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Abstract—Traveling-wave-based fault-locating (TWFL) meth-
ods have become widely popular in fault locators—including those 
available in transmission line protective relays—because of their 
improved accuracy over impedance-based methods. The Bewley 
diagram offers a time-space representation that shows how 
traveling waves (TWs) traverse along a transmission line following 
a disturbance, such as a fault. The Bewley diagram is commonly 
used to visualize, confirm, or fine-tune TWFL results provided by 
the fault locator. It also allows for determining alternative fault-
location hypotheses or obtaining TWFL results offline when they 
are not provided automatically by the fault locator. Until recently, 
Bewley diagram-based analysis software provided TWFL results 
by making use of, at most, three parameters and three TW arrival 
times to provide correlation between the Bewley diagram and TW 
signals captured by ultra-high-resolution event records. These 
parameters are the fault initiation time (t0), the TW line 
propagation time (TWLPT), and the per-unit fault location (m). To 
improve the accuracy of the calculated fault location, we can now 
obtain a more precise correlation between the Bewley diagram 
and the recorded TW arrival times by including a fourth TW 
arrival time and a fourth parameter, a skew factor (∆), that 
compensates for various time-alignment issues between the 
terminals at each end of the line.  

This paper introduces a systematic notation and matrix 
representation of the equations that determine the expected TW 
arrival times by using as many as four parameters: t0, TWLPT, m, 
and ∆. We describe a flexible method that uses the matrix 
representation, and using real-world events, show how software 
that employs these equations improves TWFL accuracy.  

I. INTRODUCTION 
With the release of transmission line protective relays that 

include MHz-rate data acquisition and traveling-wave-based 
fault-locating (TWFL) technology in 2012, applications 
supporting the analysis of power system faults began including 
features to facilitate the analysis of traveling-wave (TW) data. 
In this paper, we explore the equations that determine the 
expected arrival times of TWs at a line terminal and describe 
the evolution of software-based TWFL methods. 

In Section II, we review the basics of TWFL technology. We 
define a systematic, matrix-based method and associated 
notation for representing the TW arrival times and describe how 
these expressions are used to derive the general TWFL 
equations.  

In Section III, we explain how the Bewley diagram helps to 
better understand the relationship between the numerous TW 
arrival times, the fault location, and the parameters that govern 
the TW arrival times. This paper describes the contribution of 

four parameters that define the TW arrival times at each line 
terminal (t0, TWLPT, m, and ∆) and provides a new systematic 
approach for offline TWFL that uses as many as four TW 
arrival times—identified from ultra-high-resolution event 
records—to simultaneously solve a system of equations for all 
four parameters. This method provides improved flexibility in 
performing TWFL and improved accuracy over existing 
Bewley-based methods used for offline analysis. We further 
explore potential sources of error in the TWFL methods and 
introduce compensation techniques that may be applied. 

We also describe a TWFL software tool based on the Bewley 
diagram that includes these compensation methods and how 
they are employed. Using this tool, the operator selects which 
TW arrival times factor into the solution, providing greater 
flexibility for the operator to fully explore the effect of the 
different parameters. 

Finally, in Section IV, we review event records from several 
real-world faults and show how applying this Bewley diagram 
tool—which has recently been implemented in event analysis 
software—improves the accuracy of the results obtained from 
the new offline TWFL method. We compare the accuracy and 
flexibility of the new method to the traditional single- and 
double-ended TWFL methods that use two TW arrival times 
and two parameters to calculate the fault location. Similarly, we 
compare the new method to TWFL methods that use three TW 
arrival times and three parameters to calculate the fault location. 

II. REVIEW OF TRAVELING-WAVE-BASED FAULT LOCATING 

A. TWs and the Bewley Diagram 
TWs are launched by the voltage step change that occurs 

when a disturbance, such as a fault, occurs on a line. The size 
of the step change, and therefore the size of the TWs, is affected 
by several factors, including the characteristic impedance of the 
line (which is a function of the distributed inductance and 
capacitance), the point on the voltage waveform when the 
disturbance occurred, and fault resistance. When a fault occurs, 
the voltage step change creates both current and voltage TWs 
that travel from the fault toward each line terminal and arrive at 
each end after some period of time. The initial current and 
voltage TWs have the same polarity and are related in 
magnitude by the characteristic impedance of the line. When 
these initial TWs arrive at each line terminal, the current TW 
becomes inverted because of the orientation of the CTs [1]. 
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As explained in [2], when an incident TW arrives at a 
termination point (i.e., a change in the characteristic impedance, 
such as a line terminal or the fault), some of the energy 
continues in the same direction (a transmitted TW) and some of 
the energy reflects in the opposite direction (a reflected TW). 
The size of each transmitted and reflected TW—as well as the 
polarity of the reflected TW—depends on the size of the 
incident TW and the characteristic impedance on either side of 
the termination point. 

TWs move at approximately 98 percent of the speed of light 
(0.98c) on overhead lines and at approximately 45 to 85 percent 
of the speed of light (0.45c to 0.85c) on underground cables [3]. 
The TW line propagation velocity, PV, is determined by the 
distributed inductance and capacitance of the line and is equal 
to the line length, LL, divided by the TW line propagation time, 
TWLPT, i.e., PV = LL / TWLPT. TWLPT is the one-way end-to-
end travel time of a TW on the line and is a setting required by 
some TW-based fault locators. Other TW-based fault locators 
use PV expressed as a per-unit value of the speed of light, 
LPVEL, i.e., LPVEL = PV / c. 

In the 1930s, L. V. Bewley developed a reflection lattice 
diagram that would later be named after him [4] [5]. The 
Bewley diagram allows us to visualize and predict TW arrival 
times at each terminal based on the line configuration, fault 
location, and fault initiation time. The diagram further shows 
the interactions between a variety of reflection points, allowing 
the operator to make sense of the numerous TW arrivals that 
may be visible in the TW signals captured by a recording 
device.  

Fig. 1 shows a Bewley diagram for a homogeneous two-
terminal line, representing TWs as they travel after being 
launched by a fault at the fault initiation time, t0, located a per-
unit distance, m, from the local terminal, L, and 1 – m from the 
remote terminal, R. The TWs progress along the vertical time 
axis (time increases from top to bottom) and simultaneously 
progress horizontally along the distance axis.  

B. Systematic Notation and Matrix Representation of TW 
Arrival times 

Fig. 1 also shows TWs that arrive at each terminal following 
a variety of time-spatial paths. The paths can include being 
reflected from the fault point, being transmitted through the 
fault point, being reflected from the opposite terminal, or a 
combination of these paths. The arrival of each TW at 
Terminal L or Terminal R corresponds to the respective time 
stamp, where the order of the subscripts in the time stamp label 
represents the order the initial TW and subsequent reflections 
were observed at the two terminals. For example, tLR is the 
arrival time of a TW that first arrived at Terminal L, reflected 
off Terminal L, transmitted through the fault, and was finally 
observed at Terminal R. Although additional TW arrivals may 
be visible on recorded data, only the TW arrivals up to and 
including those with labels having three subscripts are included 
in Fig. 1 because TWs typically attenuate below the noise 
threshold by this point. 

 

Fig. 1. Bewley diagram showing systematic naming of TW arrival times. 

This systematic notation allows unambiguous calculation of 
the TW arrival times by relating them to the Bewley lattice 
parameters TWLPT, t0, and m. Because TWLPT is the amount 
of time it takes a TW to traverse the entire line, m · TWLPT is 
the amount of time it takes a TW to travel from the fault to 
Terminal L. The first TW arrival time at Terminal L is tL, which 
therefore occurs at m · TWLPT after t0, as shown in (1a). This 
can also be shown in the matrix form of Ax = t as (1b), where x 
is the vector of Bewley lattice parameters and t is the vector of 
TW arrival times. A is the TW alignment matrix that we use to 
translate the parameters to arrival times.  

 

𝑡𝑡𝐿𝐿 = 𝑡𝑡0 + 𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

[1 1 0] �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = [𝑡𝑡𝐿𝐿] 

(1a) 

 
(1b) 

The first TW that arrives at Terminal L after being reflected 
from the fault arrives at tLL, which is 3 · m · TWLPT after t0, as 
shown in (2a). This can also be shown in matrix form as (2b). 

 

𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑡𝑡0 + 3 ∙ 𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

[1 3 0] �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = [𝑡𝑡𝐿𝐿𝐿𝐿] 

(2a) 
 

(2b) 
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Similarly, (1 – m) · TWLPT is the amount of time it takes a 
TW to travel from the fault to Terminal R. The first TW arrival 
time at Terminal R is tR, which therefore occurs at 
(1 – m) · TWLPT after t0, as shown in (3a) and (3b).  

 𝑡𝑡𝑅𝑅 = 𝑡𝑡0 + (1 −𝑚𝑚) ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (3a) 

 [1 −1 1] �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = [𝑡𝑡𝑅𝑅] (3b) 

Subsequent TW arrival times are calculated by the addition 
of time as follows: 

1. A reflection from Terminal L, reflecting off the fault, 
then arriving back at Terminal L adds 2 · m · TWLPT 
or [0 2 0] to the applicable row of the A matrix. 

2. A reflection from Terminal R, reflecting off the fault, 
then arriving back at Terminal R adds 
2 · (1 – m) · TWLPT or [0 –2 2] to the applicable row 
of the A matrix. 

3. A reflection from one terminal, transmitting through 
the fault, and arriving at the other terminal adds TWLPT 
or [0 0 1] to the applicable row of the A matrix. 

Using this system, the path a TW traverses is uniquely 
described by the subscripts of the TW arrival time labels. The 
TW arrival times shown in Fig. 1 are shown in (4a) for 
Terminal L and (4b) for Terminal R. As shown in Fig. 1, only 
the rows up to and including three subscripts of the TW arrival 
time label are shown in (4a) and (4b).  

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
1
1
1
1
1
1

1
3
5

−1
−3

1
1

0
0
0
2
4
2
2⎦
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑡𝑡𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿 
𝑡𝑡𝑅𝑅𝐿𝐿   
𝑡𝑡𝑅𝑅𝑅𝑅𝐿𝐿
𝑡𝑡𝑅𝑅𝐿𝐿𝐿𝐿
𝑡𝑡𝐿𝐿𝑅𝑅𝐿𝐿⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (4a) 

 

⎣
⎢
⎢
⎢
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⎡
1
1
1
1
1
1
1

−1
−3
−5

1
3

−1
−1

1
3
5
1
1
3
3⎦
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑡𝑡𝑅𝑅
𝑡𝑡𝑅𝑅𝑅𝑅
𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 
𝑡𝑡𝐿𝐿𝑅𝑅    
𝑡𝑡𝐿𝐿𝐿𝐿𝑅𝑅 
𝑡𝑡𝐿𝐿𝑅𝑅𝑅𝑅
𝑡𝑡𝑅𝑅𝐿𝐿𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (4b) 

To better understand the offline TWFL method proposed in 
this paper, it is helpful to first review the methods already 
implemented in existing protective relays and fault locators, 
which use two TW arrival times to estimate the fault location. 
Section II.C explains how the double-ended TWFL (DETWFL) 
method may be used to estimate the fault location by using tL 
and tR in Fig. 1, which are the arrival times of the initial TW at 
Terminals L and R, respectively. Similarly, Section II.D 
explains how the single-ended TWFL (SETWFL) method may 
be used to estimate the fault location by using tL and tLL in 
Fig. 1, which are the arrival times of the initial TW at 
Terminal L and the first reflection from the fault, respectively. 
Section III then expands on these methods and explains a new 
systematic approach for offline TWFL that can provide 
improved accuracy of results by using up to four TW arrival 

times and by allowing flexibility for which TW arrival times 
are selected. 

C. Double-Ended TW-Based Fault Locating by Using Two 
TW Arrival Times 

Fig. 2 is a simplified version of Fig. 1 that shows the initial 
TWs arriving at Terminal L and Terminal R at times tL and tR, 
respectively. Expressions representing the arrival times are 
given in (1b) and (3b), and (5) combines them in a single matrix 
expression. Equation (5) is equivalent to combining the tL row 
from (4a) and the tR row from (4b) into a single expression. If 
we declare TWLPT as constant and focus on columns 1 and 2 
of the A matrix in (5), we see it is full rank (i.e., the rows are 
linearly independent and thus invertible as indicated by a 
nonzero determinant [6]), and therefore, the equation can be 
arranged to solve for t0 and m · TWLPT as in (6). This process 
provides sufficient information to draw the Bewley lattice 
diagram shown in Fig. 2. 

 

Fig. 2. First TW arrival times at Terminals L (tL) and R (tR).  

 �1 1 0
1 −1 1� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = �
𝑡𝑡𝐿𝐿
𝑡𝑡𝑅𝑅
� (5) 

 � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� =

1
2
�𝑡𝑡𝐿𝐿 + 𝑡𝑡𝑅𝑅 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑡𝑡𝐿𝐿 − 𝑡𝑡𝑅𝑅 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� (6) 

The second (bottom) row of (6) can be arranged to isolate m, 
thus solving for the per-unit fault location (7). The details of the 
derivation of (6) and (7) are available in Appendix A. Because 
t0 cannot be directly measured by the devices located at each 
line terminal, (7) is commonly derived by rearranging (1a) and 
(3a) to solve for t0, setting them equal to each other, and solving 
for m. Notice that (7) relies on both tL and tR, but it does not 
require t0. Equation (7) is the general equation (in per-unit) used 
for the DETWFL method. Multiplying (7) by LL (in units of 
length, typically km or mi), as shown in (8), converts the per-
unit fault location (lower case m) into a fault location in units 
of km or mi (capital M) [1] [2] [7] [8].  

 𝑚𝑚 =
1
2
�1 +

𝑡𝑡𝐿𝐿 − 𝑡𝑡𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� (7) 

 𝑀𝑀 = 𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇 (8) 

Because this method relies on tL and tR, device-to-device 
communications are required to exchange data needed to 
determine the TW arrival time at each terminal. Alternatively, 
an offline method, such as the one described in [8] or the one 
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described in Section III of this paper may be applied. 
Furthermore, the devices must be synchronized to a common 
time reference. 

D. Single-Ended TW-Based Fault Locating by Using Two 
TW Arrival Times 

Fig. 3 is a simplified version of Fig. 1 that shows the initial 
TW and the first reflection from the fault that arrive at 
Terminal L at time tL and tLL, respectively. Expressions 
representing the arrival times are given in (1b) and (2b), and (9) 
combines them in a single matrix expression. Equation (9) is 
equivalent to combining the tL and tLL rows from (4a) into a 
single expression. If we declare TWLPT as constant and focus 
on columns 1 and 2 of the A matrix in (9), we see it is full rank, 
and thus, the equation can be arranged to solve for t0 and 
m · TWLPT as in (10).  

 

Fig. 3. First (tL) and second (tLL) TW arrival times at Terminal L. 

 �1 1 0
1 3 0� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = �
𝑡𝑡𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿
� (9) 

 � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� =

1
2
�3𝑡𝑡𝐿𝐿 − 𝑡𝑡𝐿𝐿𝐿𝐿
−𝑡𝑡𝐿𝐿 + 𝑡𝑡𝐿𝐿𝐿𝐿

� (10) 

The second (bottom) row of (10) can be arranged to isolate 
m, thus solving for the per-unit fault location (11). The details 
of the derivation of (10) and (11) are available in Appendix A. 
Equation (11) is the general equation (in per-unit) used for the 
SETWFL method [1] [2]; it is commonly derived by subtracting 
(1a) from (2a) and solving for m. Because the SETWFL method 
relies only on data from the local device, this method does not 
require device-to-device communications nor synchronizing to 
an absolute time reference. 

 𝑚𝑚 =  �
1
2
� ∙ �

𝑡𝑡𝐿𝐿𝐿𝐿 − 𝑡𝑡𝐿𝐿
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� (11) 

As explained previously, the SETWFL method relies on 
identifying the first TW reflected from the fault. However, it 
may be challenging to distinguish this TW from other reflected 
TWs that may arrive at the terminal. One such case is depicted 
in Fig. 4a, which shows a fault located at a distance of m from 
Terminal L. The fault produces an initial TW and first 
reflection from the fault that arrive at Terminal L with the 
arrival time difference of Δta, calculated in (12). This value is 
the same as ∆tb in Fig. 4b, which is the arrival time difference 
between the initial TW and first reflection from Terminal R for 
a fault located at a distance of (1 – m) from Terminal L (a 
distance of m from Terminal R), as calculated in (13). To 

remove this ambiguity, additional logic, such as that described 
in [2], may be applied to the SETWFL algorithm to distinguish 
a fault at m from a fault at 1 – m. Similarly, the method 
explained in this paper may be applied to distinguish between 
the two fault locations by using a Bewley diagram in 
conjunction with a transient record captured at Terminal L to 
correlate the arrival of up to three TWs.  

 

Fig. 4. Example of fault-location ambiguity for the SETWFL method. 

 ∆𝑡𝑡𝑎𝑎 =  𝑡𝑡𝐿𝐿𝐿𝐿 − 𝑡𝑡𝐿𝐿 

= ([1 3 0] − [1 1 0]) �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

= [0 2 0] �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

= 2𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

(12) 

    ∆𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑅𝑅𝐿𝐿 − 𝑡𝑡𝐿𝐿 

            = ([1 1 1] − [1 −1 1]) �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

            = [0 2 0] �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

            = 2𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

(13) 

E. Availability of Results and Error Considerations 
Transmission line protective relays and fault locators that 

use the DETWFL or SETWFL method provide an estimate of 
the fault location only if the supervisory conditions have been 
satisfied and the device was able to identify the required TW 
arrival times. Therefore, TWFL results may not be 
automatically available in some cases, such as when time-
synchronization or device-to-device communications is not 
available in applications that use the DETWFL method or if the 
fault locator was not triggered.  

When TWFL results are not automatically provided, an 
offline method may be used to manually obtain them. Reference 
[8] describes an offline approach to estimate the fault location 
by using the DETWFL method when relay-to-relay 
communications are not available. This method uses the 
capability of ultra-high-speed (UHS) line relays that measure 
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and record power system signals at 1 Msps and provide TW 
arrival time data in IEEE COMTRADE transient records. The 
offline DETWFL method described in [8] uses two TW arrival 
times (tL and tR) to calculate the fault location by using (7) and 
(8). Similarly, the offline method described in this paper for the 
SETWFL and DETWFL methods may be applied to estimate 
the fault location by using transient records and the Bewley 
diagram, as demonstrated by the real-world event analysis 
examples in Section IV. 

The TWFL methods rely on user-provided settings for LL 
and TWLPT. Optionally, the DETWFL method also relies on 
user-provided settings for the TW cable propagation time 
(TWCPT) at each terminal (see Section III.D for more 
information about the TWCPT setting). As explained in [7], 
accuracy of the line data impacts TWFL accuracy. For example, 
1 percent of error in the LL setting results in 1 percent of error 
in the fault location, and 1 µs of error in the TWLPT setting 
results in a TWFL error of as much as 500 ft (150 m) for 
overhead lines and as much as 250 ft (75 m) for underground 
cables. Reference [7] explains why there is ambiguity in the line 
length by depicting four different definitions of distance 
between two adjacent towers. It also provides suggestions on 
how to improve the accuracy of the LL, TWLPT, and TWCPT 
settings. In addition to errors in device settings for the line data, 
[7] explains that 0.1 µs of error in device time stamping results 
in a TWFL error of about 50 ft (15 m) for overhead lines and 
about 25 ft (7.5 m) for underground cables. As shown in the 
examples in Section IV, the offline method described in this 
paper may be used to fine-tune results that were automatically 
provided if they are suspected to be inaccurate because of errors 
in the LL, TWLPT, or TWCPT settings or errors in the measured 
TW arrival times. 

III. BEWLEY DIAGRAM SOFTWARE APPLICATION FOR  
TW-BASED FAULT LOCATING 

A. Background of the Bewley Diagram Application 
In 2014, a Bewley Diagram application was added to event 

analysis software [9] with movable cursors attached to the 
lattice reflection points that are associated with the arrival of 
TWs at each terminal. When describing the Bewley Diagram 
application, the notation for TW arrival times is synonymous 
with the cursor associated with that TW arrival. By moving the 
two cursors used in (7) or (11), an operator can dynamically 
align lattice reflection points to features of the recorded 
waveform and visualize how adjustments to the lattice affect 
the t0 and m parameters. Development of the Bewley Diagram 
application as a tool for event analysis significantly advanced 
the state of the art for TWFL. 

B. Original Bewley Diagram Application 
In addition to the TWFL techniques described in Section II, 

the Bewley Diagram application used for TWFL introduced the 
ability to move the three cursors whose labels are referenced in 
(14a) and (14b) to dynamically align lattice reflection points, 
along with the additional flexibility of adjusting TWLPT, and 
immediately see the correlation between Bewley lattice 
reflection points and TWs observed in the recorded signals. 

We can measure TWLPT directly by analyzing a line 
energization event or calculate it using LL and PV. This value 
for TWLPT is then integrated into the TWFL device settings as 
a constant. The actual value of TWLPT, however, is not 
constant but is dependent on a variety of factors including line 
sag, air temperature, humidity, etc. [7] [10]. The results from 
any TWFL algorithm can therefore contain error if it does not 
account for TWLPT variability, as described in Section II.E. 

The original Bewley Diagram application displays up to 
three cursors that the operator may align to various TW arrival 
times. The initial two-cursor alignment provides fault locating 
based on (7) for DETWFL and (11) for SETWFL. For 
DETWFL, cursors are aligned to tL and tR. For SETWFL, 
cursors are aligned to tL and tLL. A third cursor is made available 
for the operator to align to an additional TW arrival time. For 
DETWFL, the third cursor is aligned with tLL. For SETWFL, 
the third cursor is aligned to tRL. The resulting systems of linear 
equations to be solved are shown in (14a) for DETWFL and 
(14b) for SETWFL. Note that in this version of the Bewley 
Diagram application, the first two cursors only adjust fault 
location and the third cursor moves along with the adjustments 
of the lattice. To adjust TWLPT, the operator adjusts the third 
cursor while the software holds the first two cursors constant, 
simultaneously solving for all three parameters. 
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In early 2022, the state of the art for TWFL saw additional 
improvements. Two key advancements were introduced based 
on field experience to improve accuracy and usability: 1) 
flexibility in selecting and pinning cursors and 2) accounting 
for time skew. These improvements are described in 
Section III.C and Section III.D, respectively. 

C. New Bewley Diagram Application—Selecting and 
Pinning Three Cursors to Refine Fault Location and 
TWLPT 

The first key advancement was extending the power of the 
Bewley Diagram application by allowing the manipulation of 
the lattice at more than just the three TW arrival times described 
in (14a) and (14b). 

By leveraging the systematic definition of TW arrival times 
on the lattice, as described in Section II.B, the operator can now 
select cursors for any point where the TWs arrived at 
Terminal L and Terminal R, as shown and labeled in Fig. 1. 
The definitions of the time stamps associated with each of these 
labeled cursors are shown in (4a) for TWs that arrive at 
Terminal L and (4b) for TWs that arrive at Terminal R. Note 
that tLRR = tRLR and tLRL = tRRL.  

Using this updated design, the operator can manipulate any 
three cursors to dynamically recalculate TWLPT and the fault 
location. To help the operator specify which cursors should be 
held constant and thus which rows of (4a) and (4b) contribute 
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to the solution, a pinning paradigm was introduced. If a cursor 
is pinned, its position remains constant, effectively fixing that 
point of the lattice in place. Depending on the number of cursors 
pinned, a subset of the combined matrix equations of (4a) and 
(4b) are solved; first solving t0, then m · TWLPT, and then 
TWLPT as the number of pinned cursors increases. See 
Appendix B for details on the underlying math. 

The TWFL process that uses the Bewley Diagram 
application now enables an operator to use the pinning 
paradigm to add additional parameters to the solution space as 
necessary to refine the TWFL result. When the operator 
manipulates a cursor and no other cursors are pinned, t0 is 
solved with m · TWLPT and TWLPT as constants. The system 
of equations represents a configuration with one equation and 
one unknown. That is, t0 is the single degree of freedom. All the 
other cursors move along with the lattice.  

Pinning a single cursor modifies the behavior slightly. Now, 
when the operator manipulates another cursor, the pinned 
cursor remains static. This becomes a configuration with two 
equations and two unknowns (i.e., two degrees of freedom). 
The time stamps of the pinned and manipulated cursors are the 
inputs, and t0 and m · TWLPT are the outputs.  

Having two cursors pinned and manipulating a third is a 
configuration with three equations and three unknowns 
(i.e., three degrees of freedom). The time stamps of the pinned 
and manipulated cursors are the inputs, and t0, m · TWLPT, and 
TWLPT are the outputs. 

Unlike the original Bewley Diagram application, where only 
the cursors whose labels are referenced in (14a) and (14b) were 
selectable, the new Bewley Diagram application allows the 
operator to select from any of the TW arrival times shown in 
Fig. 1 and described by (4a) and (4b). The ability to select 
alternate TW arrivals is beneficial and may be necessary 
because of distorted waveforms and certain fault locations, 
including but not limited to fault locations and system 
configurations that result in multiple TW arrivals coinciding. 
The superposition of currents from multiple coincident TW 
arrivals can severely distort the shape of the TW, making 
identification of the arrival time infeasible. In this situation, an 
alternate TW arrival that does not suffer this overlap may be 
selected.  

Additionally, improved accuracy may be achieved by 
selecting a later TW arrival time, which tends to average out the 
timing uncertainty. When calculating the fault location, the 
expression that represents the difference in time stamps will 
tend to include multiples of the m and TWLPT parameters. For 
example, for SETWFL, tLL – tL is 2 · m · TWLPT, whereas 
tLLL – tL is 4 · m · TWLPT. Using tL and tLL will divide the 
difference between the time stamps by 2, but using tL and tLLL 
will divide it by 4, thus potentially reducing the measurement 
error by a factor of 2. Similarly, using TWs that have traversed 
the full length of the line multiple times will tend to reduce 
errors associated with calculating TWLPT. For example, tLR – tL 
is TWLPT, whereas using tLRL – tL is 2 · TWLPT.  

For a system where the error in the TW arrival time stamp 
can be modeled as additive white Gaussian noise (AWGN), we 
can quantify the effect of selecting different TW arrivals on our 

estimate of m · TWLPT and TWLPT [11]. By performing 
SETWFL using tL, tLLL, and tLRL, the effect of AWGN may be 
reduced by a factor of 2 over the original Bewley Diagram 
application, which exclusively used tL, tLL, and tRL. However, 
we also know that as a TW traverses a longer path, the effects 
of dispersion (spreading out of the TW) and attenuation 
(decreasing the magnitude of the TW) are increased. Therefore, 
a trade off exists between using later TW arrivals that decrease 
the effect of measurement error yet have greater dispersion that 
increases the error in their arrival time. 

D. New Bewley Diagram Application—Selecting and 
Pinning Four Cursors to Solve for Time Skew Between 
Stations 

The second key advancement adds a fourth degree of 
freedom over which operators may optimize the DETWFL 
solution. 

When a TW waveform is loaded into the Bewley Diagram 
application, the software checks for the TWCPT setting. If 
found, the plotted signals are time adjusted to compensate for 
the time it takes a TW to travel from the instrument 
transformers to the terminals of the relay. So, even though the 
recorded data represent the arrival times of the TWs at the 
terminals of the recording device, the displayed data represent 
the arrival times of the TWs at the instrument transformers. 
This compensation in the recorded signals allows for improved 
accuracy in the fault-location estimate by accounting for the 
difference in cable lengths between the instrument transformers 
and the recording device at Terminals L and R. Thus, the 
DETWFL equation shown in (7) could also be written as shown 
in (15), where tLr and tRr represent the raw TW arrival times at 
the recording device without the TWCPT compensation applied 
[7] [8]. Note that for SETWFL, all TWs that arrive at the 
terminal travel along the same secondary cabling, so TWCPT 
compensation is not necessary. 
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Because of the methods employed to interpolate a precise 
TW arrival time from the recorded TW signals, the shape of the 
TW may affect the interpolated TW arrival time. The shape is 
strongly influenced by the system and equipment configuration 
at the substation and may be further affected by factors such as 
dispersion, coinciding TW arrivals, and secondary wiring 
resonance. Therefore, different effects on the TW arrival time 
interpolation at either end are expected. Additionally, TWCPT 
settings errors can introduce a time-stamp offset between 
Terminals L and R.  

Equation (15) shows how the effects of the variables 
TWCPTL and TWCPTR can be grouped together into a 
combined term. This can also be applied to the wave shape issue 
described in the previous paragraph, differences in instrument 
transformer group delay, and other factors local to one terminal 
or the other. Because the relative (i.e., not absolute) TW arrival 
times are important for DETWFL, we can collect all the time-
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stamp offset factors into a single variable representing the 
relative time skew between stations (∆). To incorporate ∆, we 
append it as a fourth element of the Bewley parameter vector 
(x) and add a fourth column to the TW alignment matrix (A), as 
shown in (16a) and (16b). Because the skew is relative between 
stations, we can apply it to the Terminal R equations. This 
results in column 4 of A for Terminal R being all 1s and for 
Terminal L being all 0s. An alternative implementation could 
distribute the skew evenly between the two terminals by using 
0.5 for Terminal R and –0.5 for Terminal L. Incorporating a 
fourth TW arrival time enables solving the system of equations 
for ∆. Additionally, because ∆ applies to the time skew between 
two terminals, it only applies to the DETWFL method. 
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Building on the previous discussion about cursor behavior, 
when we have three cursors pinned and are manipulating a 
fourth, we have a configuration with four equations and four 
unknowns, (i.e., four degrees of freedom). The time stamps of 
the pinned and manipulated cursors are the inputs, and t0, 
m · TWLPT, TWLPT, and Δ are the outputs. See Appendix B 
for details on the underlying math. 

IV. ANALYSIS OF REAL-WORLD EVENTS 
This section uses 1 Msps event records captured in the field 

to demonstrate the systematic approach of TWFL described in 
this paper. The event records were captured by UHS line relays 
installed to monitor a two-terminal 161 kV, 73 mi (117 km) 
line. The UHS relays at the local (L) and remote (R) terminals 
are time-synchronized to an absolute reference by using GPS 
clocks. Event analysis software that includes the Bewley 
Diagram application [9] enables the user to open event records 
and plot the 1 Msps current and voltage signals. The software 
also allows the user to obtain the phase TWs and modal TWs 
(zero, alpha, and beta Clarke components) for manual analysis 
and apply time cursors that replicate the interpolation method 

used by UHS relays to obtain TW arrival times with 
submicrosecond accuracy [2]. If the TWCPT values are 
available in the device settings, the Bewley Diagram 
application compensates the time stamps of the TW signals to 
remove the delay associated with the secondary cables. 

It should be noted that the line is terminated with only a 
power transformer at Terminal R. Therefore, any current TW 
arriving at that terminal is reflected with opposite polarity. For 
this reason, the current TW that reflects off Terminal R and 
arrives at Terminal L at time tRL has the same polarity as the 
current TWs that arrive at times tL and tLL. This relationship is 
important for correctly interpreting the measured signals at 
Terminal L, shown in the examples in this section. 
Additionally, if only a power transformer terminates the line, 
this configuration reduces the ability of a recording device to 
dependably measure and accurately time-stamp TWs when they 
arrive at that terminal. For the example in Section IV.B, the 
effect of the transformer caused the arrival time of the initial 
TW at Terminal R to not be identified by the UHS relay, 
making the automatic calculation of DETWFL results by the 
relays unavailable. Reference [3] provides additional details 
about how characteristic impedances affect the dependability 
and accuracy of TWFL.  

A. Improved Accuracy of SETWFL Results 
The example in this section shows how improved accuracy 

of the SETWFL method is achieved by using the Bewley 
Diagram application in conjunction with three TW arrival times 
identified in the event records. This example demonstrates the 
ability to pin selected cursors in the Bewley Diagram 
application, which allows the operator to choose TW time 
stamps with high confidence. Once the operator selects and pins 
the cursors, the software sets the time stamps as constants and 
solves the system of equations for t0, m · TWLPT, and TWLPT, 
as explained in Section III.C. If the cursors are not pinned, they 
may move when line parameters or other time cursors are 
modified, which could result in degraded alignment between 
the Bewley diagram and the observed TW signals or cause 
unintentional modification of the Bewley diagram during 
analysis. Furthermore, this example demonstrates the ability to 
choose from any of the TWs that arrived at the terminal when 
calculating the fault location. The ability to choose may be 
beneficial when some TW peaks are distorted, such as when 
two or more reflected TWs arrive at the terminal at the same 
time. 

On March 22, 2022, a C-phase-to-ground fault occurred on 
the monitored line 27.985 mi (45.037 km) from Terminal L. 
Fig. 5 shows the voltage and current signals captured by the 
UHS relay at this terminal. 
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Fig. 5. Currents and voltages captured by a UHS relay at Terminal L for a 
C-phase-to-ground fault. 

Fig. 6 shows the C-phase alpha-mode current TWs for this 
fault in the Bewley Diagram application with two cursors 
pinned that correspond to tL and tLL in Fig. 1. As explained in 
Appendix B, using two time cursors allows the system of 
equations to solve for t0 and m by using (10). Using m in (8) 
provides the calculated fault location of 28.234 mi (45.438 km), 
which matches the SETWFL result provided by the UHS relay. 
The calculated result differs from the location reported by the 
line crew by 0.249 mi (1,315 ft; 401 m). Fig. 6 also shows that 

time cursors corresponding to the arrival of subsequent TWs at 
Terminal L (e.g., tRL, tLLL, and tRRL) do not align well with the 
visible peaks in the TW signal.  

In Fig. 7, a third time cursor that corresponds to tRL is first 
aligned with the respective TW peak, and then pinned in place. 
As explained in Appendix B, including a third time cursor 
allows the system of equations to calculate a new TWLPT value 
(in this case, modifying the value from 395.13 µs to 398.63 µs) 
along with t0 and m. The new calculated fault location is 
27.987 mi (45.041 km), which differs from the fault location 
reported by the line crew by 0.002 mi (11 ft; 3 m). Fig. 7 also 
shows that time cursors corresponding to subsequent TWs 
arriving at Terminal L are better aligned with the visible peaks 
in the TW signal. With these refined parameters and improved 
results, the operator may choose to modify the TWLPT setting 
used by the fault locator. 

In Fig. 7, the TWs that arrived at tLL and tRL have 
distinguished peaks and are easily identified. However, there 
may be cases where one or both of these TWs may be distorted 
because of other TWs that arrive at or near the same time. When 
cursors cannot be aligned with these TWs with high confidence, 
the user may select other TWs that are more clearly defined in 
the measured signal. For example, Fig. 8 shows that the TWs 
that arrived at time tLLL and tRRL (instead of tL and tRL) provide a 
calculated fault location of 28.005 mi (45.070 km), which 
differs from the fault location provided by the line crew by 
0.020 mi (106 ft; 32 m). 

 

Fig. 6. Bewley diagram and SETWFL results obtained by using two TW arrivals (tL and tLL) to estimate the fault location.  
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Fig. 7. Bewley diagram and SETWFL results obtained by using a third TW arrival (tRL) to refine TWLPT for improved faut-locating accuracy.  

 

Fig. 8. Bewley diagram and SETWFL results obtained by using tL and alternative TW arrivals of tLLL and tRRL.  

B. Improved Accuracy of DETWFL Results 
The example in this section compares the improved 

accuracy of results obtained from the DETWFL method when 

applying two, three, and four cursors by using the systematic 
approach described in Section III. 

On September 19, 2020, a C-phase-to-ground fault occurred 
on the line 34.601 mi (55.685 km) from Terminal L. The 
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C-phase alpha-mode current TWs recorded at Terminal L and 
Terminal R are shown in Fig. 9. At Terminal R, the effect of the 
transformer caused the arrival time of the initial TW to not be 
identified by the UHS relay, making the automatic calculation 
of the DETWFL results by the relays unavailable. Therefore, 
the cursor at Terminal R in Fig. 9 that is associated with the tR 
time stamp is automatically placed by the Bewley Diagram 
application. The software calculates this placement based on 
the tL time stamp and fault location reported from one of the 
other available methods in the UHS relay at Terminal L. The 
figure shows that using two pinned cursors corresponding to tL 
and tR produces a calculated fault location of 34.076 mi 
(54.840 km) from Terminal L, which differs from the location 
reported by the line crew by 0.525 mi (2,772 ft; 845 m).  

Because the line is terminated at a transformer at 
Terminal R, the peaks of the measured TWs at this terminal are 
less distinct—they appear more rounded and elongated. 
Because the peaks are not well-defined, there may be ambiguity 
when manually aligning cursors on the Bewley diagram to 
identify the TW peaks, which may be a source of error in the 
calculated fault location. Additional error may be introduced by 
the time-stamping algorithm. Although this algorithm uses 
interpolation to obtain TW time stamps with submicrosecond 
accuracy from the individual sample points, it can be adversely 
affected by TW shape distortions. 

In Fig. 10, an additional (third) time cursor is pinned to the 
Bewley diagram that corresponds to the TW that arrived at 
Terminal L at time tLL. Pinning the third time cursor allows a 
new TWLPT value of 402.00 µs to be calculated. The new 

calculated fault location is 34.116 mi (54.904 km) from 
Terminal L, which differs from the fault location reported by 
the line crew by 0.485 mi (2,561 ft; 781 m). Fig. 10 also shows 
there is misalignment in some of the subsequent TWs that arrive 
at Terminal L, such as the one corresponding to arrival time tRL. 

In Fig. 11, an additional (fourth) time cursor is pinned to the 
Bewley diagram that corresponds to the TW arriving at 
Terminal L at time tRL. As explained in Appendix B, pinning 
four time cursors allows the system of equations to solve for 
TWLPT and Δ. In this case, TWLPT is modified to be 398.59 µs, 
Δ is calculated to be 3.412 µs, and the new calculated fault 
location is 34.408 mi (55.374 km) from Terminal L. The new 
result differs from the fault location reported by the line crew 
by 0.193 mi (1,019 ft; 311 m). Fig. 11 also shows that time 
cursors corresponding to subsequent TWs arriving at 
Terminal L are better aligned with the visible peaks in the TW 
signal. Table I summarizes the results of pinning two, three, and 
four cursors. 

TABLE I. 
BEWLEY DIAGRAM RESULTS FOR FAULT  

REPORTED BY THE LINE CREW AT 34.601 MI 

TW Arrival Times 
Used for TWFL  

FL 
(mi) 

Abs. Error 
(mi) 

TWLPTa 
(µs) 

∆b  
(µs) 

tL, tR 34.076 0.525 395.13 0 

tL, tR, tLL 34.116 0.485 402.00 0 

tL, tR, tLL, tRL 34.408 0.193 398.59 3.412 
a The initial TWLPT value is provided by the device settings. Calculation of a 

new TWLPT value requires at least three TW time stamps. 
b Calculation of the skew value requires four TW time stamps. 

 

Fig. 9. Bewley diagram and DETWFL results obtained by using two TW arrivals (tL and tR) to calculate the fault location.  
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Fig. 10. Bewley diagram and DETWFL results obtained by using a third TW arrival (tLL) to additionally refine TWLPT for improved faut-locating accuracy. 

 

Fig. 11. Bewley diagram and DETWFL results obtained by using a fourth TW arrival (tRL) to additionally refine ∆ to further improve faut-locating accuracy.
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Fig. 12 is a zoomed-in view of the initial TWs that arrived 
at Terminals L and R in Fig. 11. It shows a vertical arrow 
displayed by the Bewley Diagram application just above the 
cursor associated with the tR arrival time. The arrow represents 
the calculated skew value (∆) and shows how the TW signal 
aligns better with the Bewley diagram when compensation for 
∆ is considered. If the TWCPT settings are not set or are 
suspected to contain errors, the settings engineer may consider 
using the calculated ∆ to set or modify the TWCPT settings. 
Although the TWCPT settings were unintentionally set to zero 
for the example in this section, modifying these settings based 
on the calculated ∆ is not recommended in this case because the 
TW arrival times at Terminal R were determined by the Bewley 
Diagram application, rather than the installed devices that use 
the TWCPT settings.  

 

Fig. 12. Zoomed-in view of tL and tR TW arrivals to show the arrow 
representing the skew (∆) between the lattice reflection point associated with 
tR and the tR cursor. 

V. CONCLUSION 
In this paper, we have shown how the systematic matrix-

based method and associated notation regarding TW arrival 
times provide a flexible and robust method of solving the 
TWFL equations. Further, allowing flexibility when choosing 
and pinning cursors to select TWs and including the time skew 
as a solvable parameter adds additional capability to precisely 
locate the fault. Incorporating this technique into fault analysis 
software via a Bewley Diagram application improves operator 
understanding of the factors affecting the TWFL process and 
improves the accuracy of the TWFL results.  

VI. APPENDIX A: DERIVATION OF TRAVELING-WAVE-BASED 
FAULT-LOCATING EQUATIONS FROM A STRUCTURED MATRIX 

REPRESENTATION 

A. Double-Ended TW-Based Fault Locating by Using Two 
TW Arrival Times 

The general DETWFL equation (7) uses the tL and tR TW 
arrival times to find the per-unit fault location, m.  

To derive (7), begin with the definitions of tL and tR.  

 
𝑡𝑡𝐿𝐿 = 𝑡𝑡0 + 𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇            
𝑡𝑡𝑅𝑅 = 𝑡𝑡0 + (1 −𝑚𝑚) ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 

Express them in matrix format, Ax = t, where A is the TW 
alignment matrix, x is the 3 × 1 Bewley lattice parameter 
vector, and t is the vector of TW arrival times. 

 �1 1 0
1 −1 1� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = �
𝑡𝑡𝐿𝐿
𝑡𝑡𝑅𝑅
�  

At this point, TWLPT is held constant because we want to 
use the existing value, so we need to separate this part out.  

 �1 1
1 −1� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� + � 0

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� = �
𝑡𝑡𝐿𝐿
𝑡𝑡𝑅𝑅
� 

 
 

Next, we isolate the part containing the variables we are 
solving for: t0 and m · TWLPT.  

 �1 1
1 −1� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� = �

𝑡𝑡𝐿𝐿
𝑡𝑡𝑅𝑅
� − � 0

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�  

Remove the matrix in front of our variables of interest by 
premultiplying by its inverse, A–1. To be invertible, the A matrix 
must be full rank. To be full rank, the rows must be linearly 
independent as indicated by a nonzero value when the matrix 
determinant is calculated [6]. Thus, we confirm that the 
determinant of A is nonzero (det(A) = –2) before attempting to 
calculate its inverse. 

 
�1 1
1 −1�

−1
��
𝑡𝑡𝐿𝐿
𝑡𝑡𝑅𝑅
� − � 0

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�� = � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 

1
2
�1 1
1 −1� ��

𝑡𝑡𝐿𝐿
𝑡𝑡𝑅𝑅
� − � 0

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�� = � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� 

 

Simplify: 

 � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� =

1
2
�𝑡𝑡𝐿𝐿 + 𝑡𝑡𝑅𝑅 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑡𝑡𝐿𝐿 − 𝑡𝑡𝑅𝑅 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�  

Solve for m: 

 

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
1
2

(𝑡𝑡𝐿𝐿 − 𝑡𝑡𝑅𝑅 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)                    

𝑚𝑚 =
1
2
�
𝑡𝑡𝐿𝐿 − 𝑡𝑡𝑅𝑅 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
� 

𝑚𝑚 =
1
2
�1 +

𝑡𝑡𝐿𝐿 − 𝑡𝑡𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

 



13 

B. Single-Ended TW-Based Fault Locating by Using Two 
TW Arrival Times 

The general SETWFL equation (11) uses the tL and tLL TW 
arrival times to find the per-unit fault location, m.  

To derive (11), begin with the definitions of tL and tLL.  

 
𝑡𝑡𝐿𝐿 = 𝑡𝑡0 + 𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇   
𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑡𝑡0 + 3𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 

Express them in matrix format, Ax = t, where A is the TW 
alignment matrix, x is the 3 × 1 Bewley lattice parameter 
vector, and t is the vector of TW arrival times. 

 �1 1 0
1 3 0� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = �
𝑡𝑡𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿
�  

Because TWLPT is multiplied by 0, we can remove it from 
the equation.  

 �1 1
1 3� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� = �

𝑡𝑡𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿
� 

 
 

Remove the matrix in front of our variables of interest by 
premultiplying by its inverse, A–1. To be invertible, the A matrix 
must be full rank; thus, we confirm that the determinant of A is 
nonzero (det(A) = 2) before attempting to calculate its inverse. 

 
� 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� = �1 1

1 3�
−1
�
𝑡𝑡𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿
�      

� 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� =

1
2
� 3 −1
−1 1� �

𝑡𝑡𝐿𝐿
𝑡𝑡𝐿𝐿𝐿𝐿
� 

 

Simplify: 

 � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� =

1
2
�3𝑡𝑡𝐿𝐿 − 𝑡𝑡𝐿𝐿𝐿𝐿
−𝑡𝑡𝐿𝐿 + 𝑡𝑡𝐿𝐿𝐿𝐿

�  

Solve for m: 

 
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =

1
2

(𝑡𝑡𝐿𝐿𝐿𝐿 − 𝑡𝑡𝐿𝐿)                    

𝑚𝑚 =
1
2
�
𝑡𝑡𝐿𝐿𝐿𝐿 − 𝑡𝑡𝐿𝐿
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 
 

VII. APPENDIX B: SOLVING THE FOUR-DIMENSIONAL 
TRAVELING-WAVE-BASED FAULT-LOCATING EQUATIONS FOR 

1, 2, 3, AND 4 DEGREES OF FREEDOM  
The process of solving the TWFL matrix equation in the 

Bewley Diagram application is performed using the following 
method. The equation is expressed as Ax = t, where A is the TW 
alignment matrix, x is the 4 × 1 Bewley lattice parameter 
vector, and t is the vector of TW arrival times. The method is 
different depending on how many TW arrival times are 
included. A TW arrival time is included if its position is fixed 
(i.e., if the corresponding cursor is pinned in the application) or 
if the TW arrival is associated with the cursor that is being 
manipulated by the operator. The positions of all other TW 
arrival times are dynamically calculated from the parameter 
values that result from the calculations below. The A matrix is 
partitioned into a square: AV corresponding to the variable 

portion of x (xV), and AF corresponding to the fixed portion of 
x (xF).  

 [𝐴𝐴][𝑥𝑥] = [𝐴𝐴𝑉𝑉 𝐴𝐴𝐹𝐹] �
𝑥𝑥𝑉𝑉
𝑥𝑥𝐹𝐹�  

The partitioning depends on the size of the original A matrix, 
as shown later in this appendix. For example, if the dimensions 
of A are 1 × 4, to make AV square, it must be 1 × 1, leaving AF 
to be 1 × 3.  

The procedures below include inverting AF. A matrix is only 
invertible if it is full rank (i.e., its rows are linearly independent 
as indicated by a nonzero determinant) [6]. In the Bewley 
Diagram application, a cursor can only be manipulated and/or 
pinned if adding that row to the existing A matrix will result in 
a new square AV matrix with a nonzero determinant. 
Mathematically, a new row of A may only be included if it adds 
information that enables solving for the next element of x.  

A. One Degree of Freedom 
A one-degree-of-freedom scenario occurs when only one 

TW arrival time is included in the calculation. This occurs if the 
operator is manipulating a cursor and no other cursors are 
pinned or if only one cursor is pinned and the operator is 
presently manipulating that cursor. In this case, t0 is our variable 
of interest and all other variables (m · TWLPT, TWLPT, and ∆) 
remain constant. 

The single TW arrival time is shown as t1 in (B.1). The 
A matrix that multiplies the Bewley parameters is the row of 
(16a) or (16b) corresponding to t1.  

Begin with the equation for t1. The dimensions of the 
A matrix are 1 × 4. 

 [𝐴𝐴11 𝐴𝐴12 𝐴𝐴13 𝐴𝐴14] �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆

� = [𝑡𝑡1] (B.1) 

Isolate the parameter of interest by separating Ax into 
AVxV + AFxF.  

 [𝐴𝐴11][𝑡𝑡0] + [𝐴𝐴12 𝐴𝐴13 𝐴𝐴14] �
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆
� = [𝑡𝑡1]  

Isolate AVxV (i.e., the parameter of interest) to the left side 
of the equation.  

 [𝐴𝐴11][𝑡𝑡0] = [𝑡𝑡1] − [𝐴𝐴12 𝐴𝐴13 𝐴𝐴14] �
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆
�  

Solve for xV by premultiplying both sides by the inverse of 
the AV matrix, AV–1. 

 [𝑡𝑡0] = [𝐴𝐴11]−1 

�[𝑡𝑡1] − [𝐴𝐴12 𝐴𝐴13 𝐴𝐴14] �
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆
�� 

 

B. Two Degrees of Freedom 
A two-degree-of-freedom scenario occurs when only two 

TW arrival times are included in the calculation. This occurs if 
the operator is manipulating a cursor and one other cursor is 
pinned or if only two cursors are pinned and the operator is 
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presently manipulating one of the pinned cursors. In this case, 
t0 and m · TWLPT are our variables of interest and all other 
variables (TWLPT and ∆) remain constant. 

The two TW arrival times are shown as t1 and t2 in (B.2). 
The A matrix that multiplies the Bewley parameters comprises 
two rows corresponding to t1 and t2 taken from (16a) or (16b).  

The dimensions of the A matrix for t1 and t2 are 2 × 4. 

 �𝐴𝐴11 𝐴𝐴12 𝐴𝐴13 𝐴𝐴14
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23 𝐴𝐴24

� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆

� = �
𝑡𝑡1
𝑡𝑡2
� (B.2) 

Isolate the parameters of interest by separating the A matrix 
into a square 2 × 2 matrix (AV) times our parameters of interest 
(xV) and a separate matrix (AF) times the constant parameters 
(xF).  

�𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

� � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� + �𝐴𝐴13 𝐴𝐴14

𝐴𝐴23 𝐴𝐴24
� �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆ � = �
𝑡𝑡1
𝑡𝑡2
� 

Isolate the parameters of interest to the left side of the 
equation.  

�𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

� � 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� = �

𝑡𝑡1
𝑡𝑡2
� − �𝐴𝐴13 𝐴𝐴14

𝐴𝐴23 𝐴𝐴24
� �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆ � 

Cancel out the square A matrix by premultiplying both sides 
by its inverse, AV–1.  

� 𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� = 

�𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

�
−1
��
𝑡𝑡1
𝑡𝑡2
� − �𝐴𝐴13 𝐴𝐴14

𝐴𝐴23 𝐴𝐴24
� �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆ �� 

C. Three Degrees of Freedom 
A three-degree-of-freedom scenario occurs when three TW 

arrival times are included in the calculation. This occurs if the 
operator is manipulating a cursor and two other cursors are 
pinned or if three cursors are pinned and the operator is 
presently manipulating one of the pinned cursors. In this case, 
t0, m · TWLPT, and TWLPT are our variables of interest and ∆ 
remains constant. 

The three TW arrival times are shown as t1, t2, and t3 in (B.3). 
The A matrix that multiplies the Bewley parameters comprises 
three rows corresponding to t1, t2, and t3 taken from (16a) or 
(16b).  

The dimensions of the A matrix for t1, t2, and t3 are 3 × 4. 

 �
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13 𝐴𝐴14
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23 𝐴𝐴24
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33 𝐴𝐴34

� �

𝑡𝑡0
𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

∆

� = �
𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
� (B.3)  

Isolate the parameters of interest by separating the A matrix 
into a square 3 × 3 matrix (AV) times our parameters of interest 
(xV) and a separate matrix (AF) times the constant parameter 
(xF).  

�
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

� �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� + �
𝐴𝐴14
𝐴𝐴24
𝐴𝐴34

� [∆] = �
𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
� 

Isolate the parameters of interest to the left side of the 
equation.  

�
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

� �
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = �
𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
� − �

𝐴𝐴14
𝐴𝐴24
𝐴𝐴34

� [∆] 

Cancel out the square A matrix by premultiplying both sides 
by its inverse, AV–1. 

�
𝑡𝑡0

𝑚𝑚 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� = 

�
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

�

−1

��
𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
� − �

𝐴𝐴14
𝐴𝐴24
𝐴𝐴34

� [∆]� 

D. Four Degrees of Freedom 
A four-degree-of-freedom scenario occurs when four TW 

arrival times are included in the calculation. This occurs if the 
operator is manipulating a cursor and three other cursors are 
pinned or if four cursors are pinned and the operator is presently 
manipulating one of the pinned cursors. In this case, t0, 
m · TWLPT, TWLPT, and ∆ are our parameters of interest and 
none remain constant. 

The four TW arrival times are shown as t1, t2, t3, and t4 in 
(B.4). The A matrix that multiplies the Bewley parameters 
comprises four rows corresponding to t1, t2, t3, and t4 taken from 
(16a) or (16b).  

The dimensions of the A matrix for t1, t2, t3, and t4 are 4 × 4; 
thus, AV = A and xV = x. AF and xF are both empty. 
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𝐴𝐴31 𝐴𝐴32 𝐴𝐴33 𝐴𝐴34
𝐴𝐴41 𝐴𝐴42 𝐴𝐴43 𝐴𝐴44

� �

𝑡𝑡0
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∆

� = �

𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
𝑡𝑡4

� (B.4) 

Cancel out the square A matrix by premultiplying both sides 
by its inverse, A–1. 
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