Schweitzer Engineering Laboratories
Surge Withstand Capability Tests on 651R Controller and G&W 38 kV VIPER-ST Recloser
REPORT OF PERFORMANCE

CLIENT/MANUFACTURER
Schweitzer Engineering Laboratories
2440 N.E. Hopkins Court
Pullman, WA
USA 99163

TEST OBJECT
Recloser Control
Type: 651R
Serial Number: 5212387078
Part Number: 0651R22CXBAAAFA1113B0XX

Recloser
Type: VIP398ER-12-1-ST
Rated Voltage: 38 kV rms
BIL: 150 kV
Rated Current: 800 A
Interrupting Current: 12.5 kA
Serial Number: 2021 0820 0015

TESTED BY
Powertech Labs Inc.
12388 - 88th Ave, Surrey, BC
Canada V3W 7R7
www.powertechlabs.com

DATE RECEIVED: 2021-09-27

TEST DATE(S): 2021-09-28 to 2021-10-08

TEST SPECIFICATION:
IEEE C37.60-2018, Clause 7.111.1 and 7.111.2

TEST RESULT: PASS

Powertech Labs Inc. does not accept any liability for any damages resulting from the use of this report. The results relate only to the item(s) tested as received, and it is the responsibility of the manufacturer to maintain conformity of any object having the same designations. Information regarding the estimated measurement uncertainty is available upon request. The test report shall not be reproduced except in full, without written approval of Powertech Labs Inc.

Prepared by:
Alex Webb, EIT
Project Engineer, High Voltage Lab
Powertech Labs Inc.

Reviewed by:
Logan Connaughton, P. Eng
Manager, High Voltage Lab
Powertech Labs Inc.
1 INTRODUCTION
At the request of Schweitzer Engineer Laboratories (SEL), a 651R recloser controller, manufactured by SEL, and Viper-ST 38 kV recloser, manufactured by G&W Electric, were subjected to surge withstand capability tests in accordance with IEEE C37.60-2018. This report summarizes the results of the tests performed.

2 TEST OBJECT INFORMATION
The test object was identified based on the nameplate information as follows:

Recloser/FI
Manufacturer: G&W Electric Co.
Type: Viper-ST 3-phase recloser
Rated Voltage: 38 kVrms
Rated Current: 800 Arms continuous, 12.5 kArms interrupting
BIL: 150 kV
Serial №: 2021 0820 0015
Condition: New

Recloser/FI Controller
Manufacturer: SEL
Type: 651R
Firmware: SEL-651R-2-R411-V0-Z011003-D20210317
Serial №: 5212387078
Part №: 0651R22CXBAAF1113B0XX
Condition: New

3 GENERAL INFORMATION

3.1 Purpose
The purpose of the test was to verify if the test object complies with the requirements of the standard.

3.2 Witnesses

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyler Simmons</td>
<td>SEL</td>
</tr>
<tr>
<td>Cody Marshall</td>
<td>SEL</td>
</tr>
<tr>
<td>Hesham Ismail</td>
<td>SEL</td>
</tr>
</tbody>
</table>

3.3 Tests Performed

Test Standards/Specifications
IEEE C37.60-2018 Clause 7.111.1 – Oscillatory and fast transient surge tests
Clause 7.111.2 – Simulated surge arrester operation test
4 SIMULATED SURGE ARRESTER OPERATION TEST

General Information:
Standard: IEEE C37.60-2012, Clause 7.111.2
Test Date: 2021-09-28 to 2021-10-05
Test Leader: Alex Webb

Environmental Conditions:
Ambient temperature: 19.6 °C
Barometric Pressure: 750 mmHg
Relative Humidity: 57.9 %

Test Conditions:
The tests was in accordance with the test set-up requirements outlined in section 7.111.2.2 of the test standard. The controller was energized and operational during the tests with settings as follows:

a) Value of trip point (pick up setting) not to exceed the rated load current of the device;
b) Reclosers set for the maximum number of operations to lock-out;
c) Other settings for normal operation consistent with a) and b) above.

The surges were applied using the following test levels and configurations:

- **Test Voltage:** 108.1 to 114.3 kV\(_{\text{peak}}\)
- **Surge Current:** 5.650 to 6.598 kA\(_{\text{peak}}\)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Switch</th>
<th>HV Applied</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Open</td>
<td>Source Terminals</td>
<td>15 positive and 15 negative surges</td>
</tr>
<tr>
<td>B</td>
<td>Closed</td>
<td>Source Terminals</td>
<td>15 positive and 15 negative surges</td>
</tr>
<tr>
<td>C</td>
<td>Closed</td>
<td>Load Terminals</td>
<td>15 positive and 15 negative surges</td>
</tr>
<tr>
<td>D</td>
<td>Open</td>
<td>Properly Rated Transformer</td>
<td>15 positive and 15 negative surges</td>
</tr>
<tr>
<td>E</td>
<td>Closed</td>
<td>Properly Rated Transformer</td>
<td>15 positive and 15 negative surges</td>
</tr>
</tbody>
</table>

Requirements:
During the application of surges, the control shall neither close the recloser/FI from an open position nor open (trip) the recloser/FI from a closed position. No change of state shall occur or be reported.

Following the tests, the recloser/FI and control apparatus shall be capable of performing all normal functions without impairment. The following verifications shall be made following the test if supported by the control apparatus:

- Communicate with an external computer;
- Open and close the recloser;
- Upload event(s) or oscillography captured;
- Receive a firmware download;
- Receive a program download;
- Perform the rated maximum number of sequence operations at any convenient pick-up level.

Evaluation:
No change of state of the recloser occurred during the application of the surges, and the controller successfully performed all the above verifications at the conclusion of the test.

Result:
PASS
5 OSCILLATORY AND FAST TRANSIENT SURGE TESTS

General Information:
Standard IEEE C37.60-2012, Clause 7.111.1
Test Date 2021-10-07 to 2021-10-08
Test Leader Alex Webb

Test Conditions:
The tests were performed in accordance with IEEE C37.90.1-2012. The controller and recloser were tested while connected to 120 Volts, 60 Hz supply for all tests. Test surges were applied to the AC power cord and control cable using an external coupling/decoupling network in common and transverse mode, in accordance with Table 3 and 4 of IEEE C37.90.1.

Oscillatory Test Voltage: 4 kV\text{peak}
Fast Transient Test Voltage: 2.5 kV\text{peak}

Oscillatory Waveform Validity Tests

<table>
<thead>
<tr>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator output voltage: 2.5 kV</td>
<td>2.5 kV</td>
<td></td>
</tr>
<tr>
<td>Feed through voltage test: 3.5 V</td>
<td>2.8 V</td>
<td>(pass if ≤ 1%)</td>
</tr>
</tbody>
</table>

Test Generator performance verification:

<table>
<thead>
<tr>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration: 2.16 s</td>
<td>2.08 s</td>
<td>(2.0 to 2.2 s)</td>
</tr>
<tr>
<td>Repetition rate: 8 bursts / 16.7 ms</td>
<td>8 bursts / 16.7 ms</td>
<td>(6 to 10 bursts per # ms)</td>
</tr>
<tr>
<td>Oscillation frequency: 0.947 MHz</td>
<td>0.940 MHz</td>
<td>(0.9 to 1.1 MHz)</td>
</tr>
<tr>
<td>Waveform envelope decay: 4.9 µs</td>
<td>4.9 µs</td>
<td>(4 to 6 µs to 50%)</td>
</tr>
<tr>
<td>Rise time of the first peak: 62 ns</td>
<td>61 ns</td>
<td>(60 to 90 ns – 10% to 90%)</td>
</tr>
<tr>
<td>Peak voltage level (no load): 2.47 kV</td>
<td>2.43 kV</td>
<td>(2.25 to 2.5 kV when set to 2.5 kV)</td>
</tr>
<tr>
<td>Output impedance: 212.8 Ω</td>
<td>163 Ω</td>
<td>(160 to 240 Ω)</td>
</tr>
</tbody>
</table>

Fast Transient Waveform Validity Tests

<table>
<thead>
<tr>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator output voltage: 4 kV</td>
<td>4 kV</td>
<td></td>
</tr>
<tr>
<td>Feed through voltage test: 2.2 V</td>
<td>0.2 V</td>
<td>(pass if ≤ 1%)</td>
</tr>
</tbody>
</table>

Test Generator performance verification:

<table>
<thead>
<tr>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test duration: 61.3 s</td>
<td>61.0 s</td>
<td>(≥60 s)</td>
</tr>
<tr>
<td>Burst period: 300.0 ms</td>
<td>300.8 ms</td>
<td>(240 to 360 ms)</td>
</tr>
<tr>
<td>Burst duration: 14.8 ms</td>
<td>14.8 ms</td>
<td>(12 to 18 ms)</td>
</tr>
<tr>
<td>Repetition rate: 2.5 kHz</td>
<td>2.5 kHz</td>
<td>(2 to 3 kHz)</td>
</tr>
<tr>
<td>Impulse duration: 53 ns</td>
<td>51 ns</td>
<td>(35 to 65 ns to 50% value)</td>
</tr>
<tr>
<td>Rise time: 4.76 ns</td>
<td>4.69 ns</td>
<td>(3.5 to 6.5 ns – 10% to 90%)</td>
</tr>
<tr>
<td>Peak voltage level (no load): 4.245 kV</td>
<td>4.189 kV</td>
<td>(3.6 to 4.4 kV when set to 4 kV)</td>
</tr>
<tr>
<td>Output impedance: 55.7 Ω</td>
<td>55.4 Ω</td>
<td>(40 to 60 Ω)</td>
</tr>
</tbody>
</table>

The test configurations can be found in Appendix C. The controller signals were monitored during the tests using fibre-optic communications. The system communications diagram can be found in Appendix D.
Requirements:
The equipment is considered to have passed the tests if all the following conditions are met:

a) The specified performance of the equipment, including operating time, does not change beyond stated tolerances.
b) No hardware damage occurs.
c) No change in calibration beyond normal tolerances results.
d) No loss or corruption of stored memory or data, including active or stored settings, occurs.
e) System resets do not occur, and manual resetting is not required.
f) Established communications not affecting protection functions recover within the manufacturer’s time period, if disrupted.
g) Communications errors, if they occur, do not jeopardize the protective functions.
h) No loss of digital pulse synchronization occurs or where the loss of digital pulse synchronization does occur, it shall not produce and out of tolerance condition.
i) No changes in the states of the electrical, mechanical, or communications status outputs occur. This includes alarms, status outputs, or targets.

Evaluation:
The controller signals were monitored during the tests, and no activity was observed. The device successfully met all the requirements of the test standard.

Result:
PASS
APPENDIX A – EXAMPLE SSAO WAVEFORMS

Figure 1. Example positive surge voltage waveform

Figure 2. Example positive surge current waveform
Figure 3. Example negative surge voltage waveform

Figure 4. Example negative surge current waveform
APPENDIX B – OSCILLATORY AND FAST TRANSIENT SURGE WAVEFORMS

Figure 5. Oscillatory Surge Waveform (1)

Figure 6. Oscillatory Surge Waveform (2)
Figure 7. Fast Transient Surge Waveform (1)

Figure 8. Fast Transient Surge Waveform (2)