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Improved Multi-Ended Impedance-Based Fault 
Locating for Untransposed Transmission Lines 
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Abstract—Impedance-based fault-locating algorithms come in 
three types: single-ended, multi-ended using remote currents, and 
multi-ended using both remote currents and voltages. The choice 
of the method depends on the available signals. The traditional 
algorithms often assume that transmission lines are perfectly 
transposed when, in fact, all lines are either untransposed or not 
perfectly transposed. This assumption affects the accuracy of these 
methods. This paper presents a practical method to estimate 
sequence-coupling parameters of transmission lines using local 
and remote current and voltage data. Using the estimated 
parameters, a new multi-ended impedance-based fault-location 
algorithm is proposed, which provides improved fault-locating 
accuracy for untransposed lines. The paper also provides 
simulations and field cases results, which demonstrate the efficacy 
of the proposed method. 

I. INTRODUCTION 
Fault locating (FL) is an important aspect of protective 

relaying. Accurate fault location is vital for quick and 
economical restoration of power. FL algorithms have evolved 
significantly over the years. While impedance-based FL 
algorithms have existed in relays for a long time, traveling-
wave (TW)-based FL algorithms have been implemented more 
recently in relays [1], which provide exceptionally accurate 
fault location. However, TWs are not always launched, and the 
accuracy of TW-based FL depends on whether it is multi-ended 
(ME) or single-ended (SE) [2]. This is the reason impedance-
based FL algorithms are still pertinent today. Impedance-based 
FL can also be SE or ME. Further, the ME method can use 
either only remote currents [3] or both remote currents and 
voltages [4]. SE methods are prone to system non-homogeneity 
(different line and source angles) and unbalanced line loading. 
In SE methods, system non-homogeneity can lead to errors in 
fault-location estimation, particularly when fault resistance is 
present. ME methods are more effective at addressing errors 
due to fault resistance. However, traditional ME algorithms still 
face challenges with accuracy due to unbalanced line loading. 
The ME method, using remote currents, relies on one-end 
faulted-loop voltages and total fault currents. Their accuracy 
depends on correct faulted-loop identification and the proper 
application of the zero-sequence compensation factor (k0). The 
ME method, using both remote currents and voltages, however, 
uses the negative-sequence network and does not depend on 
faulted-loop identification or k0 factor, making it a more robust 
and accurate FL method [5]. More recently, some ME methods 
have been proposed that use remote data (either synchronized 
or unsynchronized) to estimate line parameters, Zc 
(characteristic impedance of the line per unit length) and γ 
(propagation constant), as well as to determine fault location 

[6]. They make use of long-line equations in positive-sequence 
networks to estimate both, Zc and γ, and to locate faults. 
However, the long-line equations can only be applied in cases 
of transposed lines where each of the sequence networks, in the 
pre-fault state, are decoupled from each other. In an 
untransposed line, sequence networks are coupled, and long-
line equations cannot be applied accurately. The authors have 
previously proposed a ME impedance-based FL algorithm, 
which uses incremental sequence quantities [7]. This method 
provides a better fault-location estimate by removing the impact 
of load current. However, the method does not account for the 
coupling of sequence quantities in the pure-fault network.  

Existing ME methods assume a transposed line while 
estimating the fault location. However, all lines are either 
untransposed or not perfectly transposed for economic and 
practical limitations [8] [9]. The use of existing methods with 
the transposed assumption of an untransposed line leads to 
errors in the estimated fault location. Untransposed lines exhibit 
unequal mutual-coupling line parameters between different 
phases. Consequently, in the sequence domain, this results in 
nonzero-sequence-coupling parameters, meaning that the off-
diagonal terms in the sequence impedance matrix (Z012) are 
nonzero. In the absence of these untransposed line parameters, 
it is difficult to accurately determine the fault location. To 
improve accuracy in the ME method that utilizes remote 
currents and voltages, we present a novel approach in this 
paper; first, to accurately determine the sequence-coupling 
parameters using pre-fault data, and second, to use the 
estimated sequence-coupling parameters to accurately 
determine the fault location for unbalanced faults. For balanced 
faults, the lack of line transposition does not significantly affect 
the fault-location estimation (see Section II) and the traditional 
methods work well. 

The paper is organized as follows: Section II provides the 
background on untransposed errors (ME FL errors due to lack 
of line transpositions) for single-circuit and double-circuit 
lines. Section III provides the proposed FL algorithm. 
Section III also provides an error analysis of the proposed 
approach as applied to double-circuit lines. Section IV provides 
the comparison results using simulations and field events. 
Section V provides the limitations. Derivations are included in 
the Appendices.  

II. BACKGROUND ON UNTRANSPOSED ERRORS 
In this section, we explore fault-location estimation errors 

caused by untransposed line parameters when they are not 
accounted for in the FL method. Fig. 1 shows the single-line 
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diagram of an untransposed transmission line with an 
unbalanced fault at a location of m per unit from the sending 
end, S.  

 

 

Fig. 1 Single-line diagram of a faulted transmission line. 

The sequence network equation for this two-source power 
system under normal operating conditions is given in (1).  

�
V0S –  V0R
V1S –  V1R
V2S – V2R

�= �
Z00 Z01 Z02
Z10 Z11 Z12
Z20 Z21 Z22

� • �
I0S
I1S
I2S

� (1) 

Where: 
0, 1, or 2 = Zero-, positive-, or negative-sequence 

quantity; respectively (denoted by 
variable [q] henceforth). 

V[q]S/R = [q]th sequence sending-/receiving-end 
voltage. 

I[q]S = [q]th sequence sending-end current. 

Z[q1][q2] = Sequence impedance coupling from q2 
sequence network to q1 sequence 
network. 

For an unbalanced fault (shown in Fig. 1) the sequence 
network can be written as shown in (2): 

�
𝑉𝑉0𝑆𝑆𝑆𝑆 − 𝑉𝑉0𝑅𝑅𝑅𝑅
𝑉𝑉1𝑆𝑆𝑆𝑆 − 𝑉𝑉1𝑅𝑅𝑅𝑅
𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅

� = 𝑚𝑚 • �
𝑍𝑍00 𝑍𝑍01 𝑍𝑍02
𝑍𝑍10 𝑍𝑍11 𝑍𝑍12
𝑍𝑍20 𝑍𝑍21 𝑍𝑍22

� • �
𝐼𝐼0𝑆𝑆𝑆𝑆
𝐼𝐼1𝑆𝑆𝑆𝑆
𝐼𝐼2𝑆𝑆𝑆𝑆

�

−(1 −𝑚𝑚) • �
𝑍𝑍00 𝑍𝑍01 𝑍𝑍02
𝑍𝑍10 𝑍𝑍11 𝑍𝑍12
𝑍𝑍20 𝑍𝑍21 𝑍𝑍22

� • �
𝐼𝐼0𝑅𝑅𝑅𝑅
𝐼𝐼1𝑅𝑅𝑅𝑅
𝐼𝐼2𝑅𝑅𝑅𝑅

� (2)

 

Where:  
f subscript refers to faulted quantities.  
m is the per-unit fault location from the sending end. 
I[q]Rf is the [q]th sequence receiving-end current. 

It is important to note that (2) is derived by equating the 
fault-point voltage calculations from both line ends, under the 
assumption that the voltage and current measurements are time-
synchronized. When the measurements from both ends are 
synchronized, fault resistance becomes irrelevant. Conversely, 
if the signals are not time-synchronized, (2) may not be 
applicable. In such cases, unsynchronized phasor fault-locating 
methods [8] can be used, though variations in fault resistance 
might introduce additional errors.  

Extracting the negative-sequence network equation from (2) 
(the last row), we have: 

𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 = m(𝑍𝑍20𝐼𝐼0Sf + 𝑍𝑍21𝐼𝐼1Sf + 𝑍𝑍22𝐼𝐼2Sf)
  −(1 − m)(𝑍𝑍20𝐼𝐼0Rf + 𝑍𝑍21𝐼𝐼1Rf + 𝑍𝑍22𝐼𝐼2Rf) (3) 

Traditional approaches assume a transposed line and further 
assume that the sequence-coupling parameters Z21 and Z20 are 
zero. This assumption simplifies (3) as: 

𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 = m • 𝑍𝑍22 • 𝐼𝐼2Sf − (1 − m) • 𝑍𝑍22 • 𝐼𝐼2Rf (4) 
Solving this simplified equation for m, we get  

𝑚𝑚 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 + 𝑍𝑍22 • 𝐼𝐼2𝑅𝑅𝑅𝑅
𝑍𝑍22 • �𝐼𝐼2𝑆𝑆𝑆𝑆 + 𝐼𝐼2𝑅𝑅𝑅𝑅�

� (5) 

It is important to note that Z11 and Z22 are equal, and both 
are equal to Z1L, which is usually entered in the relay as a setting 
for the line parameter. The Z1L value is obtained using the 
average values of self and mutual impedances. 

A. Single Circuit—Untransposed Errors Analysis 
Traditional ME fault-location estimation uses (5) and is 

referred to as the traditional approach. The measured faulted 
current consists of two parts, namely the load current and the 
pure-fault current. We can then write, using the superposition 
principle [10], the following for the negative-sequence network 
using (3) 

𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 = m𝑍𝑍20(𝐼𝐼0S−FLT + I0S−PRE)
 + m𝑍𝑍21(𝐼𝐼1S−FLT + I1S−PRE)
 + m𝑍𝑍22(𝐼𝐼2S−FLT + I2S−PRE)

             −(1 − m)𝑍𝑍20(𝐼𝐼0R−FLT + I0R−PRE)
             −(1 − m)𝑍𝑍21(𝐼𝐼1R−FLT + I1R−PRE)
             −(1 − m)𝑍𝑍22(𝐼𝐼2R−FLT + I2R−PRE) (6)

 

Where: 
(-FLT) subscript refers to pure-fault current component  
of the faulted current. 
(-PRE) subscript refers to load-current component  
of the faulted current. 

Any voltage-drop term in (6) that is not part of (4) causes 
errors in fault-location estimates. For analysis purposes, these 
errors can be categorized as:  

1. Load-current-based errors: As the name suggests, these 
errors are caused due to the load current part of the 
faulted current. Load current flows in one direction 
irrespective of the fault location. As such, it has a 
different effect on fault-location estimates compared to 
pure-fault currents, which flow opposite to each other 
from either line end, for an internal fault. In (6), there 
are four sequence-coupling voltage-drop terms due to 
load currents, which can be further grouped into the 
following two groups for the two sequence load 
currents, as shown in (7) and (8). 

a) Positive-sequence load-current-based error: This is the 
voltage-drop error in the negative-sequence circuit due 
to positive-sequence load currents.  

        𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑍𝑍21𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃
−(1 −𝑚𝑚)𝑍𝑍21𝐼𝐼1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃

 

I1S-PRE is approximately equal to I1R-PRE, with the 
difference of the line charging current. For the ease of 
error analysis, this line charging current is ignored, which 
leads to the following, (7).  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑍𝑍21𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 (7) 
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b) Zero-sequence load-current-based error: This is the 
voltage-drop error in the negative-sequence circuit due 
to zero-sequence load current.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑍𝑍20𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 (8) 
2. Pure-fault current-based errors: These errors are caused 

due to the pure-fault current part of the faulted current. 
In (6), there are four such terms, which can be further 
grouped into the following two groups for two 
sequence fault currents, as shown in (9) and (10). 

a) Positive-sequence pure-fault current-based error: This 
is the voltage-drop error in the negative-sequence 
circuit due to positive-sequence pure-fault currents.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃  
= 𝑍𝑍21[𝑚𝑚𝐼𝐼1𝑆𝑆−𝐹𝐹𝐹𝐹𝐹𝐹 − (1 −𝑚𝑚)𝐼𝐼1𝑅𝑅−𝐹𝐹𝐹𝐹𝐹𝐹] (9) 

These two voltage drops, mI1S-FLT and (1–m)I1R-FLT, 
oppose each other.  

b) Zero-sequence fault current-based error: This is the 
voltage-drop error in the negative-sequence circuit due 
to zero-sequence currents.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍
= 𝑍𝑍20[𝑚𝑚𝐼𝐼0𝑆𝑆−𝐹𝐹𝐹𝐹𝐹𝐹 − (1 −𝑚𝑚)𝐼𝐼0𝑅𝑅−𝐹𝐹𝐹𝐹𝐹𝐹] (10) 

Equations (9) and (10) show that for a homogenous system 
with equal, local and remote, source-impedance ratios (SIRs) 
(the ratio of source impedance to the line impedance), if the 
fault is at 50 percent of the line, then the two voltage-drop 
terms, in (9) and (10), will perfectly cancel each other. Hence, 
the factors that affect the pure-fault current-based errors are  

• SIR differences between the sending end and 
the receiving end 

• Fault location 
The same error analysis is extended to double-circuit lines 

in the next subsection.  

B. Double Circuit—Untransposed Errors Analysis 
In addition to errors listed in (7) through (10), a double-

circuit line has additional mutual-coupling errors coming from 
the parallel line’s positive-, negative-, and zero-sequence 
currents. The complete list of errors, List 1, for an end-to-end 
parallel line, is shown below (the derivation is in Appendix G). 

1.  𝑍𝑍21 • [m • 𝐼𝐼1S−FLT − (1 − m) • 𝐼𝐼1R−FLT] 

2. 𝑍𝑍21 • [𝐼𝐼1S−PRE] 
3. 𝑍𝑍2−1P • [𝐼𝐼1SP−FLT] 
4. 𝑍𝑍2−1P •  [𝐼𝐼1SP−PRE] 
5. 𝑍𝑍20 •  [m • 𝐼𝐼0S−FLT − (1 − m) • 𝐼𝐼0R−FLT] 
6. 𝑍𝑍20 •  [𝐼𝐼0S−PRE] 
7. 𝑍𝑍2−0P • [𝐼𝐼0SP−FLT] 
8. 𝑍𝑍2−0P •  [𝐼𝐼0SP−PRE] 
9. 𝑍𝑍2−2P •  [𝐼𝐼2SP−FLT] 
10. 𝑍𝑍2−2P •  [𝐼𝐼2SP−PRE] 

List 1. Untransposed error terms for parallel lines with the traditional 
approach. (Subscript P refers to the quantities from the parallel line.) 

There can be other kinds of parallel lines [11], which are not 
covered in the paper. 

In the next subsection, several simulation results are 
presented to illustrate the impact of untransposed errors in 
traditional ME FL for a single-circuit untransposed line. These 
results are compared with those from traditional ME FL for a 
transposed line. 

C. Single-Circuit Test Results—Traditional Approach 
This section illustrates the impact of the traditional FL 

accuracy for an untransposed line. Equation (5) is applied for 
unbalanced faults; and the positive-sequence approach 
mentioned in [7] is applied for balanced faults. We have used a 
single-circuit 400 kV, 100 km line with a horizontal tower 
configuration (line parameter details are provided in the 
Appendix (Table IV and Table V). The line is analyzed under 
two scenarios: one where it is fully transposed, and another 
where it is left untransposed. Various fault conditions were 
applied to compare the accuracy differences between the 
transposed and untransposed cases. The single-line diagram of 
the tested system is shown in Fig. 1. 

The test cases were selected to demonstrate the impact of 
different power system conditions on the untransposed errors, 
as discussed in Subsection A. We analyzed the same line under 
load-current-based untransposed errors, (7) and (8), and pure-
fault current-based untransposed errors, (9) and (10), separately 
by changing one parameter at a time to compare results. The 
traditional approach on transposed lines does not exhibit 
untransposed errors and thus provides a reference for fault-
location accuracy in untransposed scenarios. 

First, to investigate the load errors in the untransposed 
errors, we kept the sending-end SIRS and the receiving-end 
SIRR the same and chose a fault location at 50 percent of the 
line length. The choice of these parameters removes the pure-
fault error as discussed previously. 

Fig. 2 provides the results for fault-location estimates when 
only loading is varied. When the load is minimum (one degree 
load angle is chosen here), the effects of (7) and (8) are also 
minimum. Hence, from Fig. 2b, we can see that transposed and 
untransposed lines both have almost equal fault-location 
accuracy for all the fault types.  

When the line loading is increased to ± 20 degrees, load-
current-based errors increase. This, in turn, increases the fault-
location errors, as can be seen in Fig. 2a and Fig. 2c. We can 
also see that the transposed line FL is not affected by these load-
current conditions.  
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Fig. 2. Horizontal tower configuration, 400 kV system, line length (LL) = 
100 km, SIRS = 1, SIRR = 1, fault location = 50 km, Rf = 40 ohms, varying 
load conditions (TP = Transposed; UTP = Untransposed). 

Next, to investigate the effect of pure-fault current-based 
errors, pre-fault load is fixed at minimum load flow, i.e., at 
one degree. The SIR difference and fault location are varied 
individually at first, and then both are varied simultaneously. 

The local and remote SIR angles were kept fixed so that the 
source impedances were 

𝑍𝑍𝑥𝑥𝑥𝑥 = 𝑍𝑍𝑥𝑥𝑥𝑥 • (𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 ∠ − 50)
𝑍𝑍𝑥𝑥𝑥𝑥 = 𝑍𝑍𝑥𝑥𝑥𝑥 • (𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅∠ − 80) (11) 

Where x = 0, 1. 
In the case shown in Fig. 3a, the SIRS and SIRR magnitudes 

are fixed at one, and the fault location is changed to 80 percent 
of the line length. We can see the increase in errors for 
untransposed lines. This increase is due to the unequal sequence 
mutual-coupling voltage drop in the line on either side of the 
fault location, as the simulation is not symmetric, unlike the 
fault location, which is at the midpoint (50 km) of the line. This 
can be understood from (9) and (10). 

Fig. 3b analyzes the effect of SIR difference on 
untransposed errors. Here, the pre-fault load angle is 
maintained at one degree and fault location is kept at the 
midpoint of the line. This setup isolates the pure-fault current 
errors, which arise due to the different fault current 
contributions from the two ends. Fig. 3c shows the combined 
effects of SIR difference and fault location on the increase in 
errors. Again, the lack of symmetry in the faulted line leads to 
increased untransposed errors, as illustrated by (9) and (10), due 
to the unequal sequence mutual-coupling voltage present on 
either side of the fault point.  

 

Fig. 3. Horizontal tower configuration, 400 kV system, LL = 100 km, load 
angle = 1 degree, Rf = 40 ohms, varying SIR or fault-location conditions. (TP 
= Transposed; UTP = Untransposed) 

These results illustrate the effects of individual untransposed 
error contributors. The combined effect of these individual 
contributors to the untransposed errors are tested separately, 
and the results (for only untransposed lines) are provided in 
Section IV.  

While the traditional approach on transposed lines remains 
unaffected by any of the discussed power system operating 
conditions, the traditional approach on untransposed lines is 
impacted due to the neglect of the sequence mutual-coupling 
line parameters, Z21 and Z20, in the negative-sequence network. 
Hence, to address the untransposed errors, we need to include 
these line parameters in the FL algorithm. In the next section, 
we provide the details for estimating and including these line 
parameters in the FL algorithm. This way, the user does not 
have to provide additional line parameter data to get more 
accurate fault-location estimates. 

III. PROPOSED FAULT-LOCATING ALGORITHM 
The proposed FL method uses the negative-sequence 

network because it is not influenced by source voltages, 
charging currents, and varying parameters based on the weather 
conditions. The method provides improved fault-location 
estimates for unbalanced faults, i.e., SLG, LL, and LLG faults. 
For balanced faults, both the traditional approaches—positive-
sequence and average of three phase-phase equations’ 
estimates—are adequate for addressing untransposed line 
errors. Refer to FL accuracy on untransposed lines for ABC 
fault results in Section II. 
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It was shown in Section II that ignoring the Z21 and Z20 
components is the primary cause of errors in fault-location 
algorithms based on negative-sequence quantities for 
unbalanced faults. To address this, the proposed fault-locating 
method first estimates the sequence mutual-coupling line 
parameters in the negative-sequence network (Z21 and Z20). 
These parameters are then used in the negative-sequence 
network to accurately estimate the fault location.  

The estimation of sequence-coupling parameters is shown in 
Subsection A, while their use in network equations for accurate 
fault estimation is shown in Subsection B. Subsection C 
discusses some considerations for parallel lines. 

A. Z21 and Z20 Estimation 
In an untransposed line, the sequence networks are coupled 

through electromagnetic and electrostatic links during the pre-

fault state. Fig. 4 shows the lumped-parameter nominal pi-
circuit representation of sequence networks in the pre-fault 
state. The line also presents the shunt admittances, which can 
be represented as shown below, in a similar way as (1).  

[𝐼𝐼012] = [𝑌𝑌012][𝑉𝑉012] (12) 
The flow of current in the negative- and zero-sequence 

networks are representations of the natural unbalance due to the 
asymmetry in line geometry. The unbalance in power systems 
comes mainly from lines. The electromagnetic coupling 
between the networks is represented as current-dependent 
voltage sources while the electrostatic coupling is represented 
as voltage-dependent current sources. Fig. 4 is used as a 
reference to derive the sequence-coupling parameters. The 
quantities and parameters in Fig. 4 will be described in the 
different steps of the parameter estimation. 

 

Fig. 4. Pre-fault sequence network diagrams. 
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The estimation of sequence-coupling parameters for the 
negative-sequence circuit is done in three steps: estimation of 
positive-sequence admittance-coupling parameters, 
compensation of the sequence currents to remove positive-
sequence voltage-based capacitive currents, and estimation of 
sequence-coupling impedances. These steps are described in 
more detail below.  

1. Estimation of admittance line parameters: 
The sequence admittance-coupling parameters Y01 (the 
admittance coupling from the positive-sequence to the 
zero-sequence network), Y11 (positive-sequence self-
admittance), and Y21 (the admittance coupling from the 
positive-sequence to the negative-sequence network) 
are estimated using (15), (16), and (17). Only the 
positive-sequence admittance-coupling parameters are 
considered for all three networks given the fact that 
positive-sequence voltage is much higher than other 
sequence voltages during the pre-fault state.  

In Fig. 4, k1S and k1R refer to the admittance distribution 
factors, which take into account unequal voltage 
magnitudes at the two ends and their relative 
contribution to the charging current. Here, k1S and k1R 
describe what percentage (per unit) of the sum of the 
two voltages is the local voltage, with the results 
expressed as absolute values. They can be found as 
shown in (13). 

                                𝑘𝑘1𝑆𝑆 = �
𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃

𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
� 

𝑘𝑘1𝑅𝑅 = �
𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃

𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
� (13) 

Once k1S and k1R are known, we can write (using the 
pi model approach) the following for the positive-
sequence network charging current, 

𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘1𝑆𝑆 • 𝑌𝑌11 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃
+ 𝑘𝑘1𝑅𝑅 • 𝑌𝑌11 • 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 (14) 

which can then be simplified to obtain Y11, total shunt 
admittance, as shown in (15). 

𝑌𝑌11 =
𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃

𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑘𝑘1𝑅𝑅 • 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
(15) 

A similar approach can be followed for pre-fault 
negative- and zero-sequence networks to obtain Y21 
and Y01 as shown in (16) and (17). 

𝑌𝑌21 =
𝐼𝐼2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼2𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃

𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑘𝑘1𝑅𝑅 • 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
(16) 

𝑌𝑌01 =
𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃

𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑘𝑘1𝑅𝑅 • 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
(17) 

2. Compensation of sequence currents to remove 
capacitive-coupling current from positive-sequence 
voltage: 
The sequence currents from each end are compensated 
to remove the respective end’s capacitive-charging 
current resulting from positive-sequence voltage. This 
improves the estimation of sequence current flowing in 
the line. Equation (18) shows how the currents are 
compensated. 

        𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑌𝑌11 • 𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃
        𝐼𝐼2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑌𝑌21 • 𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃
        𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑌𝑌01 • 𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 (18)

 

3. Estimation of sequence-coupling impedances, Z21 and 
Z20: 
Using Kirchoff’s voltage law in Fig. 4b, the negative-
sequence network (the sequence mutual-coupling 
impedance from positive-sequence to negative-sequence 
network), Z21, can be estimated as shown in (19). 

𝑍𝑍21 =  
𝑉𝑉2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑉𝑉2𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑍𝑍𝐼𝐼𝐼𝐼  •  𝐼𝐼2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
(19) 

Here, the term (I0S−PRE−COMP • Z20 
I1S−PRE−COMP

 ) electromagnetic 
coupling from the zero-sequence network, is ignored. 
This is because, typically, the zero-sequence current is in 
the order of one percent of positive-sequence currents in 
normal power system operating conditions. Additionally, 
the magnitude of Z20 will be in the same range as Z21. 
Therefore, the omission of this term results in only 
minor errors in the Z21 estimation. The magnitude of this 
error can be observed in Section IV. 
Using Kirchoff’s voltage law in Fig. 4c, zero-sequence 
network (the sequence mutual-coupling impedance from 
the positive-sequence to the zero-sequence network), 
Z01, can be estimated as shown in (20). 

𝑍𝑍01 =
(𝑉𝑉0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑍𝑍0𝐿𝐿 • 𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 )

𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
(20) 

Here, the term (I2S−PRE−COMP • Z02 
I1S−PRE−COMP

) electromagnetic 
coupling from negative-sequence network, is ignored. 
This is because, typically, the negative-sequence current 
is in the order of 2 to 4 percent of positive-sequence 
currents in normal power system operating conditions, 
and the magnitude of Z02 will be in the same range of 
Z01. Therefore, the omission of this term results in only 
minor errors in the Z01 estimation. The magnitude of this 
error can be observed in Section IV.  
The sequence impedance matrix, [Z012], is not a 
symmetrical matrix. However, it does follow some 
symmetry, with Z01 equal to Z20 and Z10 equal to Z02 (see 
Appendix A). Thus, the calculation of Z01 also gives us 
Z20, i.e., (21). 

𝑍𝑍20 = 𝑍𝑍01 (21) 
Theoretically, the estimations we discussed for Z21 and 
Z20 do not change much with the load conditions (refer 
to simulation results in Section IV). However, it is 
preferred to estimate them close to higher load 
conditions when CT errors are smaller. A qualifying 
minimum load can be used to trigger the estimation of 
these parameters, which can be performed at regular 
intervals to account for any possible variation in zero-
sequence related parameters, which may vary due to 
change in ground resistivity and other factors. In this 
paper, we use the pre-fault load, irrespective of its 
magnitude, to estimate Z21 and Z20. 
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Fig. 5. Faulted negative-sequence network. 

𝑚𝑚 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑉𝑉2𝑆𝑆𝑆𝑆 −  𝑉𝑉2𝑅𝑅𝑅𝑅 + 𝑍𝑍22 • 𝐼𝐼2𝑅𝑅𝑅𝑅 +  𝑍𝑍21 • 𝐼𝐼1𝑅𝑅𝑅𝑅  +𝑍𝑍20 •  𝐼𝐼0𝑅𝑅𝑅𝑅

𝑍𝑍22 • �𝐼𝐼2𝑆𝑆𝑆𝑆 + 𝐼𝐼2𝑅𝑅𝑅𝑅� + 𝑍𝑍21 • �𝐼𝐼1𝑆𝑆𝑆𝑆 + 𝐼𝐼1𝑅𝑅𝑅𝑅� + 𝑍𝑍20 • �𝐼𝐼0𝑆𝑆𝑆𝑆 + 𝐼𝐼0𝑅𝑅𝑅𝑅�
� (22)

 

B. Fault-Location Estimation 
As discussed earlier, Z21 and Z20 are used to represent the 

electromagnetic coupling due to I1 and I0, respectively, as 
current-dependent voltage sources in the negative-sequence 
network (see Fig. 5).  

While working on pre-fault sequence networks for 
estimating Z21 and Z20, admittance coupling from the positive-
sequence network on all three networks is included. However, 
for faulted networks, we ignore the admittance coupling to keep 
the calculations simpler and more efficient. 

Equation (22) provides the estimated fault location obtained 
by solving the network shown in Fig. 5, (see Appendix B for 
detailed derivation). 

It is important to note that when Z21 and Z20 estimates are 
not available or if the line is transposed, we can simply 
substitute Z21 and Z20 with zero and (22) becomes identical to 
the traditional fault-location equation, as shown in (5).  

C. Untransposed Parallel-Line Considerations  
For untransposed parallel lines, there is sequence mutual 

coupling between the parallel lines in addition to the sequence 
coupling within each line. The following equation illustrates the 
relationship between the sequence networks of two parallel 
lines (L1 and L2) under normal power system operating 
conditions in the sequence domain. 

�
�∆𝑉𝑉012𝐿𝐿1

�
�∆𝑉𝑉012𝐿𝐿2

�
� = �

�𝑍𝑍012𝐿𝐿1
�

�𝑍𝑍012𝐿𝐿21
�
 
�𝑍𝑍012𝐿𝐿12

�
�𝑍𝑍012𝐿𝐿2

�
� �
�𝐼𝐼012𝐿𝐿1𝑆𝑆

�
�𝐼𝐼012𝐿𝐿2𝑆𝑆

�
� 

[∆𝑉𝑉012𝐿𝐿𝐿𝐿] = Line x sequence voltage drop, matrix 
[𝐼𝐼012𝐿𝐿𝐿𝐿𝐿𝐿] = Line x sending-end sequence currents, 

matrix 
[𝑍𝑍012𝐿𝐿𝐿𝐿] = Line x sequence impedance, matrix 
[𝑍𝑍012𝐿𝐿𝐿𝐿𝐿𝐿] = Line y mutual sequence impedance on Line 

x, matrix 
Where x, y = 1,2. 

These additional sequence mutual-coupling terms from the 
parallel line play a role in Z21 and Z20 estimations. In this 
subsection, we propose an improved Z20 estimation for parallel 
lines, which accounts for zero-sequence mutual coupling 
between the circuits. Next, we analyze the errors in the 
estimations of Z21 and Z20, as well as the errors in proposed 
fault-location estimation, when applied to parallel lines.  

1) Improving Z20 Estimation for Untransposed  
Parallel Lines 

Consider the single-line diagram of an end-to-end connected 
double-circuit line shown in Fig. 6. It illustrates that the two 
parallel lines share a common bus at either end. In Fig. 6, Z0M 
refers to the zero-sequence mutual impedance between the two 
parallel lines. The zero-sequence coupling between the two 
circuits can be significant and needs to be accounted for in the 
Z20 estimation. It should be noted that the Z21 parameter is not 
affected significantly in the presence of a parallel line.  

 

 

Fig. 6. Two-source power system model with parallel line. 

Fig. 7 shows the pre-fault zero-sequence network of the line 
of interest for the system shown in Fig. 6. Recall that (20) and 
(21) from Section III.A demonstrate that Z20 is equal to Z01, 
which is estimated from the zero-sequence network. It 
illustrates all the electromagnetic coupling from the parallel-
line sequence networks as current-dependent voltage sources. 
In Fig. 6, currents with subscript P refer to parallel-line currents 
and parameters with subscript P refer to mutual-coupling 
parameter between the line of interest and the parallel line.  
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Fig. 7. Pre-fault zero-sequence network for a two-source power system with parallel line. 

Because positive- and negative-sequence currents are 
balanced in nature, their net electromagnetic effect on a parallel 
line is low. However, zero-sequence current is not balanced and 
the net electromagnetic effect on the parallel line cannot be 
neglected [12]. Thus, we can ignore the mutual-coupling terms 
related to Z0-1P and Z0-2P (the impedance matrix example in the 
Appendix illustrates the validity of the assumption), while 
noting that we had already ignored the Z02 term when 
estimating Z20 in (20). However, even if the lines are fully 
transposed, Z0M does not go away. With these assumptions, we 
can now write (23) for the zero-sequence network (in Fig. 7). 

𝑉𝑉0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
=  𝑍𝑍0𝐿𝐿 • 𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +𝑍𝑍0𝑀𝑀 • 𝐼𝐼0𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ 𝑍𝑍01 • 𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (23)
 

Looking at (23), we can note that the difference from the 
single-circuit case, (20), is the zero-sequence mutual-coupling 
term.  

Further, we need to compensate the parallel-line zero-
sequence current for capacitive current due to positive-
sequence voltage in parallel line. Following the steps from 
Section III .A, we can write (24). 

𝐼𝐼0𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼0𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑌𝑌01 • 𝑘𝑘1𝑆𝑆 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 (24) 
The electrostatic coupling, due to positive-sequence voltage 

from the parallel line, Y0-1P, is included in the Y01 estimation 
when using (17) (the derivation is in Appendix F). Therefore, 
no additional measures are required to account for Y0-1P. 

Z01 can then be estimated using (23).  
𝑍𝑍01 =

(𝑉𝑉0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑍𝑍0𝐿𝐿 • 𝐼𝐼0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
−𝑍𝑍0𝑀𝑀 • 𝐼𝐼0𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

𝐼𝐼1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
(25)

 

Equation (25) provides a more accurate Z01 estimation than 
(20). Detailed comparison results between (20) and (25) are 
presented in Section IV.B. We refer to the (20)-based FL as the 
proposed approach, and to the (25)-based FL as the alternate 
approach. 

2) Analysis of Errors in Parameter Estimation and 
Fault-Location Estimation in Parallel Lines 

In this subsection, we dive deeper into the errors in 
parameter estimation and FL when applying the proposed 
method for the parallel lines.  

In the previous subsection, we improved the Z20 estimation 
to include the parallel-line zero-sequence mutual-coupling 
effect. However, we did not change the Z21 estimation for the 
parallel-lines scenario. It can be shown that the Z21 estimated in 
case of parallel lines also includes the effect of positive-
sequence current in the parallel line (I1SP-PRE-COMP • Z2-1P) as it 
couples to the negative-sequence network (see (26)). There is 
also a negative-sequence current coupling from the parallel line 
to the line of interest. However, since parallel-line negative-
sequence current is much smaller than parallel positive-
sequence current in pre-fault condition, we ignore that effect.  

Thus, the Z21 we estimate is effectively the sum of the true 
Z21 of the protected circuit and Z2-1P (parallel line I1P coupling 
to the line-of-interest negative-sequence network). It should be 
noted that Z2-1P can be much smaller in comparison to Z21 
because, as mentioned before, a positive-sequence current is a 
balanced current and produces almost no net flux as we move 
away from the line. However, since the two parallel lines are 
relatively close to each other, some coupling exists between I1P 
and the line-of-interest negative-sequence network. A detailed 
derivation for (26) is provided in Appendix C. This Z21_eff is an 
impedance estimation for parallel lines based on the pre-fault 
values, using (19), assuming equal currents in both lines. 

𝑍𝑍21eff = 𝑍𝑍21 + 𝑍𝑍2−1P (26) 
Similarly, while estimating Z01 using (25), we have not 

included the positive-sequence current effect from the parallel 
line (I1SP-PRE-COMP • Z0-1P) in the zero-sequence network. Due to 
this, the effective estimated Z01, for parallel lines using the 
proposed approach, turns out to be as shown in (27). The 
derivation for (27) is provided in Appendix D. This Z01_eff_new is 
an impedance estimation based on the pre-fault values, 
assuming equal currents in both lines. 
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𝑍𝑍01_𝑒𝑒𝑒𝑒𝑒𝑒_𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑍𝑍01 + 𝑍𝑍0−1P (27) 
Had we not improved the Z01 estimation for parallel-line 

zero-sequence mutual coupling to the line-of-interest zero-
sequence network (Z0M) using (25), the effective Z01 would 
have included the Z0M effect as well. Equation (28) gives the 
effective Z01 when estimated using (20). See Appendix E for 
the derivation.  

𝑍𝑍01_𝑒𝑒𝑒𝑒𝑒𝑒_𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑍𝑍01 + 𝑍𝑍0−1P + 𝑍𝑍0𝑀𝑀 •  
𝐼𝐼0SP−PRE−COMP
𝐼𝐼1S−PRE−COMP

(28) 

Next, we analyze the errors in estimated fault location using 
the proposed approach for parallel lines. List 2 provides the list 
of errors, which result from the ignored impedances after the 
inclusion of effective Z21 and Z20 estimations, obtained from 
(26) and (27), in the faulted negative-sequence network (see 
Appendix H for more details). 

1. 𝑍𝑍2−1P • [m • 𝐼𝐼1S−FLT − (1 − m) • 𝐼𝐼1R−FLT] 
2. 𝑍𝑍2−1P • [𝐼𝐼1SP−FLT] 
3. 𝑍𝑍2−0P • [m • 𝐼𝐼0S−FLT − (1 −m) • 𝐼𝐼0R−FLT] 
4. 𝑍𝑍2−0P •  [𝐼𝐼0SP−FLT] 
5. 𝑍𝑍2−2P •  [𝐼𝐼2SP−FLT] 
6. 𝑍𝑍2−2P •  [𝐼𝐼2SP−PRE] 

List 2. Untransposed error terms for parallel lines with alternate approach. 

In List 2, 𝐼𝐼[q]SP−FLT refers to the change in parallel-line pre-
fault [q]th sequence current (pure-fault) because of a fault in the 
line of interest. For Errors 1 and 3, it should be recalled that the 
term [m • 𝐼𝐼xS−FLT − (1 − m) • 𝐼𝐼xR−FLT] (where x = 0, 1) has a 
self-deprecating nature, meaning the two terms have the same 
sign and tend to cancel each other out. When the sending-end 
and receiving-end source-impedance magnitudes and angles 
are the same and the fault is at 0.5 pu of the line length, they 
perfectly cancel each other out.  

Here, we considered end-to-end parallel lines; however, for 
the other kinds of parallel lines, an error analysis should be run 
to identify more sources of error.  

The next section shows the comparison results between the 
traditional approach and the proposed approach. 

IV. SIMULATION AND FIELD EVENT RESULTS 
This section provides the comparison results between the 

traditional approach (5) and proposed approach, (19) through 
(22), using phasor-based simulations for single-circuit lines 
with three different tower configurations, end-to-end parallel 
lines with two different tower configurations, and a few field 
events.  

A. Single-Circuit Transmission Lines 
The transmission line tower configuration and line 

parameters for each single-circuit line are provided in the 
Appendix (Table IV and Table V). For simplicity, the line 
length is fixed to 100 km. The source impedances are calculated 
as shown in (11). Fig. 8 shows the ideal Vs estimated Z21 (as 
per (19)) and estimated Z20, as per (21), parameters for a 400 kV 
horizontal tower configuration with respect to load angle. 
Furthermore, Z20 shows slightly higher estimation error 

(5.5 percent) than Z21 (1.2 percent). The estimates do not 
change much with load angle variation. This is due to the 
inclusion of admittance compensation for pre-fault sequence 
currents (18) while estimating Z21 and Z20. Next, we use these 
estimated line parameters for estimating the fault location. 

  

Fig. 8. Z20 and Z21 estimation for 400 kV horizontal tower configuration, 
SIRS = 0.1, SIRR = 1. 

Fig. 9 shows the fault-location estimates from the traditional 
and proposed methods at 50 km fault location and three 
different load angles. As the SIR on both sides of the lines are 
equal and the fault is at the middle of the line, there are no pure-
fault current-based errors. The fault-location estimate error in 
the traditional method is the result of not including load-
current-based errors in its calculations. As the load angle 
increases, these errors increase, resulting in higher fault-
location estimate errors in the traditional method. The fault-
location estimates provided by the proposed method are close 
to the actual value as these errors are accounted for in the 
calculations. 
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Fig. 9. Horizontal tower configuration, 400 kV system, LL = 100 km SIRS = 
1, SIRR = 1, fault location = 50 km, Rf = 40 ohms. 

Next, we analyze the impact of pure-fault current-based 
error on the two methods. The load angle is kept low at one 
degree to minimize load-current-based errors. A zero-degree 
load angle is intentionally avoided because it prevents the 
estimation of Z21 and Z20 using the proposed method. This is 
due to (19) and (20), which have positive-sequence current in 
the denominator. Fig. 10 shows the fault-location estimates 
provided by the two methods for two different SIR conditions 
and two fault locations. The proposed method provides good 
fault-location estimates. The errors in traditional method fault-
location estimates are due to not incorporating pure-fault 
current-based errors in its calculations. 

So far, we analyzed the impact of load-current-based errors 
and pure-fault current-based errors separately in the traditional 
and the proposed methods. These errors result in poor fault-
location estimates when the traditional method is used. As the 
proposed method accounts for these errors, the fault-location 
estimates are not affected by variation in load angle, SIR 
difference, or fault location. To test the efficacy of the proposed 
method, hundreds of faults are executed by varying fault 
locations, load angles, fault types, and fault resistance. 
Although fault resistance does not affect ME impedance-based 
FL methods, test cases with different fault resistance are 
considered to make the test coverage relevant to real-world 
scenarios. 

 

Fig. 10. Horizontal tower configuration, 400 kV system, LL = 100 km load 
angle = 1 degree, Rf = 40 ohms, varying SIR or fault-location conditions. 

The following variables are used for generating overall test 
cases. 

Fault locations (km) = –> 30, 50, 80 
Load angle (degree) = –> –20, –10, –5, 1, 5, 10, 20 
Fault type = –> AG, BG, CG, AB, BC, CA, ABG,  

BCG, CAG 
Fault resistance (ohms) = –> 0.001, 10, 40 
SIRS = –> 0.1 
SIRR = –>1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 
Fig. 11 shows the worst-case fault-location estimates 

provided by the traditional and proposed methods for each SIRR 
by evaluating all combinations of the remaining variables 
mentioned previously. For the 400 kV horizontal tower 
configuration, the worst-case fault-location estimate error 
provided by the traditional method is 10.56 km, whereas it is 
0.3259 km for the proposed method. Table I lists the fault-
location estimates for three single-circuit tower configurations 
for various fault configurations discussed above. Compared to 
the traditional method, the proposed method estimates are 
within 1 to 2 tower spans. The test results prove the 
effectiveness of the proposed fault-location method for single-
circuit lines.  
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Fig. 11. Horizontal tower configuration, 400 kV system, SIRS = 0.1. 

TABLE I 
WORST-CASE ABSOLUTE ERROR FOR VARIOUS TOWER CONFIGURATIONS 

 Traditional 
Approach—
Worst-case 
Error (km) 

Proposed 
Approach—
Worst-case 
Error (km) 

400 kV Horizontal tower 
configuration 10.58 0.3259 

400 kV Vertical tower 
configuration 12.1232 0.4215 

230 kV Right angle tower 
configuration 7.348 0.3828 

B. Double-Circuit Transmission Lines 
This subsection presents simulation results for double-

circuit untransposed lines using both the traditional (5) and 
proposed, (19) through (22), fault-locating approaches. 
Additionally, as discussed in Section III, we introduce an 
improved solution for Z20 (25) by incorporating parallel-line 
data. This section includes fault-locating results using an 
alternate approach where (20) in the proposed method is 
replaced with (25). 

We considered an end-to-end parallel-line configuration for 
two different systems: one with a 230 kV double-circuit tower 
configuration and the other with a 400 kV double-circuit tower 
configuration. The single-line diagram for the test system is 
shown in Fig. 6. The transmission tower configuration and line 
parameters are provided in the Appendix (Table IV and 
Table V). The source impedances are calculated as shown in 
(11). For the proposed approach, Z21 and Z20 are first estimated 
before proceeding to estimate the fault location.  

Fig. 12 shows the Z21 and Z20 estimates for both the 
proposed approach, (19) and (20), and the alternate approach, 
(25), for the 230 kV double-circuit configuration. The 
estimations were conducted at a fixed SIRS = 0.1 ∠–50 and SIRR 

= 5 ∠–80, across seven different load conditions. The accuracies 
of these estimates are compared against the ideal values Z21+Z2-

1P and Z20 + Z2-0P, respectively. The rationale for this 
comparison is detailed in Section III.C.2. In contrast to single-
circuit configurations, the estimation of Z20 in double-circuit 
configurations is influenced by loading conditions. However, 
the alternate approach shows that Z20 estimation is relatively 
unaffected by load variations, while Z21 estimation remains 
stable and meets expectations regardless of load conditions.  

  

Fig. 12. Double-circuit, 230 kV system, SIRS = 0.1, SIRR = 5, Z21 and Z20 
estimates at different loads. 

It is evident that the proposed Z20 estimation, particularly its 
magnitude, is significantly affected by the load. Interestingly, 
higher loading conditions have contributed to improved 
accuracy in Z20 estimations. Now, let us see the effect of these 
estimations in FL.  

The fault-location estimation comparison results for the 
230 kV double-circuit line are shown in Fig. 13. The plot is 
generated by varying the SIRR from 1 to 5 in increments of 0.5, 
while keeping SIRS fixed at 0.1. The absolute maximum error 
(km) for various fault cases is recorded for each value of SIRR. 
The power system variables for the test cases are as follows: 

Fault locations (km) = –> 30, 50, 80 
Load angle (deg) = –> –20, –10, –5, 1, 5, 10, 20 
Fault type = –> AG, BG, CG, AB, BC, CA, ABG,  

BCG, CAG 
Fault resistance (ohms) = –> 0.001, 10, 40 
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Fig. 13. Absolute maximum error comparison results for 230 kV double-
circuit tower configuration, SIRS = 0.1. 

The plot in Fig. 13 shows that the proposed approach 
consistently provides accurate results overall, compared to the 
traditional method, despite lower load conditions affecting the 
Z20 estimation. One possible reason for this improvement is the 
effective reduction in Z21-related untransposed errors.  

Furthermore, fault-location estimation accuracy is further 
enhanced when incorporating Z01 from (25). However, this 
approach has a slight increase in errors with the increase in 
SIRR. This trend can be explained through the error analysis 
presented in Section III.C, where Errors 1 and 3 from List 2. 
contribute to this reduction in accuracy. This is primarily due to 
the increase in differences between the pure-fault currents on 
the sending end and receiving end. 

Table II presents the absolute maximum error values for two 
double-circuit configurations across various fault scenarios, as 
mentioned for Fig. 13. 

TABLE II  
WORST-CASE ABSOLUTE ERROR FOR DOUBLE-CIRCUIT LINES 

 Traditional 
Approach—
Worst-Case 
Error (km) 

Proposed 
Approach—
Worst-Case 
Error (km) 

Alternate 
Approach 
(Eq (25) 
based) 

Worst-Case 
Error (km) 

230 kV double-
circuit tower 
configuration 

11.15 4.0 1.38 

400 kV double-
circuit tower 
configuration 

13.01 5.72 4.25 

Table II demonstrates that the proposed approach shows 
consistent and substantial improvement, despite the inherent 
limitations of double-circuit lines. 

The alternate approach for the 400 kV system has a worst-
case error of 4.25 km at SIRS = 0.1, SIRR = 5, and fault location 
= 80 km. This higher error is due to Errors 1 and 3 from List 2. 

C. Field Events—Results 
To demonstrate the improved accuracy of the proposed FL 

method, we applied it to five field event reports, each with a 
known fault location. These events were processed using both 
traditional and proposed algorithms, and the comparison results 
are provided in Table III. For the proposed algorithm, pre-fault 
and fault data processing is done as shown [11]. 

Table III shows the fault type, pre-fault sequence currents, 
line parameters, and SIR. Source impedances are estimated 
from the available fault data (using relation, Z2X = –V2X/I2X, 
where X=S for the sending end and R for the receiving end). 
Table III also provides the actual fault location determined by 
the field crew, the fault location estimated by the traditional FL 
algorithm, (5), and its error, the proposed method’s Z21 and Z20 
estimates, applying (18), (19), (20), and the fault location 
estimated by the proposed algorithm, (21), and its error. Below 
is more information on the field events: 
• Field Event 1 is from a homogenous 115 kV line that is 

33.63 km long with a few tap points. The pre-fault load 
was high, with pre-fault I2 at 3.97 percent of I1 and pre-
fault I0 at 0.16 percent of I1. These values suggest that 
the traditional approach may introduce load-current-
based untransposed errors, primarily due to I2. 
Additionally, the SIR angles differ from each other and 
from the line angle, indicating non-homogeneity within 
the system. The fault was not located at the midpoint of 
the line, leading to further asymmetry. The system non-
homogeneity and asymmetry can result in pure-fault 
current-based untransposed errors when using the 
traditional approach. Therefore, the errors in the 
traditional method are attributed to both load and pure-
fault current factors.  

• Field Event 2 is from a single-circuit, homogenous 
230 kV line which runs 153.17 km long with no taps. 
Compared to other events discussed in this paper, this 
event had relatively higher pre-fault I2 and I0 as 
percentages of I1, measuring 6.33 percent and 0.77 
percent respectively. The Z21 and Z20 estimations also 
showed higher magnitudes, making their inclusion 
crucial for this line. Although the pre-fault load current 
was not notably high, the fault-location estimation error 
using the traditional method was the highest among all 
the field events analyzed. This increased error could be 
attributed to pure-fault current-based errors, likely 
influenced by significant SIR differences, non-
homogeneity, and asymmetry due to the fault location at 
40 percent of the line length. 
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TABLE III 
FIELD EVENTS FL ESTIMATION COMPARISON  

Event Fault 
Type 

Pre-fault 
Seq. 

Currents 
I1/I2/I0 

(A 
Primary) 

Line Parameters 
(Ohms Secondary 

and Deg.) 

SIR (Angle = 
Deg.) Actual 

Fault 
Loc. 
(km) 

Traditional 
Approach Proposed Approach Estimates and Error 

Z1L Z0L 

SIRS 
= 

Z2S/
Z1L 

SIRR 
= 

Z2R/ 
Z1L 

FL 
Est. 
(km) 

Error 
(km) 

Z21 (Ohms 
Secondary 
and Deg.) 

Z20 (Ohms 
Secondary 
and Deg.) 

FL 
Est. 
(km) 

Error 
(km) 

1 BG 
529.3 
/21 
/0.9 

3.17 
∠77.3 

10.39 
∠72.49 

0.35 
∠5.5 

0.27 
∠–8.1 7.36 8.44 –1.08 0.3 

∠−105.6 
0.2 
∠154 8.03 −0.67 

2 CG 
166 

/10.5 
/1.3 

23.53 
∠71.71 

46.6 
∠81.14 

0.67 
∠17.

2 

1.21 
∠–3.9 61.50 63.11 –1.61 2 

∠−138.6 
1.31 

∠100.5 61.74 −0.24 

3 BG 
105.5 
/4.7 
/0.8 

5.22 
∠79.54 

12.72 
∠75.74 

0.68 
∠–
1.9 

0.49 
∠–4.4 33.87 34.26 –0.39 0.45 

∠48.8 
0.16 

∠−136.6 34.06 −0.19 

4 BG 
46.3 
/1.9 
/0.2 

5.22 
∠79.54 

12.72 
∠75.74 

0.76
4 
∠–
3.9 

0.46 
∠–5.5 29.04 29.66 –0.62 0.66 

∠59.5 
0.47 

∠−150.6 29.06 −0.02 

5 BG 
91.4 
/3.4 
/0.9 

5.22 
∠79.54 

12.72 
∠75.74 

0.94 
∠–
4.9 

0.47 
∠–3.8 59.43 58.85 0.58 0.47 

∠51 
0.21 

∠−135.4 59.56 −0.13 

 

Although pure-fault current may be the theoretical 
cause, this error could also be linked to practical 
factors such as CT or PT errors or an incorrect Z1L 
entry. However, the exact cause remains uncertain. 
Theoretically, omitting Z21 and Z20 could have had a 
more significant impact on this event. If the fault had 
been further from the midpoint or if the pre-fault load 
had been higher, the errors from the traditional 
approach would have been even more pronounced. 

• Field Events 3, 4, and 5 all occur on the same 220 kV 
line, which is a single-circuit homogeneous 61.987 km 
long line with no taps. Although these three field 
events occur on the same line, the Z21 and Z20 
estimates show some variation. This variation could 
be due to changes in pre-fault sequence currents, 
which may affect CT errors. 

Field Events 3 and 5 have similar levels of pre-fault currents, 
resulting in only minor variations in their Z21 and Z20 estimates. 
However, Field Event 4 has a low pre-fault current, leading to 
estimates that are comparatively off. These events highlight the 
importance of estimating Z21 and Z20 at higher load conditions, 
averaging these estimates over time, and storing them in the 
relay memory. 

As seen from Table III, the proposed FL method consistently 
provides a more accurate fault-location estimate than the 
traditional method in all the field cases. 

V. LIMITATIONS OF THE PROPOSED METHOD 
The proposed FL method is a multiterminal method and 

therefore requires reliable communications channels and 
synchronized remote data. Consequently, it faces the same 
limitations as traditional multiterminal methods. Additionally, 

certain conditions can restrict the Z21 (19) and Z20 (20) 
estimation process and affect FL accuracy. 

• Real-life errors such as incorrect Z1L and Z0L, as well 
as CT and PT errors, can impact the estimation of 
sequence-coupling line parameters with the proposed 
method, leading to reduced FL accuracy 
improvements. 

• As discussed in Section III.C, Z21 and Z20 estimations 
have accuracy limitations. Furthermore, the proposed 
FL solution does not fully address all sequence 
mutual-coupling errors for double-circuit lines. 

• Intermittently transposed lines behave like transposed 
lines under normal operating conditions, resulting in 
Z21 and Z20 estimations being zero. However, during 
fault conditions, these lines may exhibit untransposed 
errors depending on the fault location. The proposed 
method does not effectively handle these dynamic 
untransposed errors. 

VI. CONCLUSION 
Untransposed lines introduce mutual coupling in sequence 

networks; ignoring this effect in the negative-sequence network 
during FL can lead to significant errors. This paper analyzes the 
errors introduced by the traditional ME fault-location method 
and categorizes them as load-current-based errors and pure-
fault current-based errors. Traditionally, sequence-coupling 
parameters are ignored, but the proposed FL algorithm includes 
them to enhance accuracy. Users do not need to input these 
additional parameters manually as the algorithm estimates them 
using pre-fault voltage and current data from both line ends. 
The paper also illustrates the improvements upon the Z20 
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estimation for double-circuit lines so that the proposed method 
can be reliably applied to get accurate FL in end-to-end parallel 
lines. Extensive simulations and field tests demonstrate the 
effectiveness of the proposed algorithm, showing promising 
results in accurately locating faults. 

VII. APPENDIX 
The transmission line parameters for the five tower 

configurations we discussed in the paper are listed in Table IV 
and Table V. 

TABLE IV  
LINE PARAMETERS FOR 100 KM SINGLE-CIRCUIT AND DOUBLE-CIRCUIT OVERHEAD LINES WITH SOIL RESISTIVITY (RHO)=100 Ω-METER 

Values–400 kV Horizontal Single-Circuit Configuration 

Z012 (Ω) 
�
30.7409 + 87.4077𝑖𝑖 1.0162− 0.8507𝑖𝑖 −1.2448− 0.4547𝑖𝑖
−1.2448− 0.4547𝑖𝑖 1.5893 + 31.7901𝑖𝑖 −2.8321 + 1.8216𝑖𝑖
1.0162− 0.8507𝑖𝑖 2.9936 + 1.5419𝑖𝑖 1.5893 + 31.7901𝑖𝑖

� 

Y012 (mSiemens) 
�

0.3666𝑖𝑖 −0.0125 + 0.0072𝑖𝑖 0.0125 + 0.0072𝑖𝑖
0.0125 + 0.0072𝑖𝑖 0.5286𝑖𝑖 0.0355 − 0.0205𝑖𝑖
−0.0125 + 0.0072𝑖𝑖 −0.0355− 0.0205𝑖𝑖 0.5286𝑖𝑖

� 

Values–400 kV Vertical Single-Circuit Configuration 

Z012 (Ω) 
�
26.36 + 103.41𝑖𝑖 1.8 + 0.63𝑖𝑖 −2.81− 0.11𝑖𝑖
−2.81− 0.11𝑖𝑖 1.47 + 27.69𝑖𝑖 −2.99 + 1.65𝑖𝑖

1.8 + 0.63𝑖𝑖 3.02 + 1.56𝑖𝑖 1.47 + 27.69𝑖𝑖
� 

Y012 (mSiemens) 
�

0.2457𝑖𝑖 −0.0155 + 0.0115𝑖𝑖 0.0155 + 0.0115𝑖𝑖
0.0155 + 0.0115𝑖𝑖 0.5956𝑖𝑖 0.0631 − 0.0334𝑖𝑖
−0.0155 + 0.0115𝑖𝑖 −0.0631− 0.0334𝑖𝑖 0.5956𝑖𝑖

� 

Values–230 kV Right Angle Single-Circuit Configuration 

Z012 (Ω) 
�
27.83 + 122.13𝑖𝑖 −1.52 + 1.56𝑖𝑖 1.28 + 1.115𝑖𝑖

1.28 + 1.115𝑖𝑖 3.47 + 38.89𝑖𝑖 3.44− 2.333𝑖𝑖
−1.52 + 1.56𝑖𝑖 3.45− 2.34𝑖𝑖 3.47 + 38.89𝑖𝑖

� 

Y012 (mSiemens) 
�

0.2543𝑖𝑖 0.0154− 0.003𝑖𝑖 −0.0154− 0.003𝑖𝑖
−0.0154− 0.003𝑖𝑖 0.4277𝑖𝑖 −0.0352 + 0.0241𝑖𝑖
0.0154− 0.003𝑖𝑖 0.0352 + 0.0241𝑖𝑖 0.4277𝑖𝑖

� 

Values–400 kV Double-Circuit Configuration 

Z012 (Ω) 1.0𝑒𝑒 + 02 • 

�0.2589 +  1.0371𝑖𝑖   0.0233 −  0.0063𝑖𝑖  − 0.0152 −  0.0007𝑖𝑖  
 0.2442 +  0.6214𝑖𝑖   0.0052 −  0.0081𝑖𝑖 � 

�−0.0152 −  0.0007𝑖𝑖   0.0152 +  0.2765𝑖𝑖  − 0.0292 +  0.0166𝑖𝑖   
0.0039 −  0.0025𝑖𝑖   0.0011 +  0.0131𝑖𝑖 � 

�0.0233 −  0.0063𝑖𝑖   0.0302 +  0.0149𝑖𝑖   0.0152 +  0.2765𝑖𝑖  
 0.0052 −  0.0081𝑖𝑖   0.0111 +  0.0035𝑖𝑖 � 

 �  0.2442 +  0.6214𝑖𝑖   0.0052 −  0.0081𝑖𝑖   0.0039 −  0.0025𝑖𝑖   
0.2589 +  1.0371𝑖𝑖   0.0233 −  0.0063𝑖𝑖 � 

�0.0039 −  0.0025𝑖𝑖   0.0011 +  0.0131𝑖𝑖 − 0.0100 +  0.0054𝑖𝑖 
−0.0152 −  0.0007𝑖𝑖   0.0152 +  0.2765𝑖𝑖 � 

Y012 (mSiemens) �0.0000 +  0.2865𝑖𝑖  − 0.0193 +  0.0080𝑖𝑖   0.0193 +  0.0080𝑖𝑖  − 0.0000 −  0.1074𝑖𝑖   
0.0089 +  0.0079𝑖𝑖  − 0.0089 +  0.0079𝑖𝑖 � 

�0.0193 +  0.0080𝑖𝑖   0.0000 +  0.5975𝑖𝑖   0.0613 −  0.0331𝑖𝑖  − 0.0089 +  0.0079𝑖𝑖  
 0.0000 −  0.0210𝑖𝑖   0.0162 −  0.0039𝑖𝑖 � 

 �−0.0193 +  0.0080𝑖𝑖  − 0.0613 −  0.0331𝑖𝑖  − 0.0000 +  0.5975𝑖𝑖   0.0089 +  0.0079𝑖𝑖  
−0.0162 −  0.0039𝑖𝑖  − 0.0000 −  0.0210𝑖𝑖 � 

  �−0.0000 −  0.1074𝑖𝑖   0.0089 +  0.0079𝑖𝑖  − 0.0089 +  0.0079𝑖𝑖   0.0000 +  0.2865𝑖𝑖  
−0.0193 +  0.0080𝑖𝑖   0.0193 +  0.0080𝑖𝑖 � 

�−0.0089 +  0.0079𝑖𝑖  − 0.0000 −  0.0210𝑖𝑖   0.0162 −  0.0039𝑖𝑖   0.0193 +  0.0080𝑖𝑖   
0.0000 +  0.5975𝑖𝑖   0.0613 −  0.0331𝑖𝑖 � 

�0.0089 +  0.0079𝑖𝑖  − 0.0162 −  0.0039𝑖𝑖   0.0000 −  0.0210𝑖𝑖  − 0.0193 +  0.0080𝑖𝑖  
−0.0613 −  0.0331𝑖𝑖  − 0.0000 +  0.5975𝑖𝑖 � 

Values–230 kV Double-Circuit Configuration 

Z012 (Ω) 1.0𝑒𝑒 + 02 • 

   �0.3047 +  1.2398𝑖𝑖   0.0222 −  0.0098𝑖𝑖  − 0.0133 −  0.0019𝑖𝑖   0.2690 +  0.7579𝑖𝑖   
0.0139 −  0.0027𝑖𝑖  − 0.0016 +  0.0053𝑖𝑖 � 

�−0.0133 −  0.0019𝑖𝑖   0.0357 +  0.3554𝑖𝑖  − 0.0287 +  0.0177𝑖𝑖  − 0.0016 +  0.0053𝑖𝑖   
0.0016 +  0.0147𝑖𝑖  − 0.0091 +  0.0077𝑖𝑖 � 

�0.0222 −  0.0098𝑖𝑖   0.0299 +  0.0157𝑖𝑖   0.0357 +  0.3554𝑖𝑖   0.0139 −  0.0027𝑖𝑖  
0.0109 +  0.0049𝑖𝑖   0.0016 +  0.0147𝑖𝑖 � 
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�0.2690 +  0.7579𝑖𝑖   0.0139 −  0.0027𝑖𝑖  − 0.0016 +  0.0053𝑖𝑖   0.3047 +  1.2398𝑖𝑖   
0.0222 −  0.0098𝑖𝑖  − 0.0133 −  0.0019𝑖𝑖 � 

  �−0.0016 +  0.0053𝑖𝑖   0.0016 +  0.0147𝑖𝑖  − 0.0091 +  0.0077𝑖𝑖  − 0.0133 −  0.0019𝑖𝑖   
0.0357 +  0.3554𝑖𝑖  − 0.0287 +  0.0177𝑖𝑖 � 

�0.0139 −  0.0027𝑖𝑖   0.0109 +  0.0049𝑖𝑖   0.0016 +  0.0147𝑖𝑖   0.0222 −  0.0098𝑖𝑖  
 0.0299 +  0.0157𝑖𝑖   0.0357 +  0.3554𝑖𝑖 � 

Y012 (mSiemens) �0.0000 +  0.2679i  − 0.0089 +  0.0137i   0.0089 +  0.0137i  − 0.0000− 0.0775i  
0.0010 +  0.0051i  − 0.0010 +  0.0051i � 

�0.0089 +  0.0137i   0.0000 +  0.4674i   0.0363 −  0.0192i  − 0.0010 +  0.0051i  
 0.0000 −  0.0130i   0.0085 −  0.0039i � 

�−0.0089 +  0.0137i  − 0.0363 −  0.0192i  − 0.0000 +  0.4674i   0.0010 +  0.0051i  
−0.0085 −  0.0039i  − 0.0000 −  0.0130i � 

 �0.0000 −  0.0775i   0.0010 +  0.0051i  − 0.0010 +  0.0051i   0.0000 +  0.2679i  
−0.0089 +  0.0137i   0.0089 +  0.0137i � 

�−0.0010 +  0.0051i  − 0.0000 −  0.0130i   0.0085 −  0.0039i   0.0089 +  0.0137i   
0.0000 +  0.4674i   0.0363 −  0.0192i � 

�0.0010 +  0.0051i  − 0.0085 −  0.0039i   0.0000 −  0.0130i  − 0.0089 +  0.0137i  
−0.0363 −  0.0192i   0.0000 +  0.4674i � 

TABLE V 
TOWER CONFIGURATION DATA FOR THE LINES DISCUSSED (AS ENTERED IN ATP DRAW) 

400 kV Horizontal Tower Configuration Data 

Parameter 
 
 
    Condition 

Ph.no. Rin 
(cm) 

Rout 
(cm) 

Resistivity 
(Ω/km 
Double 
Circuit) 

Horizontal 
(m) 

Vtower 
(m) 

Vmid 
(m) 

Separation 
(cm) 

Alpha 
(degree) 

NB 

1 1 0 1.5885 0.0547 0 21.798 8.84 45.2547 45 4 

2 2 0 1.5885 0.0547 11 21.798 8.84 45.2547 45 4 

3 3 0 1.5885 0.0547 22 21.798 8.84 45.2547 45 4 

4 0 0 0.412 0.8525 2.97 29.27 17.27 0 0 1 

5 0 0 0.412 0.8525 19.03 29.27 17.27 0 0 1 

400 kV Vertical Tower Configuration Data 

Parameter 
 
 

   Condition 

Ph.no. Rin 
(cm) 

Rout 
(cm) 

Resistivity 
(Ω/km 
Double 
Circuit) 

Horizontal 
(m) 

Vtower 
(m) 

Vmid 
(m) 

Separation 
(cm) 

Alpha 
(degree) 

NB 

1 1 0 1.5885 0.0547 0 28.2002 18.8001 45.2547 45 4 

2 2 0 1.5885 0.0547 0.6 36.2001 24.1341 45.2547 45 4 

3 3 0 1.5885 0.0547 2.22 44.2001 29.4682 45.2547 45 4 

4 0 0 0.412 0.8525 4.0996 60.0002 40.0001 0 0 1 

5 0 0 0.412 0.8525 10.8997 60.0002 40.0001 0 0 1 

230 kV Right Angle Tower Configuration Data 

Parameter 
 
 
   Condition 

Ph.no. Rin 
(cm) 

Rout 
(cm) 

Resistivity 
(Ω/km 
Double 
Circuit) 

Horizontal 
(m) 

Vtower 
(m) 

Vmid 
(m) 

Separation 
(cm) 

Alpha 
(degree) 

NB 

1 1 0 1.43 0.0674 0 19.6292 10.7107 28.9999 0 2 

2 2 0 1.43 0.0674 12.6005 19.6292 10.7107 28.9999 0 2 

3 3 0 1.43 0.0674 0.3505 25.3302 16.4105 28.9999 0 2 

4 0 0 0.412 0.8525 6.3002 37.6307 33.0313 0 0 1 
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400 kV Double-Circuit Tower Configuration Data 

Parameter 
 
 
   Condition 

Ph.no. Rin 
(cm) 

Rout 
(cm) 

Resistivity 
(Ω/km 
Double 
Circuit) 

Horizontal 
(m) 

Vtower 
(m) 

Vmid 
(m) 

Separation 
(cm) 

Alpha 
(degree) 

NB 

1 1 0 1.5885 0.0547 0 28.2002 18.8001 45.2547 45 4 

2 2 0 1.5885 0.0547 0.6 36.2001 24.1341 45.2547 45 4 

3 3 0 1.5885 0.0547 2.22 44.2001 29.4682 45.2547 45 4 

4 4 0 1.5885 0.0547 15 28.2002 18.8001 45.2547 45 4 

5 5 0 1.5885 0.0547 14.4 36.2001 24.1341 45.2547 45 4 

6 6 0 1.5885 0.0547 12.78 44.2001 29.4682 45.2547 45 4 

7 0 0 0.412 0.8525 4.0996 60.0002 40.0001 0 0 1 

8 0 0 0.412 0.8525 10.8997 60.0002 40.0001 0 0 1 

230 kV Double-Circuit Tower Configuration Data 

Parameter 
 
 
   Condition 

Ph.no. Rin 
(cm) 

Rout 
(cm) 

Resistivity 
(Ω/km 
Double 
Circuit) 

Horizontal 
(m) 

Vtower 
(m) 

Vmid 
(m) 

Separation 
(cm) 

Alpha 
(degree) 

NB 

1 1 0 1.43 0.0674 0 14.985 7.015 28.9999 0 2 

2 2 0 1.43 0.0674 0 20.0851 12.1149 28.9999 0 2 

3 3 0 1.43 0.0674 0 25.1857 17.2152 28.9999 0 2 

4 4 0 1.43 0.0674 9.7399 14.985 7.015 28.9999 0 2 

5 5 0 1.43 0.0674 9.7399 20.0851 12.1149 28.9999 0 2 

6 6 0 1.43 0.0674 9.7399 25.1857 17.2152 28.9999 0 2 

7 0 0 0.412 0.8525 4.87 30.8312 22.8601 0 0 1 

 

Appendix A: Derivation for Z20 = Z01 
We know that the relation between sequence impedance 

matrix and phase impedance matrix is as shown below, 
Z012 = 𝐴𝐴 • 𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎 • 𝐴𝐴−1 (29) 

Where:  

𝐴𝐴 = 1
3
�
1 1 1
1 𝛼𝛼 𝛼𝛼2
1 𝛼𝛼2 𝛼𝛼

�, and 𝛼𝛼 = 1 ∠1200 

When we substitute A Matrix in (29) and expand the 
matrices as shown below, 

�
𝑍𝑍00 𝑍𝑍01 𝑍𝑍02
𝑍𝑍10 𝑍𝑍11 𝑍𝑍12
𝑍𝑍20 𝑍𝑍21 𝑍𝑍22

�  =  
1
3

• �
1 1 1
1 𝛼𝛼 𝛼𝛼2
1 𝛼𝛼2 𝛼𝛼

� 

• �
𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎 𝑍𝑍𝑎𝑎𝑎𝑎
𝑍𝑍𝑏𝑏𝑏𝑏 𝑍𝑍𝑏𝑏𝑏𝑏 𝑍𝑍𝑏𝑏𝑏𝑏
𝑍𝑍𝑐𝑐𝑐𝑐 𝑍𝑍𝑐𝑐𝑐𝑐 𝑍𝑍𝑐𝑐𝑐𝑐

� • �
1 1 1
1 𝛼𝛼2 𝛼𝛼
1 𝛼𝛼 𝛼𝛼2

� 

From the above equation, we can write, 

Z01 =
1
3

• [(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑏𝑏𝑏𝑏 + 𝑍𝑍𝑐𝑐𝑐𝑐)

   +𝛼𝛼2(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑏𝑏𝑏𝑏 + 𝑍𝑍𝑐𝑐𝑐𝑐)
+𝛼𝛼(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑏𝑏𝑏𝑏 + 𝑍𝑍𝑐𝑐𝑐𝑐) (30)

 

And 

Z20 =
1
3

• [(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝛼𝛼2𝑍𝑍𝑏𝑏𝑏𝑏 + 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐)

 +(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝛼𝛼2𝑍𝑍𝑏𝑏𝑏𝑏 + 𝛼𝛼𝑍𝑍𝑐𝑐𝑐𝑐)
+(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝛼𝛼2𝑍𝑍𝑏𝑏𝑏𝑏 + 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐) (31)

 

We can apply the following relations in (30) and (31), 
rewriting Zab = Zba; Zbc = Zcb; Zca = Zac. 

We get (32): 

Z01 =
1
3

• [(𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑎𝑎𝑎𝑎)

    +𝛼𝛼2(𝑍𝑍𝑏𝑏𝑏𝑏 + 𝑍𝑍𝑏𝑏𝑏𝑏 + 𝑍𝑍𝑏𝑏𝑏𝑏)
+𝛼𝛼(𝑍𝑍𝑐𝑐𝑐𝑐 + 𝑍𝑍𝑐𝑐𝑐𝑐 + 𝑍𝑍𝑐𝑐𝑐𝑐) (32)

 

In Equation (31) and (32), the right-hand-side terms are the 
same; hence, we get: 

Z20 = 𝑍𝑍01 
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Appendix B: Derivation for Proposed Fault-Locating 
Equation Using Sequence Mutual-Coupling Parameters 

We can write the negative-sequence network equation for 
the faulted condition from Fig. 5: 
V2Sf − V2Rf = m • Z22 • I2Sf + m • Z21 • I1Sf + m • Z20 • I0Sf

− (1 − m) • Z22 • I2Rf − (1 − m) • Z21
• I1Rf − (1 − m) • Z20 • I0Rf 

V2Sf − V2Rf = m • Z22 • (I2Sf + I2Rf) + m • Z21 • (I1Sf + I1Rf)
+ m • Z20 • (I0Sf + I0Rf) − Z22 • I2Rf − Z21
• I1Rf − Z20 • I0Rf 

Solving the above equation for m: 

m =  

⎝

⎛V2Sf − V2Rf + Z22 • I2Rf + Z21 • I1Rf + Z20 • I0Rf
Z22 • (I2Sf + I2Rf) + Z21 • (I1Sf + I1Rf)

+Z20 • (I0Sf + I0Rf) ⎠

⎞ 

Appendix C: Proposed Approach—Effective Z21 for 
Parallel Lines 

For parallel lines, we can write the pre-fault negative-
sequence network equation (complete equation) as: 

𝑉𝑉2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉2𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 = Z20𝐼𝐼0S−PRE 
                                     +𝑍𝑍21𝐼𝐼1S−PRE + 𝑍𝑍22𝐼𝐼2S−PRE 
                                     +Z2−0P𝐼𝐼0SP−PRE 
                                     +𝑍𝑍2−1P𝐼𝐼1SP−PRE + 𝑍𝑍2−2P𝐼𝐼2SP−PRE 

Ignoring the protected-line’s zero-sequence coupling and 
the parallel line’s negative and zero-sequence-coupling terms, 
we get (33). 

𝑉𝑉2𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉2𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃      
= 𝑍𝑍21𝐼𝐼1S−PRE + 𝑍𝑍22𝐼𝐼2S−PRE  

 +  𝑍𝑍2−1P𝐼𝐼1SP−PRE 
      =  𝑍𝑍21−eff𝐼𝐼1S−PRE + 𝑍𝑍22𝐼𝐼2S−PRE (33) 

We can write 𝑍𝑍21−eff𝐼𝐼1S−PRE = 𝑍𝑍21𝐼𝐼1S−PRE +
𝑍𝑍2−1P𝐼𝐼1SP−PRE for an end-to-end parallel line, we can assume 
𝐼𝐼1S−PRE = 𝐼𝐼1SP−PRE. 

Hence, we get 𝑍𝑍21−eff = 𝑍𝑍21 + 𝑍𝑍2−1P. 

Appendix D: Equation (25)—Effective Z01 for Parallel Lines: 
For parallel lines, we can write the pre-fault zero-sequence 

network equation (complete equation) as follows: 
𝑉𝑉0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃

= Z00𝐼𝐼0S−PRE + 𝑍𝑍01𝐼𝐼1S−PRE +  𝑍𝑍02𝐼𝐼2S−PRE
+ Z0−0P𝐼𝐼0SP−PRE +  𝑍𝑍0−1P𝐼𝐼1SP−PRE
+ 𝑍𝑍0−2P𝐼𝐼2SP−PRE 

Ignoring the protected-line’s negative-sequence coupling 
and the parallel line’s negative and zero-sequence-coupling 
terms (and Z0−0P = 𝑍𝑍0𝑀𝑀), we get (34). 

𝑉𝑉0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃  
                      = 𝑍𝑍00𝐼𝐼0S−PRE + 𝑍𝑍01𝐼𝐼1S−PRE + Z0M𝐼𝐼0SP−PRE

+𝑍𝑍0−1P𝐼𝐼1SP−PRE
= 𝑍𝑍01−eff𝐼𝐼1S−PRE +  𝑍𝑍00𝐼𝐼0S−PRE

+ Z0M𝐼𝐼0SP−PRE
(34)

 

We can write 𝑍𝑍01−eff𝐼𝐼1S−PRE = 𝑍𝑍01𝐼𝐼1S−PRE +
𝑍𝑍0−1P𝐼𝐼1SP−PRE for an end-to-end parallel line, and we can 
assume 𝐼𝐼1S−PRE = 𝐼𝐼1SP−PRE. 

Hence, we get 𝑍𝑍01−eff = 𝑍𝑍01 + 𝑍𝑍0−1P. 

Appendix E: Equation (20)—Effective Z01 for Parallel Lines: 
When we apply the same approach for (20), (which excludes 

the Z0M term), we get (35). 
𝑉𝑉0𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑉𝑉0𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑍𝑍00𝐼𝐼0S−PRE + 𝑍𝑍01𝐼𝐼1S−PRE (35) 

When we compare the right-hand side terms in (34) and (35) 
and cancel all the same terms, Z01 effectively, in (35), is as 
follows: 

𝑍𝑍01−eff = 𝑍𝑍01 + Z0−1P +
𝑍𝑍0M𝐼𝐼0SP−PRE
𝐼𝐼1S−PRE

 

Appendix F: Equation (15), (16), and (17)—Effective Yx1 for 
Parallel Lines (Where X = 0, 1, 2) 

From Equation (14):  
𝐼𝐼𝑥𝑥𝑥𝑥−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼𝑥𝑥𝑥𝑥−𝑃𝑃𝑃𝑃𝑃𝑃

= 𝑘𝑘1𝑆𝑆 • 𝑌𝑌𝑥𝑥1 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑘𝑘1𝑅𝑅 • 𝑌𝑌𝑥𝑥1 • 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃
+ 𝑘𝑘1𝑆𝑆𝑆𝑆 • 𝑌𝑌𝑥𝑥−1𝑃𝑃 • 𝑉𝑉1𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑘𝑘1𝑅𝑅𝑅𝑅 • 𝑌𝑌𝑥𝑥−1𝑃𝑃
• 𝑉𝑉1𝑅𝑅𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃  

For the end-to-end parallel lines: 
𝑉𝑉1𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃  

𝑘𝑘1𝑆𝑆𝑆𝑆 = 𝑘𝑘1𝑆𝑆 
𝑘𝑘1𝑅𝑅𝑅𝑅 = 𝑘𝑘1𝑅𝑅 

Hence, the above equation turns out to be (36): 
𝐼𝐼𝑥𝑥𝑥𝑥−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼𝑥𝑥𝑥𝑥−𝑃𝑃𝑃𝑃𝑃𝑃

= 𝑘𝑘1𝑆𝑆 • 𝑌𝑌𝑥𝑥1−𝑒𝑒𝑒𝑒𝑒𝑒 • 𝑉𝑉1𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑘𝑘1𝑅𝑅 • 𝑌𝑌𝑥𝑥1−𝑒𝑒𝑒𝑒𝑒𝑒 • 𝑉𝑉1𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃 (36) 

Where: 
𝑌𝑌𝑥𝑥1−𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑌𝑌𝑥𝑥1 + 𝑌𝑌𝑥𝑥−1𝑃𝑃 .  
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Appendix G: Derivation for List of Errors in the Traditional 
Approach for Parallel Lines 

The sequence network equation for a parallel line is shown 
in the following equation: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑉𝑉0𝑆𝑆 − 𝑉𝑉0𝑅𝑅
𝑉𝑉1𝑆𝑆 − 𝑉𝑉1𝑅𝑅
𝑉𝑉2𝑆𝑆 − 𝑉𝑉2𝑅𝑅
𝑉𝑉0𝑆𝑆𝑆𝑆 − 𝑉𝑉0𝑅𝑅𝑅𝑅
𝑉𝑉1𝑆𝑆𝑆𝑆 − 𝑉𝑉1𝑅𝑅𝑅𝑅
𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑍𝑍00 𝑍𝑍01 𝑍𝑍02 𝑍𝑍0−0P 𝑍𝑍0−1P 𝑍𝑍0−2P
𝑍𝑍10 𝑍𝑍11 𝑍𝑍12 𝑍𝑍1−0P 𝑍𝑍1−1P 𝑍𝑍1−2P
𝑍𝑍20 𝑍𝑍21 𝑍𝑍22 𝑍𝑍2−0P 𝑍𝑍2−1P 𝑍𝑍2−2P
𝑍𝑍0P−0 𝑍𝑍0P−1 𝑍𝑍0P−2 𝑍𝑍00 𝑍𝑍01 𝑍𝑍02
𝑍𝑍1P−0 𝑍𝑍1P−1 𝑍𝑍2P−2 𝑍𝑍10 𝑍𝑍11 𝑍𝑍12
𝑍𝑍2P−0 𝑍𝑍2P−1 𝑍𝑍2P−2 𝑍𝑍20 𝑍𝑍21 𝑍𝑍22 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝐼𝐼0𝑆𝑆
𝐼𝐼1𝑆𝑆
𝐼𝐼2𝑆𝑆
𝐼𝐼0𝑆𝑆𝑆𝑆
𝐼𝐼1𝑆𝑆𝑆𝑆
𝐼𝐼2𝑆𝑆𝑆𝑆⎦

⎥
⎥
⎥
⎥
⎤

 

The complete faulted negative-sequence network equation is 
shown in (37) (including superposition theorem): 

𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 = m𝑍𝑍20(𝐼𝐼0S−FLT + I0S−PRE)
                      + m𝑍𝑍21(𝐼𝐼1S−FLT + I1S−PRE)
                     +m𝑍𝑍22(𝐼𝐼2S−FLT + I2S−PRE)

                               + m𝑍𝑍2−0P(𝐼𝐼0SP−FLT + I0SP−PRE)
                               + m𝑍𝑍2−1P(𝐼𝐼1SP−FLT + I1SP−PRE)
                               + m𝑍𝑍2−2P(𝐼𝐼2SP−FLT + I2SP−PRE)

                                  − (1 − m)𝑍𝑍20(𝐼𝐼0R−FLT + I0R−PRE)
                                  − (1 − m)𝑍𝑍21(𝐼𝐼1R−FLT + I1R−PRE)

                         − (1 −𝑚𝑚)𝑍𝑍22(𝐼𝐼2𝑅𝑅−𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐼𝐼2𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃)
                                 − (1 − m)𝑍𝑍2−0P(𝐼𝐼0RP−FLT + I0RP−PRE)
                                 − (1 − m)𝑍𝑍2−1P(𝐼𝐼1RP−FLT + I1RP−PRE)
                                 − (1 − m)𝑍𝑍2−2P(𝐼𝐼2RP−FLT + I2RP−PRE)  (37)

 

However, the traditional approach follows the transposed 
approach, as shown in (4). Hence, (38) provides a list of errors 
for the traditional approach for parallel lines. 

1. 𝑍𝑍21 • [m • 𝐼𝐼1S−FLT − (1 − m) • 𝐼𝐼1R−FLT] 
2. 𝑍𝑍21 • [m • 𝐼𝐼1S−PRE − (1 − m) • 𝐼𝐼1R−PRE] 
3. 𝑍𝑍2−1P • [m • 𝐼𝐼1SP−FLT − (1 − m) • 𝐼𝐼1RP−FLT] 
4. 𝑍𝑍2−1P • [m • 𝐼𝐼1SP−PRE − (1 − m) • 𝐼𝐼1RP−PRE] 
5. 𝑍𝑍20 • [m • 𝐼𝐼0S−FLT − (1 − m) • 𝐼𝐼0R−FLT] 
6. 𝑍𝑍20 • [m • 𝐼𝐼0S−PRE − (1 − m) • 𝐼𝐼0R−PRE] 

7. 𝑍𝑍2−0P • [m • 𝐼𝐼0SP−FLT − (1 − m) • 𝐼𝐼0RP−FLT] 
8. 𝑍𝑍2−0P • [m • 𝐼𝐼0SP−PRE − (1 − m) • 𝐼𝐼0RP−PRE] 
9. 𝑍𝑍2−2P • [m • 𝐼𝐼2SP−FLT − (1 − m) • 𝐼𝐼2RP−FLT] 
10. 𝑍𝑍2−2P • [m • 𝐼𝐼2SP−PRE − (1 − m) • 𝐼𝐼2RP−PRE]  (38) 

The following assumption, (39), can be used for 
simplification. 

𝐼𝐼1S−PRE = −𝐼𝐼1R−PRE
𝐼𝐼1SP−PRE = −𝐼𝐼1RP−PRE
𝐼𝐼0SP−FLT = −𝐼𝐼0RP−FLT
𝐼𝐼1SP−FLT = −𝐼𝐼1RP−FLT
𝐼𝐼2SP−FLT = −𝐼𝐼2RP−FLT (39)

 

Applying (39) on the errors listed in (38), can simplify the 
traditional approach errors list for parallel lines, and results in 
List 1 provided in the Section II.B. 

Appendix H: Derivation for List of Errors in the Proposed 
Approach Using Faulted Negative-Sequence Network for 
Parallel Lines 

Fig. 14 provides the effective faulted negative-sequence 
network, when the Z21 and Z01 (= Z20) estimations are done 
using (19) and (25), respectively. Network equations for 
Fig. 14, are given in the following, 
𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 = m((𝑍𝑍20 + 𝑍𝑍2−0𝑃𝑃)𝐼𝐼0Sf + (𝑍𝑍21 + 𝑍𝑍21−P) 𝐼𝐼1Sf

+ 𝑍𝑍22𝐼𝐼2S𝑓𝑓) 
−(1 − m)((𝑍𝑍20 + 𝑍𝑍2−0𝑃𝑃)𝐼𝐼0R𝑓𝑓 + (𝑍𝑍21 + 𝑍𝑍21−P)𝐼𝐼1R𝑓𝑓

+ 𝑍𝑍22𝐼𝐼2Rf) 
Using the superposition theorem, the above equation can be 

written as (40). 
                          𝑉𝑉2𝑆𝑆𝑆𝑆 − 𝑉𝑉2𝑅𝑅𝑅𝑅 = m𝑍𝑍20(𝐼𝐼0S−FLT + I0S−PRE)

+ m𝑍𝑍21(𝐼𝐼1S−FLT + I1S−PRE)
+ m𝑍𝑍22(𝐼𝐼2S−FLT + I2S−PRE)

    + m𝑍𝑍2−0P(𝐼𝐼0S−FLT + I0S−PRE)
    + m𝑍𝑍2−1P(𝐼𝐼1S−FLT + I1S−PRE)

            − (1 − m)𝑍𝑍20(𝐼𝐼0R−FLT + I0R−PRE)
            − (1 − m)𝑍𝑍21(𝐼𝐼1R−FLT + I1R−PRE)
           − (1 −𝑚𝑚)𝑍𝑍22(𝐼𝐼2𝑅𝑅−𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐼𝐼2𝑅𝑅−𝑃𝑃𝑃𝑃𝑃𝑃)

                − (1 − m)𝑍𝑍2−0P(𝐼𝐼0R−FLT + I0R−PRE)
                − (1 − m)𝑍𝑍2−1P(𝐼𝐼1R−FLT + I1R−PRE) (40)

 

 

 

Fig. 14. Effective faulted negative-sequence network with proposed approach on parallel lines. 
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Comparing (37) and (40), and canceling the right-hand-side 
terms in both equations, the leftover terms are the errors. 

Hence, (41) provides the list errors for the proposed 
approach. 

1. 𝑍𝑍2−1P • [m • 𝐼𝐼1S−FLT − (1 − m) • 𝐼𝐼1R−FLT] 
2. 𝑍𝑍2−1P • [m • 𝐼𝐼1S−PRE − (1 − m) • 𝐼𝐼1R−PRE] 
3. 𝑍𝑍2−0P • [m • 𝐼𝐼0S−FLT − (1 − m) • 𝐼𝐼0R−FLT] 
4. 𝑍𝑍2−0P • [m • 𝐼𝐼0S−PRE − (1 − m) • 𝐼𝐼1R−PRE] 
5.  𝑍𝑍2−2P • [m • 𝐼𝐼2S−FLT − (1 − m) • 𝐼𝐼2R−FLT] 
6. 𝑍𝑍2−2P • [m • 𝐼𝐼2S−PRE − (1 − m) • 𝐼𝐼2R−PRE]    (41) 

Error 1 exists because I1S-FLT is not equal to I1SP-FLT. 
Similarly, Error 3 exists because I0S-FLT is not equal to I0SP-FLT. 

Applying (39) to (41), the error terms can be written as 
shown in List 2, provided in the Section III.C.2. 
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