
private key.  The public and private keys are mathematically related to each other through the 
one-way function that defines the encryption scheme.  All one-way functions used to define 
public-key encryption schemes have the desirable property that knowledge of both the public key 
value and the encrypted message does not make recovery of the private key or recovery of the 
original message (the plaintext) computationally feasible.  The advantage of this lies in the ease 
with which one can acquire a key and initiate communications with another individual.  The 
security of such a scheme is not jeopardized by freely disseminating your public key and, in 
essence, allowing many people to securely communicate with you.  This is in stark contrast to the 
key dissemination methods required by symmetric key encryption algorithms.  To ensure that 
communication between any two parties is secure (i.e., only the two parties involved in the 
conversation can decrypt the traffic), each pair of individuals must have their own distinct 
encryption/decryption key.  Clearly, the number of keys required to allow secure communication 
among many individuals can become extremely large (it grows approximately as the square of the 
number of individuals involved [7]). 

The concept of public and private keys, mathematically related to one another through a one-way 
function, is perhaps best illustrated by detailing a representative public-key encryption scheme.  
One of the first and most widely used public-key encryption schemes is the RSA algorithm, 
invented by Ron Rivest, Adi Shamir, and Len Adleman of MIT in 1977 [6].  The encryption and 
decryption procedure is as follows: 

1. Choose two random, very large prime numbers2, p and q. 

2. Calculate the product, n = pq. 

                                                      
2 A prime number is an integer that is divisible only by itself and one (1, 3, 5, 7, …). 
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3. Choose a random encryption key, e, such that e and the product, (p-1)(q-1), are relatively 
prime3. 

4. Calculate the decryption key, d, such that ed = 1 mod(p-1)(q-1).  Where mod is the 
modulus operator4. 

5. Define the public key as the pair, n and e, and the private key as the pair, n and d.  The 
numbers, p and q can now be thrown away, but must not be revealed. 

6. Define the message as a number, m, less than n (m can be the decimal representation of 
the group of bits that make up the message).  If m is larger than n, break up the message 
into smaller blocks such that all blocks have a value less than n. 

7. Calculate the encrypted message, c, as nmc e mod� . 

8. Decrypt the message as ncm d mod� . 

The ability to encrypt the message and, upon receipt by the legitimate recipient, decrypt it and 
recover the original message is granted by the theoretical properties of modular arithmetic.  The 
strength, or equivalently, the security of the above process is determined by the difficulty of 
recovering the private key, d, given knowledge of the public key pair, e and n.  It is widely 
accepted that, in order to do so, an attacker would have to successfully factor n.  So far, the 
world’s mathematicians have not produced an efficient algorithm for factoring large numbers.  
The level of effort required to factor a 512-bit (154-decimal digit) integer is almost out of reach 
of the most advanced distributed computers available today.  It is believed that making n a 
1024-bit (308-decimal digit) integer will provide sufficient security for many years to come. 

There are several other variants of the public-key encryption concept.  All are based on the theory 
of one-way functions with trapdoors. 

Comparison of Public-Key and Symmetric Key Encryption 

In the previous section, we outlined some of the benefits of public-key encryption algorithms.  In 
particular, it is very convenient to be able to establish a secure channel of communication without 
the need for a secure key delivery method.  One may wonder why we do not rely entirely on these 
public-key encryption methods.  The short answer is that public-key encryption methods are 
much more complex than comparable symmetric key methods.  RSA, for example is about 1000 
times slower than DES [2].  This is partly a result of the fact that secure key lengths for public-
key algorithms are about 100 times longer than comparable-strength symmetric keys.  It is also a 
result of the fact that the mathematical operations required to implement the popular flavors of 
public-key encryption are much more complicated than those required for popular symmetric-key 
algorithms. 

We mentioned the difficulties associated with managing key pairs for multiple symmetric-key 
“conversations”.  Fortunately, these problems have a solution in the form of hybrid 
cryptosystems.  Most modern encryption schemes (at least those that require communication 
between many individuals) use a combination of public-key encryption and symmetric-key 

                                                      
3 Two numbers, a and b, are relatively prime if their greatest common denominator is one. 
4 A number, n, can be represented as a product of two integers, k and d, plus a remainder, m (i.e., n = k*d + 
m).  The remainder, m, resulting from division of n by d, is represented in shorthand by the modulus 
function, m = n mod d.  For example, 5 mod 3 = 2. 
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encryption to solve these key management and dissemination difficulties.  In such systems, the 
public-key algorithms are used to securely transmit keys for a symmetric-key encryption 
algorithm.  For example, RSA may be used to transmit a new, randomly generated 3DES key on a 
periodic basis.  The much faster 3DES encryption would then be used to encrypt the data between 
the two individuals.  These hybrid schemes allow for automated, periodic exchanges of 
symmetric keys (dynamic key exchange) with protocols like the Diffie-Hellman key 
exchange [2]. 

ONE-WAY HASH FUNCTIONS AND MESSAGE AUTHENTICATION CODES 

Message Integrity:  An intruder should not be able to alter a legitimate message or to substitute a 
false message in its place. 

There are many cryptographic applications that require protection against message alteration.  
Imagine if an attacker could change the monetary value in a digital bank deposit message from 
$1,000 to $100,000.  A more relevant example would involve an attacker altering a file 
containing the configuration or settings of a very critical protective relay.  How would you know 
if a few of the bits in the file were changed (i.e., the overcurrent element pickup threshold)?  
Fortunately, there are cryptographic algorithms that can be used to create a unique signature for a 
given message.  The two main classes of algorithms that you can employ to create a message 
“fingerprint” are one-way hashes and message authentication codes (MAC).  Both classes 
perform the same basic operation, but there are subtle differences: 

�� The only input to a one-way hash function is the message itself.  Hash algorithms do not 
utilize a secret key.  Because of this, they will always produce the same output for a given, 
fixed input. 

�� A true MAC function has two inputs: the message itself and a secret key.  This gives the 
MAC algorithms a certain degree of built-in authentication capability. 

Both the hash and MAC functions take a variable-length message as input and generate a fixed-
length hash value.  The hash is then a condensed fingerprint or signature of the message input.  If 
someone changes the contents of the message, the hash value appended to the message would not 
match the value that would result if a new hash value were calculated over the new, altered 
message.  If the hash function were keyed (i.e., a MAC), then an attacker would be unable to 
recalculate a new, valid hash value over the altered message and hide the fact that the message 
has been altered.  The same data protection can be obtained by encrypting the output of a non-
keyed hash with an encryption algorithm. 

The output of a hash (or MAC5) function is very different than that of an encryption function.  
The former is a fingerprint of the original message, not a representation of the original message.  
In other words, the hash value does not preserve all of the information in the original message 
and, because of this, it is not possible to reconstruct the original message from the hash.  To 
produce a secure signature of a message, a hash function must have the following properties: 

�� Given a hash function, H(m), and its output, h, it is extremely difficult to derive a 
message, m, such that H(m) = h. 

                                                      
5 Because hash functions and MAC functions both generate a hash value, we can refer to both as hash 
functions.  We must keep in mind, however, that some hash functions are keyed (MAC functions) and 
some are not. 
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�� Given a message, m, it is extremely difficult to find another message, m’, that produces 
the same hash output. 

The first condition states that the output of a hash function should not give away any clues about 
the form, or classes of messages, that would likely produce the same hash value.  The second 
condition, known as collision-resistance, states that there should not be any bias in the mapping 
of inputs to outputs that would aid an attacker in finding messages that produce identical hash 
values.  Both conditions simply make it functionally impossible (given all realistic resources) to 
alter a message in such a way as to produce the same hash value.  Such an alteration would not be 
detected by many cryptographic protocols that utilize hash functions.  Clearly, the length of the 
hash value generated by a given function must be quite long to ensure reasonable security.  It is 
generally accepted that a “good” hash function should produce at least 128-bit hash values.  For 
truly critical applications, the hash values should be at least 160 bits long [2].  This observation 
will prove very important in our discussions on the feasibility of applying authentication 
algorithms in the electric power industry. 

Two of the most common one-way hash functions (non-keyed) are MD5 and the Secure Hash 
Algorithm (SHA).  Both algorithms operate on the stream of data to diffuse the message 
information throughout the eventual output hash value (128 bits for MD5 and 160 bits for SHA).  
The design of a good hash algorithm is such that a small change in the message will produce a 
very significant change in the final hash value. 

AUTHENTICATION SCHEMES 

Authentication:  It should always be possible for a receiver to unambiguously determine the 
origin of a message. 

The concept of authentication is as important as the concepts of message integrity and 
confidentiality discussed in the previous sections.  Modern communication networks are often 
quite susceptible to malicious traffic.  It is highly desirable to be able to guarantee that you can 
detect and ignore all traffic that does not originate from a trusted individual.  In this section, we 
will draw upon the concepts and algorithms described in the previous sections to describe 
effective methods of proving the origin of a message. 

Cryptographic authentication schemes are based on the assumption that a “trusted” individual has 
possession of a piece of secret information that only he and other trusted individuals share.  In 
theory, an effective authentication scheme will make it obvious when a potential attacker lacks 
knowledge of this secret.  The symmetric-key encryption algorithms discussed above are capable 
of providing a very rudimentary level of authentication. 

Two parties, Alice and Bob, can communicate securely with symmetric-key encryption only if 
they both possess the key value.  Assume that all traffic between Bob and Alice is encrypted prior 
to transmission and decrypted upon receipt.  Now assume that a third party, Eve (potentially an 
attacker), without knowledge of the secret key, transmits a message to either Bob or Alice.  After 
decryption, the message from Eve will appear to be random garbage.  This will likely be true for 
all messages that were not encrypted with Bob and Alice’s shared key.  Figure 9 illustrates this 
concept.  It is then safe to assume that any message received by Bob (Alice) that is legible or 
consistent with the expected message format, must be from Alice (Bob).  This scheme, though 
simple, is not foolproof.  If an attacker were to send random messages to either Alice or Bob, 
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there is a chance that one of those messages will decrypt to something meaningful.  This is 
especially true if the messages expected by Alice or Bob are typically short. 
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Figure 9 Symmetric Key Encryption Provides Rudimentary Authentication 

When used in the “traditional” manner, public-key encryption does not provide any 
authentication functionality.  Everybody with access to your public key can send you encrypted 
messages.  Furthermore, in the absence of additional information inside the message itself, there 
is no way to distinguish the origin of the message from among everyone with knowledge of the 
public key. 

We can, however, operate the algorithm “in reverse” by encrypting messages with the private 
key, and decrypting them with the public key.  There is no distinction between the two values 
other than the fact that one is considered public knowledge and the other is a tightly guarded 
secret.  It is extremely important to note that if you operate the public-key algorithm in reverse, 
you lose all data confidentiality!  If you encrypt the data with a private key, anybody with access 
to the public key (potentially many untrusted individuals) can decrypt the message.  It is, 
however, a very powerful method for implementing strong authentication schemes. 

Imagine that Alice wants to know if it is actually Bob on the other end of the channel.  She can 
simply ask Bob to identify himself.  Bob can then encrypt a unique message with his private key 
and send it to Alice.  Alice can then decrypt the message with Bob’s public key and, if the 
decryption process does not garble the message, she knows that, with high probability, Bob must 
have sent it. 

Because of  the complexity of public-key encryption algorithms, it is undesirable to encrypt large 
amounts of data with them.  Consequently, it is not feasible to add authentication to all messages 
that Bob transmits by encrypting each one with his private key.  Furthermore, if Bob demanded 
data confidentiality for all of his messages, he would have to apply yet another encryption 
algorithm to the already encrypted message.  This is because, as stated before, everyone with 
Bob’s public key can decrypt the message unless another encryption scheme is used to reencrypt 
the message with a key that is independent from the one used for the authentication coding. 

It is extremely convenient to enable anybody to verify your identity without compromising the 
security of the authentication process.  This is the benefit of using public-key algorithms to 
formulate a strong authentication scheme:  anybody with access to your public key can verify 
your identity.  We can use the public-key algorithms in conjunction with other cryptographic 
algorithms to provide extremely convenient and strong authentication schemes. 
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One of the most common methods of authentication involves combining public-key encryption 
with a non-keyed hash function.  First, you calculate a hash value, h(m), from the message that 
requires authentication.  You then encrypt the hash value with your private key and append the 
result, called a digital signature, to the original message. 
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Again, we can add digital confidentiality to this scheme by encrypting the message (most likely 
with a symmetric-key encryption algorithm) either after the digital signature calculation: 
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There are several common variations on this theme, but almost all modern message authentication 
schemes involve appending additional information to the end of the original message.  All of the 
above techniques make it extremely difficult to alter the message in transit without that change 
being detected.  They also provide strong authentication or proof of message origin. 

Existing Security Solutions (COTS Cryptography Devices) 

There are many commercial off-the-shelf (COTS) products available that provide strong 
cryptographic functions, including encryption and authentication.  Several commercial products 
provide the ability to protect traffic with a “bump-in-the-wire” solution.  Such devices can simply 
be placed on either end of an existing communications link.  They then secure the data on the link 
while (ideally) appearing transparent to the existing system. 

SafeNet, Inc. provides simple bump-in-the-wire solutions for serial, frame relay, and ATM 
communications.  Their LSA Encryptor provides a solution that implements 3DES encryption on 
EIA-232 serial communications with support for dialup modems.  It is byte oriented, meaning 
that for every byte it receives, a byte is immediately transmitted.  Because 3DES is a block 
algorithm, the SafeNet device most likely uses the CFB encryption mode.  This raises the issue of 
error propagation.  A byte-based use of CFB for 3DES causes errors of up to 9 bytes for each 
error in the received ciphertext. 

Another option involves the use of known encryption and authentication standards for TCP/IP, 
such as IPSec or SSL.  These are well-defined and mature options that have numerous 
implementations.  They have been analyzed extensively and have been shown to provide strong 
security.  Linksys, Inc. provides an inexpensive Virtual Private Network (VPN) solution that 
encapsulates data and transmits it across an insecure TCP/IP network.  There are many serial-to-
Ethernet transceivers on the market that will convert an existing serial (EIA-232) data source into 
TCP/IP over Ethernet.  The converted packets can then be secured with a VPN solution.  The 
reverse operation at the other end of the data link will return the secure (encrypted and 
authenticated by the IPSec protocol) TCP/IP packets back to the original serial signal. 

For analog communications over the public switched telephone network (PSTN), Western 
DataCom, Inc. offers analog modem solutions that include 3DES encryption.  A secure, 
encrypted channel is created between two CryptoCom devices programmed with the same 
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symmetric 3DES key.  These devices operate like any other modem, but with the added features 
of encryption and rudimentary authentication (authentication through symmetric key encryption). 

To determine the impact of these devices on a serial communications system, we measured the 
latency added by inserting the devices into the communications path.  The architecture of the 
measurement setup is shown in Figure 10.  In the setup we have two systems, represented as PCs 
in the figure, communicating over a serial (EIA-232) connection.  Any network devices required 
to implement and/or secure the connection are placed between the two data sources.  We then tap 
data entering the first network device on one end of the connection, as well as data exiting the last 
network device on the other end of the connection.  The time difference between the entry and 
exit from the devices is the overall system latency.  For comparison, we recorded the latency 
measurements for network connections with and without cryptographic security. 
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Figure 10 Latency Measurement Setup 

We measured two cryptographic systems to determine the additional processing time required to 
perform basic encryption operations.  The two systems were the CryptoCom 2000 encrypting 
modem from Western DataCom, and a Linksys Virtual Private Network (VPN) system with two 
SEL-2890 serial-to-Ethernet converters.  Overall, it can be seen that the cryptographic solutions 
presented impose very little overhead. 

The first system is based upon the CryptoCom 2000.  As a baseline metric, we compared the 
performance to two non-encrypting US Robotics 56k modems.  For both schemes, the modems 
communicated through a phone line simulator.  The recorded system latency is the sum of the 
delays added by the two modems, and that of the analog phone line simulator.  The graph in 
Figure 11 shows the measured system latency versus the transmission rate of the modems.  The 
left half of the graph (2400 baud to 19200 baud) shows a dramatic increase in system latency as 
the rate decreases.  This is largely a result of the added time required to pull the byte off of the 
line.  For example, it takes 4.16 ms to transmit a single byte on a 2400-baud line (8 data bits plus 
a start bit and a stop bit).  This delay would be added in both modems (the data byte must be 
received and buffered before it can be processed), for a total minimum delay of over 8 ms.  This 
minimum delay would be reduced to just over 1 ms for a 19200-baud line.  The fact that there is 
more than the expected 7 ms of added delay on the 2400-baud data point versus the 19200-baud 
data point is most likely a reflection of the internal hardware delays that also vary with baud.  An 
example would be a forced delay of five character time intervals to wait for additional data prior 
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to further processing (i.e., to gather as much data as possible before further processing in order to 
increase hardware efficiency).  The graph clearly shows that the latency added by the non-
encrypting modems is more than that added by the CryptoCom encrypting modem.  The 
additional latency is most likely the result of older, slower hardware in the US Robotics modems.  
The newer CryptoCom is simply able to perform the standard modem operations (compression, 
modulation, etc.) and the encryption operations faster than the time it takes the older US Robotics 
device to perform just the standard modem operations (without encryption). 
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Figure 11 Modem Latency Measurements 

For the second system, we used consumer-class VPN devices from Linksys to secure the link.  
These are Ethernet based, so we used the SEL-2890 to convert the data between the serial and 
Ethernet formats.  Figure 12 shows the total latency for the system with and without the VPN 
devices.  The system without encryption (no VPN) consisted of just two SEL-2890 Ethernet 
transceivers connected by a high-speed (10/100 Mbps) twisted pair cable.  The VPN devices were 
simply added between the serial-to-Ethernet transceivers to form the system with strong 
electronic security.  The graphs show that the addition of the VPN devices introduced very little 
additional latency (1–2 ms).  The VPN device that we tested was configured to implement strong 
authentication with a keyed hash (MAC), and 3DES encryption of the data packet.  The 
calculations required to carry out these complex cryptographic calculations took less than 2 ms 
per packet.  It is important to note, however, that the delays associated with the transmission of 
the authentication hash bits (over 128 bits per packet including the overhead of the authentication 
header) are not accurately reflected on the graph.  The Ethernet interface is very high speed, so 
the delays associated with the transmission of 128 additional bits per packet is negligible.  This 
will not typically be the case for a real-world, wide area network connection (i.e., for SCADA 
communications or remote access).  On such systems, it is possible to turn the authentication 
protocol off on the VPN device and rely on authentication through symmetric key encryption. 
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Figure 12 VPN Latency Measurements 

Application of Cryptographic Technologies within the Electric Power Industry 

Real-Time Protection Communications 

There are two main questions that must be answered when identifying potential security solutions 
for a given communication system.  First, we must analyze the need for security on the system.  
This is the process of identifying which, if any, cryptographic functions we would recommend for 
the system.  Second, we must analyze feasibility of the identified cryptographic functions given 
the properties of the communications channel and the requirements of the protocol or function 
that is implemented over the channel.  We analyze the need for, and feasibility of, cryptographic 
technologies in common real-time protection schemes below. 

We introduced directional comparison and current differential protection schemes earlier in this 
paper.  Both types of these schemes are characterized by the need for a reliable communications 
channel between the line-end devices.  It is not necessary to extend or network the connections to 
any other devices.  In practice, the majority of these communications channels are deployed on 
wholly owned (i.e., not leased from a telecomm provider) media such as fiber or the power line 
itself.  Because of this, most real-time protection communications have very limited exposure to 
potential electronic attack. 

Assuming that attackers are able to access the communications media (either electronically or 
physically), they could potentially execute the following general attacks: 

�� Denial of Service (DOS):  Cause a break in the normal transmission of real-time 
protection messages. 

�� Traffic Manipulation (TM):  Intercept legitimate traffic and/or inject malicious traffic on 
the line. 

The effect of a DOS or TM attack depends upon the type of protection scheme.  Table 2 shows 
the action and results for the various schemes we discussed in this paper.  
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Table 2 Electronic Attack Result Summary 

DOS TM  

Scheme Action Result Action Result 

Blocking Block any Block 
Trip (BT) Signal 

Out-of-section (OOS) 
fault Overtrip1 

Cause a Standing 
BT Signal  

Time-Delayed Trip1  for 
In-Section Fault 

Permissive Block Permissive 
Trip (PT) Signal 

Time-Delayed Trip1 Cause a Standing PT 
Signal 

Overtrip1 for OOS fault 

DTT Block DTT Signal No Trip Send DTT Signal Trip 

87L Disrupt 
Communications 

No Trip Alter or Delay 
Transmitted Data 

Trip2 

1 Only if local fault-detecting elements pick up, i.e., no trip unless an actual fault occurs at attack time. 
2 Assumes time delay greater than the maximum design limit or that altered data would cause a trip. 

The blocking and permissive trip protection schemes provide high immunity to any potential 
attack damage (it is simply not possible to cause a severe misoperation through manipulation of 
the communications channel).  For the direct transfer trip (DTT) scheme, we can eliminate the 
possibility of tripping the local breaker with local supervision.  Examples of local supervision are 
overcurrent, undervoltage, power, and rate-of-change elements.  Finally, for 87L protection 
schemes, you can eliminate the loss of line protection resulting from channel failure (either 
accidental or deliberate) with effective backup communications and protection schemes. 

Earlier, we noted that 87L schemes are extremely dependent upon communications: a DOS attack 
on a line current differential scheme does disable the primary, 87L protection on the line.  
However, many schemes include true hot-standby 87L communications and directional 
comparison protective schemes in the same device. Thus, in the event of an attack, the complete 
scheme would disable one of the 87L schemes and alarm, yet line protection would remain intact.  
It is possible, however, to initiate a false trip for DTT (without supervision) and 87L protection 
schemes with a TM attack.  This may not be a cause for concern because of the limited exposure 
of most real-time protection communications. 

The limited risks outlined above may warrant additional electronic security if the communications 
channels used to implement a DTT or 87L protection scheme are not “sufficiently” secure.  Such 
a decision can only be made by weighing the potential costs of an inadvertent breaker trip versus 
the risk of electronic attack. 

It may be possible to implement cryptographic solutions on real-time protection communications 
links.  Such a solution would have to be very high-speed (low latency) and highly deterministic 
(predictable, fixed latency).  Furthermore, the scheme must have a negligible impact on the 
system reliability.  It is not important to provide encryption because the data does not contain 
sensitive information.  The system may, however, benefit from authentication to protect against 
malicious data tampering and/or injection. 

The stringent latency requirements can be satisfied with an efficient hardware implementation of 
the cryptographic functions and a reasonably high-speed communications link.  As we pointed 
out earlier, the system latency is highly dependent on the speed of the link, the amount of data 
overhead added by the cryptographic functions, and the amount of data that the algorithm must 
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buffer prior to performing the cryptographic calculations.  It is probably not possible to add hash-
based authentication to existing real-time protection links because of the amount of overhead that 
such schemes would add to the data stream.  We may, however, be able to use a symmetric-key 
encryption scheme to provide some authentication capability without adding communications 
overhead.  A likely candidate is a symmetric-key encryption algorithm operated in one of the 
streaming cipher modes (OFB or CFB).  These feedback schemes are also necessary to protect 
against possible replay attacks:  the repetitive, small blocks of data transmitted by real-time 
protection schemes may be susceptible to such attacks.  The error propagation caused by the use 
of these schemes may be a problem on noisier channels, but the effects can be mitigated with the 
proper addition of error correction and/or detection bits (with a small increase in data overhead). 

It is important to point out that a real-time protection scheme may not support dynamic key 
exchange protocols because of the periodic addition of large amounts of system latency during 
key exchanges.  The protection scheme may degrade in performance or even fail during such 
exchanges. 

SCADA Communications 

The control capability that SCADA systems provide is essential for the safe and efficient 
operation of our electric power grids.  The system-wide monitoring and control functions 
provided by such systems may make them an attractive target for electronic attack.  Furthermore, 
the complexity of the network architectures required to connect physically separated sites creates 
the potential for numerous electronic access points.  As stated before, the level of electronic 
security required on a given communications infrastructure must be determined by analyzing the 
potential damage that can be caused by unauthorized access to the system, as well as the 
vulnerability of the system to such unauthorized access.  At the very least, a complex SCADA 
system has many potential points of electronic access.  The relative security of each of these 
access points varies widely depending on the technology used to implement the network 
connection.  Wholly owned communications media can be considered relatively secure compared 
to leased lines or wireless network links.  A large SCADA infrastructure may contain a mixture 
of these technologies and thus, a mixture of potential levels of vulnerability.  We have already 
discussed the implications of a successful security breach of a SCADA system.  All SCADA 
protocols, by definition, provide the means to operate connected devices.  For electric power 
protection devices, this capability includes the operation of breakers and potential destabilization 
of the power grid.  It is therefore important to analyze our SCADA systems and apply additional 
electronic security measures wherever potential vulnerabilities exist. 

There are three main avenues of electronic access: 

1. Access through dedicated SCADA equipment 

2. Access from internal non-SCADA networks 

3. Access from external non-SCADA networks 

The first category involves unauthorized access to the equipment that implements the SCADA 
function (HMI workstations, communications processors, RTUs).  The security of these devices 
can be controlled by limiting physical access to the devices and by implementing strong 
electronic access policies (passwords, biometric authentication, access logging, etc.) [7]. 
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The second category involves any connections that may exist between the SCADA network and 
the other functional networks within the company.  An “internal” network is one that is under the 
full or partial control of the same company that controls the SCADA system.  Examples include 
connections between the business LAN and the SCADA network, or even connections provided 
to third-party companies for the purpose of contracted system maintenance.  Securing such 
connections, or ensuring that they do not exist in the first place, is traditionally the responsibility 
of the corporate Information Technology (IT) staff.  If such connections must exist, it is essential 
that the system be treated as a whole.  Separation of jurisdiction between the connected networks 
can lead to security blind spots that can jeopardize the critical SCADA infrastructure.  It is 
important to remember that many of the networks within a corporation are much more exposed to 
electronic attack than the SCADA network itself.  Direct, unprotected connections to such 
networks should be avoided. 

The third category, and focus of this paper, involves an attack on the SCADA infrastructure from 
an external network.  Our primary concern involves the injection of malicious packets onto the 
SCADA network.  If access to the SCADA equipment itself (the first attack avenue) is 
sufficiently secured, then this can only occur if an intruder gains access to the SCADA 
communications media itself.  Likely scenarios include electronic compromise of the leased 
telecommunications network (hacking) or physical compromise of the transmission media 
(wiretapping or manipulation of wireless traffic). 

SCADA communications, like real-time protection communications, do not necessarily require 
encryption.  It is, however, hard to argue against the potential benefits of authentication.  The 
ability to detect and reject SCADA traffic that does not originate from a “trusted” source would 
drastically reduce the risks posed by a traffic manipulation or injection attack.  For slow 
communication links, we can employ the same techniques proposed for securing real-time 
protection communications.  More robust protocols, such as dynamic key exchange, may be 
added if sufficient communications bandwidth exists and if the additional system latency is 
tolerable.  Again, it is important to point out that an effective encryption/authentication scheme 
for SCADA communications will likely include some kind of feedback mode to reduce the 
effectiveness of a replay attack (SCADA protocols are highly repetitive). 

Remote Access Communications 

In the electric power industry, many of the devices that have remote access capability are 
performing essential protective functions.  Furthermore, it is usually possible (with the right 
passwords) to gain full access privileges over these remote links.  Such privileges grant a user the 
ability to change protection settings and operate connected devices (i.e., breakers).  Effective 
security is very important on remote access communications links because of the potential 
damage that can be caused by misuse of these privileges.  Now we must ask ourselves how 
vulnerable these links are to unauthorized electronic intrusion.  Clearly, this depends on how the 
specific remote access link is implemented.  However, as we noted before, many of the existing 
remote access communications links in use in the electric power industry today are not secure 
against potential unauthorized electronic intrusion. 

Fortunately, the performance requirements of remote access communications are much less 
stringent than those of SCADA and real-time protection communications.  We should be able to 
apply encryption to hide the transmitted passwords and cryptographic authentication to block 
unauthorized access attempts with very little perceptible performance degradation.  Furthermore, 
COTS devices already exist that can provide all or most of these functions. 
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CONCLUSIONS 
Modern cryptography has provided us with many functions and protocols that we can use to 
secure the communications infrastructure within the electric power industry.  When securing 
these systems, we must choose a cryptographic solution that meets the specific requirements of 
each communications link.  We have shown that these challenges are surmountable.  
Cryptographic devices already exist that can be used to increase the level of electronic security in 
some SCADA, remote-access, and real-time protection communication systems.  Finally, we can 
design optimized solutions to effectively secure systems that cannot tolerate the small amounts of 
latency that these existing devices add. 
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