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Capacitor Bank Unbalance Protection Calculations 
and Sensitivity Analysis 

Bogdan Kasztenny and Satish Samineni 
Schweitzer Engineering Laboratories, Inc. 

Abstract—In this paper, we introduce a method for performing 
unbalance calculations for high-voltage capacitor banks. We 
consider all common bank configurations and fusing methods and 
provide a direct equation for the operating signal of each of the 
commonly used unbalance protection elements. This one-step 
calculation method requires less data and is not only simpler but 
also less prone to errors compared with multistep methods such as 
the ones included in the IEEE Std C37.99 [1]. Our equations cover 
both the fail-open and fail-short failure scenarios (fused, fuseless, 
and temporarily repaired banks). The paper also derives 
equations for calculating the degree of internal overvoltage that a 
failure puts on the healthy capacitor units in the bank. Next, we 
derive equations for the unbalance protection operating signals as 
functions of the internal overvoltage. Our equations tie together 
the unbalance protection operating signals, the number of failed 
capacitor units, and the internal overvoltage caused by the failure. 
Therefore, these equations provide a solid basis for setting the 
unbalance protection elements: we set the alarm thresholds to 
detect a single (or partial) unit failure, and we set the trip 
thresholds to trip when the internal overvoltage caused by the 
failure threatens a cascading failure. The paper includes dozens of 
equations because it covers a variety of bank configurations, 
fusing methods, and unbalance protection elements. However, 
when working on a particular bank configuration with a 
particular fusing method, the user is presented with just a handful 
of simple equations for direct one-step calculation of the 
unbalance protection operating signals.  

I. INTRODUCTION 
Shunt capacitor banks are assembled from capacitor units 

connected in parallel to form groups, groups connected in series 
to form strings, and stings connected in parallel to form phases. 
In high-voltage applications, the phases are connected as 
grounded or ungrounded single-wye, double-wye, or H-bridge 
bank configurations. Capacitor units, in turn, are fabricated 
from capacitor elements encased together and connected in 
parallel-series structures. Fuses may be applied to address 
failures of capacitor elements (internally fused banks) or units 
(externally fused banks). The method of fusing impacts how the 
capacitor units are arranged in groups and strings.  

Overall, capacitor banks are protected by a combination of 
fuses, which remove the failed unit or element, and protective 
relays, which alarm and trip the bank offline. From the 
protective relay perspective, a capacitor failure and the 
resulting fuse operation (if fuses are used) blend together into a 
single event to be detected (alarm for failures that can be 
tolerated and trip for failures that may progress catastrophically 
because of the overvoltage condition that the failure puts on the 
remaining healthy capacitor units).  

Capacitor failures cause only slight changes in the bank 
voltages and currents. Therefore, these failures cannot be 
detected based on the levels of voltages and currents but based 
on the unbalance in voltages and currents relative to a healthy 
bank (hence the name unbalance protection). A distinct set of 
unbalance protection elements is available for each bank 
configuration.  

To set the unbalance protection elements, we must perform 
fault calculations for series failures inside the capacitor bank 
(capacitor units or elements failing open or short). Because 
capacitor bank equations are linear and there is no mutual 
coupling inside the bank, the underlying equations for the 
calculations are simple: the unit reactance ties the unit voltage 
and current while Kirchhoff’s laws tie all voltages and currents 
inside the bank. However, solving these underlying equations 
by hand is tedious. 

In general, we use short-circuit programs to set protection 
elements, such as distance or overcurrent. However, the 
commonly used short-circuit programs do not include modules 
for unbalance calculations in capacitor banks. The IEEE Std 
C37.99 [1] advocates numerical multistep unbalance 
calculations. Often, about a dozen calculation steps are required 
to obtain an unbalance protection element operating signal. 
Some users develop their own short-circuit programs for 
unbalance calculations in capacitor banks. Developing and 
validating these specialized short-circuit programs is time 
consuming. 

This paper fills this void and provides equations for 
unbalance calculations for common bank configurations, fusing 
methods, and unbalance protection elements. These equations 
allow direct (one-step) calculation because they directly tie the 
unbalance protection operating signals to the capacitor unit 
arrangement parameters and the size (number of failed units), 
type (fail-open or fail-short), and location (above or below the 
bridge, left or right half of the bank, phase A, B, or C) of the 
failure. Avoiding multistep calculations not only reduces time 
and effort but also eliminates opportunities for errors.  

The unbalance protection equations are remarkably simple. 
We achieved this simplicity by working in per-unit values. It is 
apparent that an unbalance in capacitor bank voltages and 
currents is a result of a difference between the faulted and 
healthy parts of the bank. As such, the per-unit voltage or 
current unbalance is independent of the absolute characteristics 
of the faulted and healthy parts. We will show that the 
unbalance in per unit is a fractional number: a ratio of two 



2 

integer numbers that depend on the number of failed capacitor 
units and the number of units, groups, and strings in the bank.  

We introduce the concept of an overvoltage factor. We 
define it as a ratio of the voltage elevated by the failure in the 
most stressed part of the bank and the normal voltage in that 
part. The overvoltage factor is a simple function of the bank 
parameters and the size, type, and location of the failure. We 
use the overvoltage factor to better understand the impact of a 
failure on the rest of the bank including the danger of breaching 
the unit voltage rating and causing a cascading failure. More 
importantly, we use the overvoltage factor to set unbalance 
protection elements. We propose setting the alarm threshold to 
detect a single unit failure (or even a fractional unit failure 
because of the failure of some but not all capacitor elements 
inside the unit) and setting the trip threshold to trip before the 
internal overvoltage caused by the failure exceeds the unit 
voltage rating and triggers a cascading failure.  

Unlike the numerical solutions (numbers in, numbers out), 
our analytical equations directly tie the signals of interest to the 
failure and bank parameters. As a result, these direct equations 
allow a multitude of applications and insights. 

The paper is organized as follows.  
Section II reviews the common high-voltage capacitor bank 

configurations and the applicable unbalance protection 
elements. The section states the scaling and measuring polarity 
conventions for the unbalance protection elements.  

Section III explains the capacitor unit arrangement that we 
assumed when deriving our equations, explains the capacitor 
failure scenarios, and introduces the per-unit system for the 
calculations. The capacitor unit arrangement assumed in this 
paper covers most practical cases. The failures include the fail-
open and fail-short scenarios. You can use these failure 
scenarios to represent failures in the fused and fuseless banks 
as well as temporary repairs in the bank (leaving the failed units 
open or shorted until a proper repair can be performed).  

Section IV uses an example to explain how we derived and 
validated the equations. 

Section V introduces the concept of the overvoltage factor 
and explains how to use it to set trip thresholds for the 
unbalance protection elements.  

Section VI provides several unbalance protection settings 
calculation examples to better explain and illustrate the new 
concepts.  

Section VII gathers insights from the derived equations. It 
points to similarities between various unbalance protection 
elements and compares their relative sensitivity.  

Appendix A is a compilation of the derived equations. While 
the paper explains our methodology and teaches how to use the 
new information, Appendix A is a key output of our work. The 
appendix is formatted for ease of use and reproduction in your 
project documentation. To appreciate the output of this paper, 
consider looking at Appendix A before reading the remainder 
of the paper. 

Appendix B addresses the issues of multiple bank failures 
and shows how to use our equations to leverage the principle of 
superposition and perform unbalance calculations for multiple 
failures occurring sequentially in different parts of the bank.  

Appendix C shows how to use our equations to perform 
unbalance calculations for capacitor element failures by 
treating them as partial capacitor unit failures.  

II. BANK CONFIGURATIONS AND UNBALANCE PROTECTION 
We consider the following common configurations of high-

voltage capacitor banks: 
• Grounded single-wye 
• Ungrounded single-wye 
• Grounded double-wye 
• Ungrounded double-wye 
• Grounded H-bridge 
• Ungrounded H-bridge 

with the following fusing methods: 
• Externally fused 
• Internally fused 
• Fuseless 

Advantages, drawbacks, and application considerations for 
each of these bank configurations and fusing methods are out 
of the scope of this paper.  

We consider the following unbalance protection elements: 
• Neutral overvoltage (59NT) for ungrounded banks 
• Neutral overvoltage unbalance (59NU) for 

ungrounded banks 
• Voltage differential (87V) for grounded banks and 

ungrounded double banks 
• Neutral overcurrent unbalance (60N) for grounded 

and ungrounded double banks 
• Phase overcurrent unbalance (60P) for grounded 

and ungrounded double banks 
• Negative-sequence overcurrent (50Q/50QT) for 

grounded and ungrounded banks 
• Impedance (21C) for grounded banks 

Fig. 1 through Fig. 6 show the bank configurations and the 
applicable unbalance protection elements. The figures show the 
unbalance protection elements applicable to each bank 
configuration by denoting their ANSI device numbers (in 
green) and the unbalance protection operating signal names and 
measuring conventions (in blue). For simplicity, the figures do 
not show instrument transformers, unless required for clarity. 
The figures also show the failure location for which the derived 
unbalance equations directly apply. The term location refers to 
the faulted phase (A, B, or C), the faulted half of the double 
bank (left or right), and the fault position with respect to the tap 
or bridge (above or below).  
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Fig. 1. Grounded single-wye bank configuration and unbalance protection. 

 

Fig. 2. Ungrounded single-wye bank configuration and unbalance 
protection. 

 
Fig. 3. Grounded double-wye bank configuration and unbalance protection 
(a) and 60P protection and alternative connection of the 87V protection (b). 

 
Fig. 4. Ungrounded double-wye bank configuration and unbalance 
protection (a) and 60P protection and alternative connection of the 87V 
protection (b). 

 
Fig. 5. Grounded H-bridge bank configuration and unbalance protection (a) 
and 60P and 87V protection (b). 
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Fig. 6. Ungrounded H-bridge bank configuration and unbalance protection 
(a) and 60P protection (b). 

To understand the scaling and polarity conventions for the 
protection input signals, consider the following points.  

We define the operating signal for the 59NU element as 
follows: 

V59NU = VN − 3V0 (1) 

where VN is the bank neutral-point voltage and 3V0 is the tripled 
zero-sequence bus voltage.  

When only a small number of capacitor units fail, the bus 
voltages remain balanced (3V0 = 0), and using (1) makes the 
operating signals of the 59N/59NT and 59NU elements equal 
during bank failures: 

V59NU = V59N = VN (2) 

As a result, we only need to provide unbalance calculations 
for the neutral-point voltage, and during capacitor unit failures, 
these calculations apply to both the 59NT and 59NU protection 
elements. Of course, the 59NT element uses time delay for 
security during system faults, while the 59NU element can 
operate with little or no time delay. We refer to the operating 
signal of the 59NT and 59NU elements that is common during 
series faults as V59N.  

To simplify analysis and calculations for the two possible 
connections of the voltage differential protection element 
(compare Fig. 1 and Fig. 3b), we use the following 87V 
operating signal convention: 

∆V87 = VTAP − T ⋅ VBUS (3) 

where T is the per-unit tap position (the reactance between the 
tap and the neutral point of the bank in per unit of the bank 
reactance).  

Using (3), the operating signal of the voltage differential 
element is independent of the way of obtaining the reference 
signal (T ⋅ VBUS). The ∆V87 signal obtained by measuring the 
bus voltage (Fig. 1) and the V87 signal obtained by measuring 
the voltage difference between taps in a double bank (Fig. 3b) 
are equal: 

V87 = ∆V87 (4) 

As a result, we only need to provide one version of the 87V 
unbalance equation, and the equation applies to both ways of 
connecting the 87V element. If your 87V application is based 
on a different tap matching convention than (3), then rescale the 
87V operating signal obtained by using this paper. 

Typically, the 87V tap position T is considerably less than 
0.5 pu. For H-bridge banks (Fig. 5b), we use variable H for the 
per-unit position of the bridge and assume that the 87V tap 
position T is the same as the bridge position H. Typically, H is 
about 0.5 pu.  

We show the neutral (60N) and phase (60P) current 
unbalance protection elements connected to low-ratio window 
current transformers (CTs). These CTs measure the unbalance 
currents (difference between two currents) through magnetic 
summation of the two fluxes. This measurement method is 
considerably more accurate than the method of using two 
differentially connected CTs to sum the secondary currents. 
When using window CTs, the 60P operating signal balances 
without errors during normal bank operation and external 
faults, and the 60N operating signal balances without errors 
during system ground faults. 

The 50Q protection uses breaker CTs and measures the 
negative-sequence current (3I2) at the bank terminals. For 
double banks, the 50Q element measures the total bank current. 
Of course, when set to detect capacitor unit failures, the 50Q 
element uses time delay (50QT) for security during system 
faults. For simplicity and to avoid considerations regarding 
inverse-time or definite-time delay, we refer to this unbalance 
protection element as 50Q in the context of its operating signal.  

We consider the 21C protection only for grounded banks. We 
provide unbalance calculations (apparent reactance change) for 
both the per-phase and per-string applications of the 21C 
protection. The latter approach offers significantly better 
sensitivity but requires multiple CTs per phase (to reduce their 
voltage rating and cost, these CTs are installed in the bottom of 
the bank near the ground potential). For the grounded H-bridge 
banks, we consider only the per-phase 21C element.  

From the traditional protection perspective (alarm and trip 
thresholds), phase angles of the unbalance protection operating 
signals are irrelevant. In this paper, however, we pay attention 
to the instrument transformer polarity convention and the 
unbalance protection operating signal phase angle. Treating the 
unbalance signals as phasors (considering both the magnitude 
and angle) facilitates the application of the principle of 
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superposition in unbalance calculations for multiple bank 
failures (Appendix B).  

We use the following measurement and angle conventions: 
• Unbalance currents (I60N and I60P) are measured away 

from the failed half of the bank.  
• Unbalance voltages are measured as a potential of the 

failure area of the bank respective to ground (V59N), the 
bus (∆V87 and V59NU), or the tap in the healthy half of 
the double bank (V87). 

• Phase angles of all the unbalance protection operating 
signals are referenced to the faulted-phase voltage 
angle.  

• Apparent impedance is calculated as the phase-to-
ground capacitive reactance, i.e., a real positive value.  

Phase angles of the unbalance protection operating signals 
are also useful when looking for the location of the failure 
inside the bank: Which phase has a failure? Is the failure above 
or below the tap or bridge point? Is the failure in the left or right 
half of the bank? See [2] for more information on fault locating 
in capacitor banks.  

III. BANK UNIT ARRANGEMENT AND FAILURE SCENARIOS 

A. Capacitor Unit Arrangement 
Fig. 7 shows a general arrangement of capacitor units in a 

single phase (Φ) of a high-voltage capacitor bank. P capacitor 
units are connected in parallel to form a group. S groups are 
connected in series to form a string. R strings are connected in 
parallel to form a phase. In fuseless banks, P = 1, and in fused 
banks, R is typically 1 or 2. 

 
Fig. 7. General capacitor unit arrangement in the capacitor bank phase. 

Typically, S is much greater than 1 because the unit voltage 
rating is a relatively small fraction of the system nominal 
voltage, and several units must be connected in series to match 
the system voltage. The product of S, R, and P is much greater 
than 1 to provide the desired rated power given the unit reactive 

power rating (kVAr). Often, the sum of R and P is also much 
greater than 1 to increase bank survivability during unit failures, 
even though P or R can be as low as 1. 

The phase reactance (X) is the following function of the 
capacitor unit reactance (XU) and the bank parameters S, P, and 
R: 

X =
S

P ⋅ R
⋅ XU (5) 

We assume a uniform bank unit arrangement as follows: 
• All phases (A, B, and C) are constructed the same. 
• Both halves of a double bank are constructed the same.  
• In H-bridge banks, the parts above and below the 

bridge are constructed with the same capacitor units 
and the same P and R parameters, even though the 
number of groups in series may be different above and 
below the bridge (the bridge position H may be 
different than 0.5 pu; S is the total number of groups in 
series).  

We recognize that when an 87V tap is created, the number, 
arrangement, and ratings of capacitor units are often different 
in the parts above and below the 87V tap. Typically, the top 
(high voltage) part serves to provide reactive power and the 
bottom (low voltage) part acts only as a reference for the 87V 
protection element (Fig. 8). The reactive power of the low-
voltage part is typically two orders of magnitude lower than the 
high-voltage part and can be neglected.  

 
Fig. 8. Nonuniform unit arrangement when creating an 87V tap. 

The per-unit tap position T follows the voltage divider 
principle. We calculate T as follows: 

T =
XBOTTOM

XTOP + XBOTTOM
 (6) 

where XTOP and XBOTTOM are the reactances of the top and 
bottom parts, respectively (use (5) to calculate these 
reactances).  



6 

To remove this tap-related nonuniformity and use a uniform 
unit arrangement in all our calculations, we introduce and use 
the equivalent bank parameters as follows: 

• The equivalent number of parallel units in a group, P, is 
the same as in the top (above the tap) part of the phase.  

• The equivalent number of parallel strings in a phase, R, 
is the same as in the top (above the tap) part of the 
phase.  

• The equivalent number of groups in series in a string is: 

SEQ =
STOP
1 − T

 (7) 

Typically, (7) returns the equivalent value of S that is not an 
integer number. The noninteger value of S does not create any 
problems in subsequent unbalance calculations but allows us to 
neglect the differences in unit arrangement in the parts above 
and below the tap.  

Example 1 
A grounded single-wye capacitor bank is constructed with 

one 580 kVAr, 17.5 kV capacitor unit per group, 8 groups in 
series in a string, and 6 strings in parallel per phase. The low-
voltage tap is created by using two 167 kVAr, 825 V capacitor 
units connected in parallel. We calculate the reactance values 
of the top and bottom capacitor units from their rated power and 
voltage and obtain 528.017 Ω and 4.0756 Ω, respectively.  

We use (5) and calculate the reactance values of the parts 
above and below the tap: 

XTOP =
8

1 ⋅ 6
⋅ 528.017 Ω = 704.023 Ω  

XBOTTOM =
1

1 ⋅ 2
⋅ 4.0756 Ω = 2.038 Ω 

We use (6) and calculate the per-unit tap position: 

T =
2.038 Ω

704.023 Ω + 2.038 Ω
= 0.002886 pu 

We use (7) and calculate the equivalent number of series 
groups, S: 

SEQ =
8

1 − 0.002886
= 8.023 

Now we can neglect the nonuniformity of the capacitor unit 
arrangement and treat the bank as uniformly constructed with 
the following equivalent parameters: P = 1, S = 8.023, R = 6, 
and T = 0.002866 pu. 

B. Failure Scenarios 
High-voltage shunt capacitor banks fall into the following 

three categories: 
• Externally fused banks where fuses mounted outside 

each capacitor unit case protect the bank from short 
circuits inside the units by disconnecting the shorted 
units.  

• Internally fused banks where multiple “simplified” 
fuses are fabricated inside each capacitor case to 

protect the capacitor unit from short circuits of the 
capacitor elements inside the case.  

• Fuseless banks where no fuses are present and the 
capacitor failures are permanent short circuits.  

In general, we need to consider two general categories of 
failures: capacitors failing open (a short circuit blows the fuse 
and the faulted capacitance becomes an open circuit) and 
capacitors failing short (no fuse is present and the faulted 
capacitance remains shorted out). We will use fail-open and 
fail-short categories to represent temporary repairs in the bank.  

In general, we can look at failures from the perspective of a 
capacitor unit or a capacitor element. A failure of a single 
capacitor element, or even a few elements, does not necessarily 
result in the loss of the entire capacitor unit. From this 
perspective, ability to perform unbalance calculations for a 
partial unit failure is beneficial. It allows analyzing the 
following cases: 

• A few capacitor elements fail short in a capacitor unit 
of an externally fused bank, but the current that the 
failed unit draws is below the fuse rated current, and 
the unit does not fail open through the operation of the 
external fuse.  

• A few capacitor elements fail open in an internally 
fused capacitor unit (through the operation of internal 
fuses), but the entire unit does not become an open 
circuit yet.  

• A few capacitor elements fail short in a fuseless bank. 
These failures could short the entire capacitor unit, less 
than one capacitor unit, or more than one capacitor 
unit. 

Typically, capacitor element failures put the highest voltage 
stress on the rest of the failed capacitor unit. As a result, the 
failure progresses first inside the unit, resulting in a complete 
failure of the unit before the problem spreads to the rest of the 
bank.  

Ideally, to obtain better resolution of our calculations, we 
should perform all derivations from the perspective of the 
capacitor elements rather than the capacitor units. However, 
such an approach would be complicated for at least the 
following reasons: 1) for externally fused banks, we would see 
combinations of the fail-short (element failures) and fail-open 
(blown unit fuse) scenarios, 2) in our calculations, we will need 
to consider fuses that protect various numbers of capacitors 
such as external fuses protecting the entire capacitor unit and 
internal fuses protecting one or a few capacitor elements, and 
3) the structure of the bank (how the capacitor units are 
arranged in the bank) and the structure of the unit (how the 
capacitor elements are arranged in the capacitor unit) would 
create a very complicated overall structure of the bank to 
analyze.  

We solve this challenge as follows: 
• We approach the calculations from the perspective of a 

capacitor unit and assume a failure (open or short) of 
the entire unit.  
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• We derive the unbalance equations by assuming an 
integer number of units that failed open or short 
(complete failure, not a partial failure).  

• We devise a method to represent a partial capacitor unit 
failure by using a fractional number of failed units. 
This allows us to apply the unbalance equations 
derived for capacitor unit failures to complex failure 
scenarios with capacitor units and capacitor elements 
failing in arbitrary combinations.  

In this paper, we use two generic capacitor unit failure 
categories: fail-open and fail-short.  

The first category (fail-open) applies to both externally fused 
banks, in which the fuse operation removes the entire unit, and 
internally fused banks, when enough internal fuses operate to 
remove the entire unit. A common assumption is that the fuse 
operation is so fast that no unbalance protection element detects 
the shorted state. Therefore, the unbalance protection is 
concerned with detecting the resulting fail-open state after the 
fuse operation has removed the shorted unit.  

The second category (fail-short) applies mainly to fuseless 
banks in which a short circuit inside the unit prevails and the 
unbalance protection is expected to detect the shorted unit(s). 
This category also applies to externally fused banks if you want 
to perform unbalance calculations at the capacitor element level 
for scenarios where some elements are shorted but the unit 
remains in service because the current of the failed unit is below 
the rated current of the external fuse.  

We also use the fail-open and fail-short failure categories to 
represent banks that are left unrepaired or are temporarily 
repaired after a failure. In this application, we use the unbalance 
equations to calculate the inherent (standing) unbalance before 
the next failure, as well as to calculate the unbalance protection 
operating signals for a failure in an inherently unbalanced bank. 
Addressing the inherent unbalance in capacitor bank protection 
is out of the scope of this paper (see [3] for more details).  

Fig. 9 shows our unit failure model for the fail-open scenario. 
When the first unit in a group fails open, the other units in the 
same group are subjected to an overvoltage condition. As a 
result, it is most likely that the next unit failure will be in the 
same group. Therefore, in the fail-open scenario, we assume 
that F units in the same group failed open (F < P).  

Fig. 10 shows our unit failure model for the fail-short 
scenario. When the first unit in a group fails short, the other 
groups in the same string are subjected to an overvoltage 
condition. As a result, it is most likely that the next failure will 
be in a different group of the same string. Therefore, in the fail-
short scenario, we assume that F groups in the same string failed 
short (F < S). 

 
Fig. 9. Fail-open unit failure model. 

 
Fig. 10. Fail-short unit failure model. 

In Section IV, we use variable F to represent the size of a 
failure that occurred in a single location, as shown in Fig. 9 and 
Fig. 10. In Appendix B, we use the superposition principle to 
perform unbalance calculations for failures at two or more 
different locations in the bank. Finally, in Appendix C, we use 
a fractional value of F to perform unbalance calculations for 
capacitor element failures.  

C. Per-Unit System 
Because equations that tie the capacitor bank voltages and 

currents are linear, we can select any unit convention for the 
capacitor bank calculations. By working in per unit, we follow 
a long tradition of short-circuit calculations in electric power 
systems. We will see that performing calculations in per unit of 
the bank nominal voltage and current yields simple results that 
are applicable to banks of any voltage (VNOM) and reactive 
power (QNOM) ratings.  
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We use the following base quantities. The base voltage is the 
nominal phase-to-ground bank voltage: 

VBASE =
VNOM
√3

 (8) 

We selected the phase-to-ground voltage because the phase-
to-ground voltage is applied to the phase reactance in the wye-
connected capacitor banks covered in this paper (we do not 
consider delta-connected banks).  

The base current is the nominal bank current: 

IBASE =
QNOM

√3 ⋅ VNOM
=

QNOM

3 ⋅ VBASE
 (9) 

QNOM is the reactive power that the bank provides under 
nominal voltage, not the sum of unit power ratings (kVAr) of 
all the capacitor units in the bank. In double-bank 
configurations, the base current is the nominal current of the 
entire bank, not half the bank.  

Of course, the base reactance is: 

XBASE =
VBASE
IBASE

 (10) 

In this per-unit system, the healthy-phase reactance is 1 pu 
and the faulted-phase reactance is slightly above or slightly 
below 1 pu depending on if the units fail open or short.  

We will see that the unbalance calculations performed in this 
per-unit frame involve only the failure parameters (F, fail-open 
or fail-short) and the bank parameters (P, S, R, and H or T).  

We perform unbalance calculations in the per-unit frame and 
obtain the unbalance protection operating signals. When 
converting the unbalance protection operating signals from per-
unit values (PU) to secondary values (SEC), we apply the 
following unit conversions. 

Voltage unbalance protection elements: 

VSEC = VPU ⋅
VBASE
PTR

 (11) 

Current unbalance protection elements: 

ISEC = IPU ⋅
IBASE
CTR

 (12) 

Reactance unbalance protection elements: 

XSEC = XPU ⋅ XBASE ⋅
CTR
PTR

 (13) 

where PTR and CTR are, respectively, the ratios of the voltage 
and current transformers providing signals to the associated 
protection element.  

IV. CAPACITOR BANK UNBALANCE CALCULATIONS 
In this section, we explain how we derived and validated the 

unbalance calculation equations listed in Appendix A.  

A. Principles 
We start with first principles (Kirchhoff’s voltage and current 

laws and the unit reactance that ties the unit voltage and 

current); write a set of high-level equations for a given bank 
configuration, failure scenario, and unbalance protection 
element; and solve these equations in the per-unit frame for the 
unbalance protection element operating signal of interest.  

We will use the 59N element for an ungrounded single-wye 
bank as an example. In this case, the Kirchhoff’s current law is 
the starting point (in an ungrounded bank, the phase currents 
sum up to zero; see Fig. 2): 

VA − V59N
−jXF

+
VB − V59N

−jX
+

VC − V59N
−jX

= 0 (14) 

where XF and X are reactances of the faulted phase A, and the 
healthy phases B and C, respectively.  

A failure involving a few capacitor units does not change the 
bus voltages, and therefore, we can substitute: 

VB = a2 ⋅ VA,           VC = a ⋅ VA, a = 1∠120° (15) 

Inserting (15) into (14) and simplifying, we obtain: 

V59N ⋅ �
1

XF
+

2
X
� = VA ⋅ �

1
XF

+
a2 + a

X
� (16) 

Of course, a2 + a = −1, and (16) becomes: 

V59N ⋅ �
X + 2 ⋅ XF

X ⋅ XF
� = VA ⋅ �

X − XF
X ⋅ XF

� (17) 

We further rearrange (17) and obtain: 

V59N = VA ⋅ �
X − XF

X + 2 ⋅ XF
� (18) 

Switching to the per-unit frame, we write: 

V59N(PU) ⋅ VBASE = VA(PU) ⋅ VBASE ⋅ �
X − XF

X + 2 ⋅ XF
� (19) 

where VA(PU) = 1∠0° (in all calculations, we assume the power 
system is at nominal conditions).  

Therefore, (19) becomes: 

V59N(PU) = �
X − XF

X + 2 ⋅ XF
� 1∠0° (20) 

Because (20) contains only the ratio of reactances, these 
reactances can be expressed in either ohms or per-unit values. 
We use Fig. 7 and calculate the healthy phase reactance, X. We 
use Fig. 9 (fail-open) and Fig. 10 (fail-short) to calculate the 
faulted-phase reactance, XF. In per unit, we obtain: 

X(PU) = 1 (21) 

Fail-open: 

XF(PU) = R ⋅
S ⋅ P − F ⋅ (S − 1)

S ⋅ R ⋅ (P − F) + F ⋅ (R − 1) (22) 

Fail-short: 

XF(PU) = R ⋅
S − F

S ⋅ R − F ⋅ (R − 1) (23) 
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We insert (21) and (22) into (20) and obtain the V59N 
operating signal for the fail-open scenario: 

V59N(PU) =
F ⋅ 1∠180°

3 ⋅ S ⋅ P ⋅ R − F ⋅ (3 ⋅ S ⋅ R − 3 ⋅ R + 1)
 (24) 

We insert (21) and (23) into (20) and obtain the V59N 
operating signal for the fail-short scenario: 

V59N(PU) =
F ⋅ 1∠0°

3 ⋅ S ⋅ R − F ⋅ (3 ⋅ R − 1)
 (25) 

For brevity, we omit the (PU) subscript from this point on 
unless necessary for clarity. The phase angles in (24) and (25) 
are relative to the faulted-phase voltage angle. When a capacitor 
unit fails open, the V59N signal is out of phase with the faulted-
phase voltage. When a capacitor unit fails short, the V59N signal 
is in phase with the faulted-phase voltage. We will use this 
angle information when calculating the unbalance protection 
operating signals for multiple failures in different parts of a 
bank (Appendix B).  

Observe the following regarding the V59N signal: 
• When there is no failure (F = 0), the V59N operating 

signal is zero, as expected.  
• The per-unit V59N signal is a simple function of the 

bank parameters, S, P, and R, and does not depend on 
the bank ratings (nominal voltage, nominal reactive 
power, and nominal frequency).  

• When the units fail short, the V59N signal does not 
depend on the number of capacitor units in parallel (P).  

B. Derivations 
In this paper, we consider six bank configurations and several 

unbalance protection elements for each configuration. We 
consider the fail-open and fail-short failure scenarios for each 
bank configuration and each protection element. As a result, we 
derive several dozen equations to cover all the combinations.  

While the unbalance equations turned out to be simple (see 
Appendix A), the derivation process to obtain these equations 
is tedious and therefore prone to errors. We have solved this 
challenge by using symbolic math software. Symbolic math 
software does not solve equations for numerical values, but 
instead, it manipulates equations symbolically to derive an 
equation for the sought variable. Symbolic math software does 
not output a numerical value for a numerical input. It outputs 
an equation based on the set of input equations. The software 
automates the derivation process and reduces the chance for 
human error.  

We used the Symbolic Math Toolbox [4] in Matlab and 
followed this procedure: 

• We wrote a set of fundamental equations for a given 
unbalance protection element, given bank 
configuration, and failure scenario.  

• To avoid human errors, we did not solve or simplify 
these equations by hand (derivations (14) through (25) 
are just for illustration). Instead, we fed the original 
equations into the symbolic math software.  

• We ran the symbolic math software to symbolically 
solve the set of equations for a variable of interest.  

• We formatted the output equations to publish them in 
Appendix A in a consistent format. 

C. Validation 
Our derivation process is based on the symbolic math 

software and is therefore highly automated. Nonetheless, it is 
still prone to human errors related to writing the basic 
equations, feeding them into the software, reformatting the 
output equations, and typing the final equations into the text of 
this paper.  

We have validated our equations as follows: 
• We inspected each equation for expected results and 

symmetry with other equations. For example, when 
there is no failure (F = 0), all unbalance protection 
operating signals shall be zero.  

• For each bank configuration, we ran EMTP models for 
several banks (banks with different parameters) and 
compared the values from the numerical EMTP 
solution to the values obtained by using equations in 
Appendix A.  

Using the above procedure, we verified all the equations as 
entered in Appendix A of this paper.  

V. INTERNAL OVERVOLTAGE AND ITS APPLICATION IN 
SETTING THE UNBALANCE PROTECTION ELEMENTS 

A failure in a capacitor bank causes an internal overvoltage 
inside the bank (see Fig. 9 and Fig. 10). This overvoltage may 
cause more failures, which in turn creates even higher 
overvoltage, and eventually, leads to a cascading failure. We 
propose using the overvoltage level to set trip thresholds of the 
unbalance protection elements. The number of failed units is 
only a proxy of the internal overvoltage. The same number of 
failed units may stress different capacitor banks differently, 
depending on the bank unit arrangement data and the capacitor 
unit voltage ratings. Tying the protection trip thresholds 
directly to overvoltage rather than the number of failed units is 
a simple and logical way to set trip thresholds. 

A. Overvoltage Factor 
We introduce an overvoltage factor, kOV, as the ratio of the 

present voltage across a capacitor unit and the voltage across 
the same unit when the nominal system voltage is applied to a 
healthy bank. For example, when kOV = 1.15, the voltage across 
the unit is 1.15 times higher than the normal voltage across the 
same unit. When defining the overvoltage factor, we use the 
normal voltage across the unit rather than the unit voltage rating 
to keep the voltage rating out of the equations and avoid using 
two per-unit voltage bases.  

A capacitor unit can be safely operated when the sine wave 
voltage magnitude across the unit is below 110 percent of the 
unit nameplate voltage rating and the voltage peak value is 
below 120 percent [1]. Our unbalance calculations are 
concerned with bank failures rather than system harmonics and 
voltage distortion. Therefore, the 110 percent limit applies. 
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The nameplate voltage rating must be higher than the 1/S 
fraction of the system nominal phase-to-ground voltage. For 
example, a capacitor unit may be rated at 105 percent of the 1/S 
fraction of the bank nominal phase-to-ground voltage. If so, the 
unit can operate with an overvoltage factor, kOV, of 
1.05 ⋅ 1.10 = 1.155 (the voltage across the unit can increase to 
115.5 percent of the normal value before the unit is in danger 
of failing).  

We derive the overvoltage factor equations for all six bank 
configurations and the fail-open and fail-short scenarios and 
show how to use the overvoltage factor to set the trip thresholds 
of the unbalance protection elements.  

B. Calculating the Overvoltage Factor 
When F units fail open in a group (Fig. 9), the other units in 

that group are exposed to overvoltage. When F groups fail short 
in a string (Fig. 10), the other groups in the same string are 
exposed to overvoltage. We use the same approach as when 
deriving and validating equations for unbalance calculations 
(see Subsections IV.B and IV.C) and obtain equations for the 
overvoltage factor for all capacitor bank configurations and the 
two failure scenarios.  

For example, the overvoltage factor in an ungrounded single-
wye bank for the fail-open scenario is shown in (26). Also see 
Appendix A. 

kOV =
3 ⋅ S ⋅ P ⋅ R

3 ⋅ S ⋅ P ⋅ R − F ⋅ (3 ⋅ S ⋅ R − 3 ⋅ R + 1)
 (26) 

Equation (26) tells us how much internal overvoltage occurs 
in an ungrounded single-wye bank when F units fail open. Of 
course, when there is no failure (F = 0), the overvoltage factor 
(26) equals 1, as expected.  

We solve (26) to see how many units would have to fail open 
to cause a particular overvoltage, and we obtain: 

F =
3 ⋅ S ⋅ P ⋅ R

3 ⋅ S ⋅ R − 3 ⋅ R + 1
⋅

kOV − 1
kOV

 (27) 

Equation (27) allows us to associate the voltage stress in the 
bank (kOV) with the failure size (F). Consider the following 
example.  

Example 2 
A 138 kV ungrounded single-wye capacitor bank has its 

phase constructed with 14 externally fused capacitor units per 
group, 4 groups in series in a string, and 1 string per phase 
(S = 4, P = 14, and R = 1). The units are rated at 21.6 kV.  

Under normal operating conditions, the voltage across the 
units is 138 kV / (√3 ⋅ 4) = 19.92 kV. The unit rating is 21.6 kV 
or 108.4 percent of 19.92 kV. Therefore, the overvoltage factor 
of safe operation is 1.1 ⋅ 1.084 = 1.192. The units can 
continuously withstand a 19 percent overvoltage compared 
with the healthy bank operated under nominal system voltage. 

Assume that a single unit fails open (F = 1). Using (26), we 
calculate the overvoltage factor and obtain kOV = 1.063. This 
value is less than 1.192 and the bank is not in danger of a 
cascading failure. If two units fail open (F = 2), we obtain 

kOV = 1.135. When three units fail open (F = 3), we obtain 
kOV = 1.217, which is above the permissible level of 1.192.  

We use (27) to calculate the number of units that, if failed 
open, would cause the maximum permissible overvoltage of 
1.192 and obtain F = 2.717 units (the bank can tolerate two 
failed units in the same group of 14, but not three). Ideally, the 
bank should be tripped when enough capacitor elements in the 
third capacitor unit have failed and caused the maximum 
permissible internal overvoltage.  

Remember that (26) and (27) are examples and only apply to 
the fail-open scenario in ungrounded single-wye banks. 
Appendix A lists the overvoltage factor equations for all bank 
configurations and failure scenarios. 

C. Using Overvoltage to Set Unbalance Protection Elements 
We combine the equation that ties the operating signal of an 

unbalance protection element to the number of failed units: 
Operating Signal = f(F) (28) 

with the equation that ties the number of failed units to the 
overvoltage factor: 

F = g(kOV) (29) 

and we obtain a direct relationship between the operating signal 
and the overvoltage factor: 

Operating Signal = f�g(kOV)� (30) 

We use the same approach as when deriving and validating 
equations for unbalance calculations (see Subsections IV.B and 
IV.C) and derive equations for the per-unit unbalance 
protection operating signals as functions of the overvoltage 
factor. For example, we obtain (31) for the 59N element 
operating signal for the ungrounded single-wye bank (see 
Appendix A): 

V59N =
kOV − 1

3 ⋅ R ⋅ (S − 1) + 1
 (31) 

Equation (31) is very useful because it directly ties the per-
unit operating signal of the 59N unbalance protection element 
with the internal overvoltage in the protected bank. 

Example 3 
Let us continue Example 2 and set the 59N element to trip 

when the internal overvoltage is at the maximum permissible 
level. We use 1.192 in (31) and obtain V59N = 0.0193 pu or 
1.93 percent of the base voltage.  

The VT ratio for the 59N element in this example is 332:1. 
We use (11) and obtain the 59N trip threshold in secondary 
volts as follows: 

V59N(SEC) = 0.0193 ⋅
138,000 V pri
√3 ⋅ 332

= 4.63 V sec 

By using the threshold of 4.63 V sec, we ensure that the 
59NT/59NU protection element operates when the failure 
causes the internal overvoltage to exceed 110 percent of the unit 
voltage rating.  
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Fig. 11 illustrates the relationships between the 59N 
operating signal and the number of failed units, the overvoltage 
factor and the number of failed units, and the combined 
relationship between the 59N operating signal and the 
overvoltage factor for Example 2 and Example 3.  

 
Fig. 11. Direct relationship between the 59N operating signal and the 
overvoltage factor (Example 2 and Example 3). 

You may consider setting the 59N alarm threshold to alarm 
when a single unit fails (F = 1), and you may consider setting 
the 59N trip threshold to trip when the internal overvoltage 
approaches the highest permissible level (Fig. 11). A single unit 
failure causes V59N = 0.00632 pu or 1.52 V sec (24). Therefore, 
you can set the 59N unbalance protection alarm threshold to 
1.52 V sec and the trip threshold to 4.63 V sec.  

Remember that (31) and Fig. 11 show an example and apply 
only to the fail-open scenario in ungrounded single-wye banks. 
Appendix A lists equations for all bank configurations, 
unbalance protection elements, and failure scenarios. 

VI. UNBALANCE PROTECTION SETTINGS CALCULATION 
EXAMPLES 

In this section, we illustrate the described concepts and show 
their benefits by providing settings calculation examples for 
several bank configurations and unbalance protection elements. 
We set the unbalance protection elements to alarm when a 
single unit fails and to trip when the internal overvoltage 
exceeds 110 percent of the unit voltage rating. For simplicity 
and uniformity, we do not apply setting margins or consider 
alarming on partial unit failures.  

A. Grounded Single-Wye Capacitor Bank 
Table I shows the bank data. We used this bank in Example 1 

and explained that this nonuniform bank (different unit 
arrangement above and below the 87V tap) can be treated as a 
uniform bank with T = 0.002886 and the equivalent value of S, 
S = 8.023.  

TABLE I. 
GROUNDED SINGLE-WYE CAPACITOR BANK DATA 

Voltage (kV LL) 230 

Bus Voltage PTR 2000:1 

Bank Nominal Power (MVAr) 75.14 

Breaker CTR 250:5 

Units in a Group, P 1 

Groups in a String, S 8 

Strings in a Phase, R 6 

Unit Power Rating, kVAr 580 

Unit Voltage Rating, kV  17.5 

Unit Type Fuseless 

87V Tap See Example 1 

87V Tap PTR 3.2:1 

CTs in Each String No 

The base units are as follows from (8), (9), and (10): 
VBASE = 132.79 kV 
IBASE = 188.62 A 
ZBASE = 704.02 Ω 

We use equations from Appendix A and apply the fail-short 
scenario (fuseless bank) to calculate the unbalance protection 
alarm and trip thresholds. We consider the per-phase 21C 
protection element because no CTs are installed on the per-
string basis. Fig. 12 and Fig. 13 plot the unbalance protection 
element operating signals as functions of the number of failed 
units and as functions of the overvoltage factor, respectively.  

 
Fig. 12. Unbalance protection operating signals as functions of the number 
of failed units for the bank in Table I. 
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Fig. 13. Unbalance protection operating signals as functions of the 
overvoltage factor for the bank in Table I. 

We set the unbalance protection functions to alarm when a 
single unit fails (F = 1) and to trip when an overvoltage due to 
unit failures reaches 110 percent of the unit rating of 17.5 kV. 
The normal voltage across each unit is 230 kV / (√3 ⋅ 8.023) = 
16.55 kV. Therefore, we calculate the trip thresholds by using 
kOV = 1.1 ⋅ 17.5 kV / 16.55 kV = 1.163.  

Alarm thresholds (F = 1; see Fig. 12): 
3I2 = 0.023732 pu 
∆X = −0.023181 pu 
∆V87 = 6.8513 ⋅ 10-5 pu 

Trip thresholds (kOV = 1.163; see Fig. 13): 
3I2 = 0.027167 pu 
∆X = −0.026448 pu 
∆V87 = 7.8434 ⋅ 10-5 pu 

For illustration, let us convert the per-unit trip thresholds to 
secondary units by using (11), (12), and (13): 

3I2 = 0.027167 pu ⋅ 188.62 A / 50 = 0.102 A sec 
∆X = −0.026448 pu ⋅ 704.02 Ω ⋅ 50 / 2000 = –0.4655 Ω sec 
∆V87 = 7.8434 ⋅ 10-5 pu ⋅ 132.79 kV / 3.2 = 3.26 V sec 
The reactance change of −0.4655 Ω sec is a per-phase change 

from the nominal value of 17.601 Ω sec. The 21C element can 
use a blocking characteristic in the form of a circle centered at 
−j17.601 Ω sec and having a blocking radius of 0.4655 Ω sec. 

B. Ungrounded Single-Wye Capacitor Bank 

Table II shows the bank data. We used this bank in 
Examples 2 and 3. The base units are as follows from (8) and 
(9): 

VBASE = 79.674 kV 
IBASE = 29.885 A 

We use equations from Appendix A and apply the fail-open 
scenario (fused bank) to calculate the unbalance protection 
alarm and trip thresholds. Fig. 14 and Fig. 15 plot the unbalance 
protection operating signals as functions of the number of failed 
units and as functions of the overvoltage factor, respectively.  

TABLE II.  
UNGROUNDED SINGLE-WYE CAPACITOR BANK DATA 

Voltage (kV LL) 138 

Bus Voltage PTR 1200:1 

Bank Nominal Power (MVAr) 7.143 

Breaker CTR 100:5 

Units in a Group, P 14 

Groups in a String, S 4 

Strings in a Phase, R 1 

Unit Voltage Rating, kV  21.6 

Unit Type Externally fused 

Neutral Voltage PTR 332:1 

Note that the V59N and I2 operating signals are equal in per-
unit values (see Appendix A). In other words, in per-unit 
values, 3I2 and V59N have a 3:1 relationship. If we plotted I2 
instead of 3I2, the two curves in Fig. 14 (and Fig. 15) would 
overlap.  

 
Fig. 14. Unbalance protection operating signals as functions of the number 
of failed units for the bank in Table II. 

 
Fig. 15. Unbalance protection operating signals as functions of the 
overvoltage factor for the bank in Table II. 

We set the unbalance protection functions to alarm when a 
single unit fails (F = 1) and to trip when an overvoltage due to 
unit failures reaches 110 percent of the unit rating of 21.6 kV. 
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The normal voltage across each unit is 138 kV / (√3 ⋅ 4) = 
19.918 kV. Therefore, we calculate the trip thresholds by using 
kOV = 1.1 ⋅ 21.6 kV / 19.918 kV = 1.192.  

Alarm thresholds (F = 1; see Fig. 14): 
3I2 = 0.018987 pu 
V59N = 0.0063291 pu 

Trip thresholds (kOV = 1.192; see Fig. 15): 
3I2 = 0.0576 pu 
V59N = 0.0192 pu 

For illustration, let us convert the per-unit trip thresholds to 
secondary units by using (11) and (12): 

3I2 = 0.0576 pu ⋅ 29.885 A / 20 = 0.0861 A sec 
V59N = 0.0192 pu ⋅ 79.674 kV / 332 = 4.607 V sec 

C. Grounded Double-Wye Capacitor Bank 
Table III shows the bank data.  

TABLE III. 
GROUNDED DOUBLE-WYE CAPACITOR BANK DATA 

Voltage (kV LL) 138 

Bus Voltage PTR 1200:1 

Bank Nominal Power (MVAr) 100 

Breaker CTR 2000:5 

Units in a Group, P 15 

Groups in a String, S 6 

Strings in a Phase, R 1 

Unit Voltage Rating, kV  13.8 

Unit Type Externally fused 

87V Tap One bottom group 

87V Tap PTR 120:1 

60N CTR 20:5 

The base units are as follows from (8), (9), and (10): 
VBASE = 79.674 kV 
IBASE = 418.37 A 
ZBASE = 190.44 Ω = 63.48 Ω sec 

The bank has a uniform unit arrangement, and we calculate 
the tap position as follows: 

T = 1/6 = 0.1667 pu 
The units can safely withstand a voltage of: 

1.1 ⋅ 13.8 kV = 15.18 kV 
Normally, the units operate under a voltage of: 

79.674 kV / 6 = 13.279 kV 
Therefore, the overvoltage factor when selecting the trip 

threshold is: 
kOV = 15.18 kV / 13.279 kV = 1.143 

We use equations from Appendix A and apply the fail-open 
scenario (fused bank) to calculate the unbalance protection 
alarm and trip thresholds. We consider the per-phase 21C 
protection element because the bank has only one string per 

phase. Fig. 16 and Fig. 17 plot the unbalance protection 
operating signals as functions of the number of failed units and 
as functions of the overvoltage factor, respectively.  

 
Fig. 16. Unbalance protection operating signals as functions of the number 
of failed units for the bank in Table III. 

 
Fig. 17. Unbalance protection operating signals as functions of the 
overvoltage factor for the bank in Table III. 

Alarm thresholds (F = 1; see Fig. 16): 
3I2 = I60N = 0.005882 pu 
∆X = 0.0059172 pu 
∆V87 = 0.0019608 pu 

Trip thresholds (kOV = 1.143; see Fig. 17): 
3I2 = I60N = 0.0143 pu 
∆X = 0.014507 pu 
∆V87 = 0.0047667 pu 

For illustration, let us convert the per-unit trip thresholds to 
secondary units by using (11), (12), and (13): 

3I2 = 0.0143 pu ⋅ 418.37 A / 400 = 0.0150 A sec 
I60N = 0.0143 pu ⋅ 418.37 A / 4 = 1.50 A sec 
∆X = 0.014507 pu ⋅ 190.44 Ω ⋅ 400 / 1200 = 0.921 Ω sec 
∆V87 = 0.0047667 pu ⋅ 79.674 kV / 120 = 3.1649 V sec 

The reactance change of 0.921 Ω sec is a change from the 
nominal value of 63.48 Ω sec.  
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D. Grounded H-Bridge Capacitor Bank 
Table IV shows the bank data.  

TABLE IV. 
GROUNDED H-BRIDGE CAPACITOR BANK DATA 

Voltage (kV LL) 345 

Bus Voltage PTR 3000:1 

Bank Nominal Power (MVAr) 130.89 

Breaker CTR 1000:5 

Units in a Group, P 1 

Groups in a String, S 22 

Strings in a Phase, R 2 

Unit Voltage Rating, kV  9.96 

Unit Type Fuseless 

Bridge Position (pu) 0.5 

87V Tap PTR 1500:1 

60P CTR 5:5 

60N CTR 5:5 

The base units are as follows from (8), (9), and (10): 
VBASE = 199.186 kV 
IBASE = 219.042 A 
ZBASE = 909.348 Ω = 60.623 Ω sec 

The units can safely withstand a voltage of: 
1.1 ⋅ 9.96 kV = 10.956 kV 

Normally, the units operate under a voltage of: 
199.186 kV / 22 = 9.0539 kV 

Therefore, the overvoltage factor when selecting the trip 
threshold is: 

kOV = 10.956 kV / 9.0539 kV = 1.210 
We use equations from Appendix A and apply the fail-short 

scenario (fuseless bank) to calculate the unbalance protection 
alarm and trip thresholds. Fig. 18 and Fig. 19 plot the unbalance 
protection operating signals as functions of the number of failed 
units and as functions of the overvoltage factor, respectively.  

 
Fig. 18. Unbalance protection operating signals as functions of the number 
of failed units for the bank in Table IV. 

 
Fig. 19. Unbalance protection operating signals as functions of the 
overvoltage factor for the bank in Table IV. 

Alarm thresholds (F = 1; see Fig. 18): 
3I2 = I60N = 0.012346 pu 
I60P = 0.012346 pu (same as 3I2 because H = 0.5) 
∆X = −0.012195 pu 
∆V87 = 0.0030488 pu 

Trip thresholds (kOV = 1.210; see Fig. 19): 
3I2 = I60N = 0.03 pu 
I60P = 0.03 pu (same as 3I2 because H = 0.5) 
∆X = −0.029126 pu 
∆V87 = 0.0072816 pu 

For illustration, let us convert the per-unit trip thresholds to 
secondary units by using (11), (12), and (13): 

3I2 = 0.03 pu ⋅ 219.042 A / 200 = 0.0329 A sec 
I60N = 0.03 pu ⋅ 219.042 A / 1 = 6.571 A sec 
I60P = 0.03 pu ⋅ 219.042 A / 1 = 6.571 A sec 
∆X = 0.029126 pu ⋅ 909.348 Ω ⋅ 200 / 3000 = 1.766 Ω sec 
∆V87 = 0.0072816 pu ⋅ 199.186 kV / 1500 = 0.9669 V sec 

VII. INSIGHTS INTO THE UNBALANCE PROTECTION ELEMENTS 
In this section, we provide insights into the unbalance 

protection elements based on the equations in Appendix A. 

A. Some Unbalance Protection Element Operating Signals 
Are Identical or Proportional to One Another 

For a series failure in one location, the per-unit operating 
signals of some unbalance protection elements are identical or 
proportional to one another. As a result, these protection 
elements can be considered as redundant elements rather than 
complementary elements that mutually cover their weak spots.  

Consider the following three examples:  
Any ungrounded bank (per-unit values): 

V59N = −j
1
3
⋅ 3I2 (32) 
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Grounded double-wye bank: 
I60P = I60N = 3I2 (33) 

Ungrounded double-wye bank: 

I60P = 3I2, I60N =
1
2
⋅ 3I2 (34) 

We draw the following insights and observations regarding 
the unbalance protection elements that have the same or 
proportional per-unit operating signals. 

Even though these elements have the same theoretical 
sensitivity, their practical applications differ. For example, CT 
ratio and angle errors reduce the accuracy of measuring the 3I2 
operating signal. A capacitor bank protective relay may see a 
standing 3I2 signal for a healthy bank because of small CT 
errors. By contrast, there will be no standing V59N, I60N, and I60P 
signals (assuming that window CTs are used to measure the 
unbalance currents). As a result, the 59NT/59NU, 60N, and 60P 
protection elements can be set with more sensitivity than the 
50QT element.  

These elements have the same theorical sensitivity, but only 
for series failures in a single location. Their sensitivities differ 
for shunt failures, such as phase-to-ground and phase-to-phase 
faults, and for multiple series failures at different locations (see 
Appendix B). As a result, enabling unbalance protection 
elements that have identical or proportional operating signals is 
still justified. These elements are redundant for a single 
capacitor unit failure but complementary for multiple capacitor 
unit failures and for phase-to-ground and phase-to-phase faults.  

B. All Unbalance Protection Element Operating Signals Are 
Similar 

As an example, consider the grounded single-wye bank 
configuration under the fail-open scenario and examine the 3I2 
operating signal and the per-phase ∆X operating signal:  

|3I2| =
F

S ⋅ R ⋅ P − F ⋅ (S ⋅ R − R)
 (35) 

|∆X| =
F

S ⋅ R ⋅ P − F ⋅ (S ⋅ R − R + 𝟏𝟏) (36) 

The two equations are almost identical and differ only by 1 
in the multiplier following the number of failed units, F, in the 
denominator (shown in red). The number of series groups in a 
string, S, is much greater than 1. Therefore, the values of 
R ⋅ (S – 1) and R ⋅ (S – 1) + 1 are almost identical, and we 
conclude that in per unit: 

|∆X| ≅ |3I2| (37) 

In other words, the per-phase 21C element and the 50QT 
element have almost identical theoretical sensitivities to 
capacitor unit failures. The 21C element uses one voltage 
transformer and one current transformer per phase and the 
50QT element uses three current transformers. Therefore, the 
operating signals of the 21C and 50QT elements may 
experience different measurement errors. Based on these errors, 
it may be possible to apply more sensitive settings to the 21C 

element or the 50QT element. Of course, using the per-string 
rather than per-phase 21C protection element would 
dramatically improve the 21C sensitivity and favor it over the 
50QT element (see Subsection VII.G).  

In general, the product of the P and R parameters is 
significantly higher than 1 (for survivability and to obtain the 
required power rating, we have multiple parallel units in a 
group or parallel strings in a phase, or both). Therefore, all 
unbalance protection elements (for a given bank configuration 
and for a given failure scenario) have operating signals that are 
either identical, proportional to one another, or very similar. Of 
course, the elements’ settings in secondary units differ, but this 
is because of the physical nature of the operating signals 
(voltage, current, and reactance), instrument transformer ratios, 
and tap-matching.  

C. All Unbalance Equations Have a Common Format 
The unbalance equations display a significant similarity 

across all bank configurations and protection elements. 
Consider the following examples: 

Ungrounded single-wye bank, fail-open: 

|V59N| =
F

3 ⋅ S ⋅ P ⋅ R − F ⋅ (3 ⋅ S ⋅ R − 3 ⋅ R + 1)
 (38) 

Grounded double-wye bank, fail-short: 

|3I2| =
1
2
⋅

F
S ⋅ R − F ⋅ R

 (39) 

Grounded H-bridge, fail-open (G = 1 – H for failures above 
the bridge, and G = H for failures below the bridge): 

|∆V87| =
H ⋅ G ⋅ F

4 ⋅ S ⋅ R ⋅ P ⋅ G − F ⋅ (4 ⋅ S ⋅ R ⋅ G − 4 ⋅ R + 2) (40) 

All these equations have the same general format: 

Y =
k ⋅ F

A − B ⋅ F
 (41) 

where factors k, A, and B are positive numbers that are specific 
to each protection element and depend on the capacitor unit 
arrangement and bank configuration, and Y stands for a general 
unbalance protection element operating signal. 

Equation (41) teaches us that when the failure size is small, 
the unbalance protection operating signals are near-linear 
functions of the number of failed elements, F. When the failure 
size increases, the denominator in (41) decreases and the 
operating signal (41) becomes a steeper function of the failure 
size (see Fig. 12, Fig. 14, Fig. 16, and Fig. 18).  

We can use (41) to evaluate sensitivity of the unbalance 
protection elements across bank configurations, especially for 
small failures (alarm application). We want to know the 
increase in the operating signal (∆Y) for an increase in the 
failure size (∆F). We use the derivative of (41) and write: 

∆Y ≅
d

dF
�

k ⋅ F
A − B ⋅ F

� ⋅ ∆F (42) 
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The slope in (42) tells us how sensitive a given protection 
element is. We calculate the slope from (41) and obtain: 

d
dF

�
k ⋅ F

A − B ⋅ F
� =

k ⋅ A
(A − B ⋅ F)2 (43) 

When the bank is healthy, then F = 0. Therefore, when the 
failure develops (F increases from 0 to 1), the slope is: 

d
dF

�
k ⋅ F

A − B ⋅ F
�
F=0

=
k
A

 (44) 

When more capacitor units fail, the numerator in (43) 
decreases and the slope increases (sensitivity increases). 
Therefore, (44) is a conservative estimate of the slope and 
therefore sensitivity. The unbalance protection sensitivity is 
proportional to k and inversely proportional to A.  

To illustrate this point, let us use the grounded H-bridge bank 
with the fail-open scenario and consider the 50QT and 87V 
elements. From Appendix A, the 50QT element operating 
signal has an initial slope of G/(2SPRG) or 1/(2SPR). The 87V 
element operating signal has the initial slope of HG/(2SPRG) 
or H/(2SPR). The two elements differ in slope only by the fixed 
multiplier of H. The VT ratio for the tap voltage effectively 
eliminates this fixed difference, and the two protection 
elements have effectively identical sensitivities to capacitor 
unit failures in a single location. That sensitivity is inversely 
proportional to the product of the bank unit arrangement 
parameters S, R, and P.  

From Appendix A, we see that for all bank configurations, 
the k/A factor in (44) is inversely proportional to the product of 
S, P, and R in the fail-open scenario and inversely proportional 
to the product of S and R in the fail-short scenario. In other 
words, for a given bank configuration and fusing method, all 
applicable unbalance protection elements have approximately 
the same theoretical sensitivity to the number of failed capacitor 
units when considered in per unit of the bank nominal values. 
The practical sensitivities differ because of different instrument 
transformer errors and ratios.  

When we consider the unbalance protection element 
operating signals as functions of the internal overvoltage caused 
by the failure (trip application), we conclude that the common 
equation format is as follows: 

Y ≅ C ⋅ (kOV − 1) (45) 

where the multiplier C is specific to each protection element, 
depends on the bank unit arrangement parameters, and depends 
slightly on the value of the overvoltage factor, kOV (strictly 
speaking, C is not a constant). 

Equation (45) teaches us that the relationship between the 
unbalance protection operating signals and the level of internal 
overvoltage caused by the failure is near linear. For example, if 
the overvoltage doubles, such as when kOV increases from 1.10 
to 1.20 (0.2 = 2 ⋅ 0.1), the operating signal doubles as well 
(approximately). Adjusting an unbalance protection trip 
threshold up or down proportionally increases or decreases the 
additional voltage that the failure puts on the healthy capacitor 

units before the element trips the bank offline or a cascading 
failure occurs.  

From Appendix A, we see that for all bank configurations, 
factor C in (45) is inversely proportional to the product of S and 
R in the fail-open scenario and inversely proportional to R in 
the fail-short scenario. In other words, for a given bank 
configuration and fusing method, all applicable unbalance 
protection elements have approximately the same theoretical 
relationship to the level of internal overvoltage when 
considered in per unit of the bank nominal values. 

D. Approximation of the Unbalance 
From the previous subsection, we know that the unbalance 

protection operating signals are proportional to the following 
expressions:  

Fail-open: 

∆Y ≈  
1

S ⋅ P ⋅ R
⋅ ∆F (46) 

Fail-short: 

∆Y ≈
1

S ⋅ R
⋅ ∆F (47) 

The number of groups in series, S, and the capacitor unit rated 
voltage, VU, must be selected to satisfy the following condition 
(for simplicity, we neglect the margin for sustained system 
overvoltages): 

VU ≥
VNOM
√3 ⋅ S

 (48) 

The rated bank power is: 

QNOM =
VNOM2

X
 (49) 

We use (5) for the phase reactance X and use (48) for the 
nominal voltage and rewrite (49) as follows: 

QNOM = 3 ⋅ S ⋅ P ⋅ R ⋅
VU2

XU
 (50) 

The squared unit voltage rating divided by the unit reactance 
is the unit rated power (QU), therefore, we can write: 

S ⋅ P ⋅ R =
QNOM

3 ⋅ QU
 (51) 

We insert (51) into (46) and (47) and obtain the unbalance 
protection sensitivity estimates by using the bank nominal 
voltage and power and the capacitor unit rated voltage and 
power: 

Fail-open: 

∆Y ≈  �3 ⋅
QU

QNOM
� ⋅ ∆F (52) 

Fail-short: 

∆Y ≈ �3 ⋅
QU

QNOM
⋅ P� ⋅ ∆F (53) 
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The product of QU and P is the rated power of a capacitor 
group. The product of the number of failed units (∆F) and the 
unit power or group power is the power lost due to the failure. 
Keeping these observations in mind, we can consolidate (52) 
and (53) into a general approximation of the unbalance 
protection operating signal as follows: 

∆Y ≈ 3 ⋅
∆QF

QNOM
≈

Number of Lost Units
Number of Units per Phase

 (54) 

where ∆QF is the reactive power lost because of the failure 
(fused units became an open circuit and unfused units shorted 
the entire group).  

You can use (54) to obtain a very quick estimate of the 
unbalance protection operating signals (in per unit) for a small 
number of failed units based on the simple count of units lost 
relative to the total number of units in a phase.  

The value of ∆Y in (54) refers to the 3I2 current. Calculate 
other unbalance quantities by factoring in the proportion 
between 3I2 and other signals (see Appendix A, 
Subsection VII.A and Subsection VII.B).  

Example 4 
Let us consider the grounded double-wye bank from 

Subsection VI.C and use (54) to get the first approximation of 
the per-unit unbalance. The bank has 15 capacitor units in a 
group, 6 groups in a string, and 1 string per phase. The bank is 
a double bank with two phases in parallel. The total number of 
units per phase is 15 ⋅ 6 ⋅ 1 ⋅ 2 = 180. The bank is externally 
fused, and therefore, a single unit failure removes one unit from 
the bank (a shorted unit would remove the entire group, i.e., 
15 units). Using (54), we calculate the per-unit unbalance for 
F = 1 as 1 / 180 = 0.00555 pu. 

For comparison, the exact values we calculated were: 3I2 = 
I60N = 0.005882 pu and ∆X = 0.0059172 pu. The approximation 
of (54) provided an accuracy with better than a 6 percent error.  

E. Optimizing Unit Arrangement for More Sensitive 
Unbalance Protection 

Can we select the S, R, and P parameters to increase the 
protection sensitivity? Equation (54) teaches us that the 
sensitivity to capacitor unit failures depends on the number of 
units lost due to the failure and the total number of units in the 
bank. When F units fail open in a fused bank, the number of lost 
units is F. When F units fail short in a fuseless bank, the number 
of lost units is F ∙ P (F groups are lost).  

The above observation applied to the approximation of (54) 
leads to the following conclusions: 

• Sensitivity of unbalance protection for fused capacitor 
banks does not depend on how the capacitor units are 
divided between the groups and strings.  

• Sensitivity of fuseless banks increases when more 
capacitor units are placed in groups while the number 
of strings is reduced.  

Example 5 
Let us use the fuseless, grounded single-wye bank from 

Subsection VI.A and recalculate the 3I2 operating signal (as an 
example) for different combinations of P and R while keeping 
the product of the two parameters at 6, as in the original bank 
data. Table V shows the results assuming two failures: a failure 
of a single unit (alarm) and a larger failure that leads to the 
maximum permissible internal overvoltage (trip).  

TABLE V. 
3I2 VALUES FOR DIFFERENT P-R COMBINATIONS 

P R 
3I2 (pu) 

F = 1 (alarm) kOV = 1.163 (trip) 

1 6 0.0237 0.0272 

2 3 0.0475 0.0543 

3 2 0.0712 0.0815 

6 1 0.1424 0.1630 

Table V shows a clear increase in the operating signal when 
the capacitor units are moved from strings to groups. This 
tradeoff between P and R can be explained as follows. The 
parallel strings (larger R) obfuscate the unbalance caused by the 
failure in the faulted string and make it more difficult to detect. 
At the same time, shorting a larger group of units (larger P) 
increases the unbalance and makes it easier to detect.  

Of course, considerations other than unbalance protection 
sensitivity apply when making a tradeoff between the number 
of units in a group and the number of strings in a phase [5].  

Let us now look at unbalance protection sensitivity as a 
function of internal overvoltage. Using (45) and obtaining 
factor C from Appendix A, we write the following 
approximations: 

Fail-open: 

∆Y ≈
1

S ⋅ R
⋅ ∆kOV (55) 

Fail-short: 

∆Y ≈
1
R
⋅ ∆kOV (56) 

Equations (55) and (56) show that the unbalance protection 
sensitivity as a function of internal overvoltage does not depend 
on P and increases when R decreases. Therefore, for any given 
product of P and R required to obtain the target rated power 
given the value of S, it is advantageous to select a smaller R. 
This means that it is better for protection sensitivity to have 
more units in a group than more strings in a phase (see 
Example 5). For example, if the preferred product of P and R is 
6, it is better to have 3 units in a group (P = 3) and 2 strings in 
a phase (R = 2) than the other way around. 

F. Optimizing the Tap and Bridge Position for More 
Sensitive Unbalance Protection 

Another consideration related to optimizing protection 
sensitivity is the placement of the 87V tap (T) or bridge (H). To 
evaluate the impact of T and H on protection sensitivity, we can 
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use equations from Appendix A, consider the bank unit 
arrangement parameters and the failure size as constants, and 
treat T (or H) as a variable. We can then determine the value of 
T (or H) that maximizes the unbalance protection operating 
signal for failures above and below the tap or bridge point.  

Consider the grounded H-bridge bank configuration. The 
unbalance protection operating signals are proportional to G. 
G = 1 – H for failures above the bridge and G = H for failures 
below the bridge. We want to maximize the smaller of the two 
operating signals (the signal for failures above and below the 
bridge). Fig. 20 plots the (1 – H) expression (the multiplier for 
failures above the bridge) and the H expression (the multiplier 
for failures below the bridge). When H is small (below 0.5), the 
sensitivity for failures below the bridge is lower than for 
failures above the bridge. This is because when located lower, 
the bridge is better able to short the units located below the 
bridge and by doing so, obfuscates failures below the bridge. 
When H is large (above 0.5), the sensitivity for failures above 
the bridge is lower than for failures below the bridge. This is 
because when located higher, the bridge is better able to short 
the units located above the bridge and by doing so, obfuscates 
failures above the bridge. We obtain the best sensitivity when 
the bridge is in the middle (H = 0.5), as is typically the case. 
For H = 0.5, the sensitivity is equal for failures above and below 
the bridge.  

 
Fig. 20. Relative sensitivity for failures above and below the bridge as a 
function of bridge position for the H-bridge bank configuration. 

We obtain a similar result for the position of the tap (T) and 
the 87V protection element. When T is small (tap located low), 
the 87V element has a much higher sensitivity to failures below 
the tap than for failures above the tap. When T is large (tap 
located high), the 87V element has a much higher sensitivity to 
failures above the tap than for failures below the tap. The two 
sensitivities are equal, and therefore, the overall 87V sensitivity 
is at a maximum when the tap is in the middle (T = 0.5). A 
higher T value increases the voltage level at the tap and requires 
using VTs of a higher voltage rating. Therefore, the value of T 
is often kept low (the tap is installed low, and the VT ratio is 
selected low to boost the secondary voltage signal). However, 
the 87V sensitivity can be improved by locating the tap closer 
to the midpoint.  

G. Per-String vs. Per-Phase Impedance Protection 
Appendix A lists the per-phase and per-string reactance 

changes for the grounded single- and double-wye banks. We do 
not derive the per-string reactance change for the grounded H-
bank because the bridge connects the strings in the left and right 

halves of the bank and reduces the sensitivity of the per-string 
reactance measurement. In ohms, the per-string reactance 
change is the same for the single- and double-wye bank 
configurations. In the per-unit frame, these reactance changes 
differ by a factor of 2 because the base reactance is twice as low 
in the double-wye bank as in the single-wye bank.  

Consider the grounded single-wye bank and the fail-open 
scenario. The sensitivities of the per-phase and per-string 
reactance changes are as follows: 

∆XPHASE  ≈  
1

S ⋅ P ⋅ R
⋅ ∆F (57) 

∆XSTRING  ≈  
R

S ⋅ P
⋅ ∆F (58) 

Comparing the two sensitivities (slopes in (57) and (58)), we 
conclude that the per-string reactance change is R2-fold higher 
than the per-phase reactance change. The R2-fold difference is 
in per unit of the bank reactance or in secondary ohms. As a 
percentage of the string reactance, the per-string reactance 
change is R-fold higher than the percentage change of the phase 
reactance.  

H. Accounting for Bus Voltage Fluctuations 
Because a capacitor bank is a linear circuit, the unbalance 

protection operating signals are directly proportional to the 
terminal (bus) voltage. Our equations provide the unbalance 
protection operating signals in per unit. You can use a simple 
multiplier to account for changes in the terminal voltage.  

To illustrate this point, let us consider the alarm and trip 
protection applications. 

In the alarm application, the intent is to detect a single unit 
failure (or a partial unit failure). The operating signal during the 
failure decreases if the terminal voltage decreases. Therefore, it 
is good practice to set the alarm threshold at 0.8 times the 
calculated value to account for a possible 20 percent reduction 
in the terminal voltage during stressed system conditions. This 
margin allows dependable pickup of the alarm function, and it 
prevents deassertion of the alarm (if not latched) when the 
voltage decreases after the alarm is already set.  

In the trip application, the intent is to trip the capacitor bank 
before the internal overvoltage caused by the failure breaches 
the unit voltage rating. From this perspective, the system 
overvoltage (the terminal voltage is higher than nominal) and 
the internal overvoltage (there is a failure in the bank that 
distributes the voltage unequally among the healthy capacitor 
units) compound. However, because the unbalance protection 
operating signals are proportional to the terminal voltage, there 
is no need for additional margin to account for terminal voltage 
fluctuations. Any given failure (number of failed units, F) 
results in an internal overvoltage that is proportional to the 
terminal voltage and therefore the system overvoltage. A failure 
at a time when the voltage is nominal may result in an internal 
overvoltage that is permissible and the unbalance protection 
may not trip, but the same failure at a time when the system 
voltage is higher than nominal may result in an internal 
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overvoltage that is not permissible, and the unbalance 
protection may trip.  

Example 6 
Let us continue the ungrounded single-wye bank example 

from Subsection VI.B. We consider a failure of two units 
(F = 2) and inspect the 59NT/59NU element operating signal 
during normal voltage and during a system overvoltage. The 
element is set at 4.607 V sec with the intent to trip the bank 
when the internal voltage reaches the maximum permissible 
value of 110 percent of the unit voltage rating (kOV = 1.192). 

Under nominal voltage, the failure of two units results in a 
V59N operating signal of:  

V59N = 0.013514 pu = 3.243 V sec 
This operating signal is below the tripping threshold of 

4.607 V sec and the 59NT/59NU element restrains. Under these 
conditions (two units failed under nominal system voltage), the 
overvoltage factor is 1.135, which is below the maximum 
permissible value of 1.192.  

Assume first that after the failure, the capacitor bank is 
exposed to a 10 percent system overvoltage (terminal voltage is 
1.1 times nominal). Now, the 59N operating signal is 
proportionally higher because of the compounding of the failure 
and the higher terminal voltage: 

V59N = 1.1 ⋅ 3.243 V sec = 3.567 V sec 
The 59N operating signal is still below the tripping threshold 

of 4.607 V sec and the 59NT/59NU element does not operate. 
Under these conditions (two units failed and the system voltage 
increased to 110 percent of nominal), the overvoltage factor is 
1 + 1.1 ⋅ (1.135 – 1) = 1.149. This value is below the maximum 
permissible value of 1.192, and therefore, the 59NT/59NU 
element restrains as desired. The system voltage multiplier (1.1) 
applies to the fractional value of the kOV factor because the 
unbalance protection operating signals are proportional to 
kOV – 1 not kOV. It would take a 42 percent overvoltage 
(4.607 / 3.243 = 1.42) to make the 59NT/59NU element 
operate. The smaller the failure size, the lower the sensitivity of 
the unbalance protection elements to system overvoltage.  

Without a failure (or under equalizing failures), the 
unbalance protection elements do not detect the system 
overvoltage at all. They detect system overvoltage only when 
the failure size causes an operating signal that is close to the trip 
threshold under nominal voltage. Therefore, unbalance 
protection does not substitute for bank overvoltage protection, 
and you need to apply phase overvoltage elements (59P) to 
protect against system overvoltages without and with 
harmonics [1] [5]. At the same time, no additional margin is 
needed when setting the unbalance protection trip thresholds to 
account for overvoltage because the increased terminal voltage 
changes the internal overvoltage and the unbalance protection 
operating signals proportionally.  

The 21C element operates irrespective of the terminal 
voltage, which is a slight disadvantage when considering 
voltage fluctuations. As a result, the 21C element shall be set 
with an additional margin to account for system overvoltages. 
For example, if the maximum expected overvoltage is 

15 percent, you may set the trip threshold for the ∆X value at 
1/1.15 (or 0.87) times the threshold calculated with the 
Appendix A equations. This is because when the terminal 
voltage is elevated, it takes a smaller impedance unbalance to 
cause the same internal overvoltage in the bank.  

VIII. CONCLUSIONS 
In this paper, we derived equations for unbalance calculations 

for six common high-voltage capacitor bank configurations. 
Expressed in per unit, the unbalance protection operating 
signals are simple functions of the bank unit arrangement 
parameters: number of units in a group, number of groups in a 
string, and number of strings in a phase. The per-unit unbalance 
protection operating signals are independent of many other 
factors, such as unit reactance and power rating, frequency, and 
bank nominal voltage and power.  

For completeness, our equations cover both the fail-open and 
fail-short failure scenarios for all bank configurations. Not all 
fusing methods are applied to all bank configurations. 
However, to calculate unbalance under pre-existing failures and 
temporary bank repairs, we need both the fail-open and fail-
short scenarios for all bank configurations regardless of the 
fusing method.  

These equations allow analyzing bank failures as well as 
setting the unbalance protection elements to alarm and trip.  

In the context of capacitor bank analysis, the equations allow 
unbalance calculations in a quick and convenient way. Our 
equations apply to a single failure. You can use the principle of 
superposition to perform calculations for multiple failures 
occurring sequentially in different parts of the bank 
(Appendix B). Following this approach, you can also analyze 
the impact of inherent bank unbalance due to past failures or 
temporary repairs. 

We introduced the concept of an overvoltage factor: the ratio 
of the voltage across a capacitor unit elevated because of the 
failure and the normal voltage across that unit. The paper 
derives overvoltage factor equations for the common bank 
configurations under both the fail-open and fail-short failure 
scenarios. These equations allow evaluating the voltage stress 
that a failure puts on the healthy capacitor units in the bank. 

In the context of setting the bank protection elements, we 
propose to set the unbalance protection alarm thresholds to 
detect a single (or partial) capacitor unit failure. We propose to 
set the unbalance protection trip thresholds by using the 
overvoltage factor. The trip is issued when the overvoltage 
caused by the failure reaches the voltage rating of the units in 
the bank. The provided equations allow calculating the trip 
thresholds directly from the highest permissible overvoltage 
factor given the bank unit arrangement parameters.  

We examined the derived equations and gathered the 
following important conclusions: 

• The unbalance equations are similar to one another in 
terms of both the expression and the values they return 
for typical bank unit arrangement data. 
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• There is a near-linear relationship between the 
unbalance protection operating signals and the 
overvoltage level caused by the failure. 

• There is a near-linear relationship between the 
unbalance protection operating signals and the failure 
size. 

• For small failures, the unbalance protection operating 
signals for all methods are almost identical or 
proportional to one another and depend on the amount 
of reactive power lost because of the failure relative to 
the nominal power in one phase. 

We also showed (Appendix C) how to perform unbalance 
calculations for capacitor element failures (partial unit failures), 
including the following cases:  

• Some but not all fuses have blown in internally fused 
banks. 

• Some but not all capacitor elements have shorted in the 
fuseless banks and externally fused banks before the 
external (unit) fuse blows.  

Our method for calculating the unbalance for capacitor 
element failures is very simple because it decouples the bank 
arrangement (units in groups, groups in strings, strings in 
phases, phase connections, and grounding) from the 
arrangement of capacitor elements inside capacitor units.  

The paper uses many numerical examples to explain and 
illustrate the content. Appendix A is a compilation of all the 
unbalance equations that you can print and use when 
performing protection calculations for high-voltage capacitor 
banks. 
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IX. APPENDIX A. CAPACITOR BANK UNBALANCE 
CALCULATION EQUATIONS 

This appendix lists equations for unbalance calculations for 
the six capacitor bank configurations in six separate tables. 
Each table includes equations for the fail-open and fail-short 
scenarios and shows the bank configuration, measurements, 
and unbalance protection elements marked with the ANSI 
device numbers. The unbalance equations are in per unit. When 
appropriate, the equations include phase angles that you can use 
to apply the principle of superposition when performing 
calculations for simultaneous failures at two or more locations.  

The equations use the following symbols: 
P Number of capacitor units in parallel in a group 
S Number of groups in series in a string 
R Number of strings in parallel in a phase 
F Number of failed capacitor units (see Fig. 9 and 

Fig. 10 for the fail-open and fail-short scenarios, 
respectively) 

T Per-unit tap for the 87V element (per-unit reactance 
of the bottom part) 

H Per-unit position of the bridge in an H-bridge bank 
kOV Overvoltage factor (the ratio of the voltage across a 

healthy capacitor unit during a failure and during 
nominal conditions, kOV = 1 when there is no failure) 

Remember that the overvoltage factor, kOV, refers to the 
normal voltage, and not the unit rating (VU). The unit rating is 
typically higher than the normal voltage and the units are 
designed to withstand 110 percent of the rated value. Typically, 
when calculating a trip threshold, you will use kOV of 1.1 times 
the unit voltage rating divided by the unit voltage during 
nominal system conditions: 

kOV = 1.1 ⋅
VU

�VNOM
√3 ⋅ S

�
 (A.1) 

where VNOM is the nominal (phase-to-phase) bank voltage.  
Before using the equations, ensure that the capacitor unit 

arrangement in your capacitor bank conforms to the 
assumptions of this paper (see Fig. 7). 

When performing unbalance calculations for capacitor 
element failures (partial capacitor unit failures), calculate and 
use the fractional failure size as follows (see Appendix C): 

Fail-Open Fail-Short 
(A.2) 

FFRAC = 1 − 𝛼𝛼 FFRAC =
𝛼𝛼 − 1

𝛼𝛼 − 1 + P
 

where: 

𝛼𝛼 =
XU
XUF

 (A.3) 

XU is the reactance of a healthy capacitor unit 
XUF is the reactance of a partially failed capacitor unit 

Refer to the body of the paper for more details about the 
following topics: 

• Tap-matching of the 59NU and 87V operating signals 
(Section II).  

• Equivalencing banks with nonuniform unit 
arrangement above and below the 87V tap point 
(Section III.A).  

• Base values for the per-unit voltage, current, and 
reactance and conversion to secondary values 
(Section III.C).  

Following are typical use cases for the material in this 
appendix: 

• Assume the size and location of a unit failure (F) and 
calculate the unbalance protection operating signals.  

• Assume the size and location of multiple unit failures 
and calculate the unbalance protection operating 
signals by using the principle of superposition.  

• Assume the size and location of a unit failure (F) and 
calculate the alarm threshold for the unbalance 
protection elements.  

• Assume the size and location of a unit failure (F) and 
calculate the overvoltage factor for the healthy units 
(kOV) because of the failure.  

• Assume the maximum permissible overvoltage factor 
(kOV) and calculate the number of failed units (F) that 
would cause that level of overvoltage.  

• Assume the maximum permissible overvoltage factor 
(kOV) and calculate the trip threshold for the unbalance 
protection elements.  

• Use the angle of the operating signals in the post-fault 
analysis to identify the faulted phase and location 
(above or below the tap/bridge, left or right half of the 
bank, and the faulted phase).  

To keep the equations in a single table on one page, the 
equations omit the multiplication sign (⋅). For example, because 
there is no variable called SP, SP is a product of the two 
variables (S ⋅ P).  
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GROUNDED SINGLE-WYE CAPACITOR BANK 
Fail-Open Fail-Short 

kOV =
SP

SP − F(S − 1) 

F =
SP

S − 1
kOV − 1

kOV
 

kOV =
S

S − F
 

F = S
kOV − 1

kOV
 

3I2 =
F

SRP − F(SR − R)
1∠−90° 

3I2 =
kOV − 1
R(S − 1)

1∠−90° 

3I2 =
F

SR − FR
1∠90° 

3I2 =
kOV − 1

R
1∠90° 

∆XPHASE =
F

SRP − F(SR − R + 1) 

∆XPHASE =
kOV − 1

R(S − 1) + 1 − kOV
 

∆XPHASE = −
F

SR − F(R − 1) 

∆XPHASE = −
kOV − 1

R + kOV − 1
 

∆XSTRING = R
F

SP − FS
 

∆XSTRING = R
kOV − 1
S − kOV

 

∆XSTRING = −
R
S

F 

∆XSTRING = −R
kOV − 1

kOV
 

∆V87 =
TF

SRP − F �SR − R − T
1 − T�

1∠0° 

∆V87 =
T(1 − T)(kOV − 1)

R(S − 1) − T(SR − (R − 1)kOV − 1)1∠0° 

∆V87 =
TF

SR − F R − T
1 − T

1∠180° 

∆V87 =
T(1 − T)(kOV − 1)

R − T�(R − 1)kOV + 1�
1∠180° 

 

Notes: 

All values are in per unit. 
∆XPHASE and ∆XSTRING are both in per unit of the bank reactance. 
Voltage and current phase angles are relative to the faulted-phase voltage. 
∆87V differential signal uses bus voltage scaled down to the tap voltage (VTAP – T⋅VBUS). 

T =
XBOTTOM

XTOP + XBOTTOM
 

For nonhomogeneous banks (different unit arrangement above and below the tap), P and R 
are parameters of the top part and S is an equivalent value, as follows: 

S =
STOP
1 − T 
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UNGROUNDED SINGLE-WYE CAPACITOR BANK 
Fail-Open Fail-Short 

kOV =
3SPR

3SPR − F(3SR − 3R + 1)
 

F =
3SPR

3SR − 3R + 1
kOV − 1

kOV
 

kOV =
3SR

3SR − F(3R − 1)
 

F =
3SR

3R − 1
kOV − 1

kOV
 

3I2 =
3F

3SPR − F(3SR − 3R + 1)
1∠−90° 

3I2 = 3
kOV − 1

3R(S − 1) + 1
1∠−90° 

3I2 =
3F

3SR − F(3R − 1)
1∠90° 

3I2 = 3
kOV − 1
3R − 1

1∠90° 

V59N =
F

3SPR − F(3SR − 3R + 1)
1∠180° 

V59N =
kOV − 1

3R(S − 1) + 1
1∠180° 

V59N =
F

3SR − F(3R − 1)
1∠0° 

V59N =
kOV − 1
3R − 1

1∠0° 

V59N = −j
1
3

3I2 

 

Notes: 
All values are in per unit. 
Voltage and current phase angles are relative to the faulted-phase voltage.  
For internal faults, the 59NU operating signal is the same as the 59N operating signal. 
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GROUNDED DOUBLE-WYE CAPACITOR BANK 
Fail-Open Fail-Short 

kOV =
SP

SP − F(S − 1) 

F =
SP

S − 1
kOV − 1

kOV
 

kOV =
S

S − F
 

F = S
kOV − 1

kOV
 

3I2 =
1
2

F
SPR − F(SR − R)

1∠−90° 

3I2 =
kOV − 1

2R(S − 1)
1∠−90° 

3I2 =
1
2

F
SR − FR

1∠90° 

3I2 =
kOV − 1

2R
1∠90° 

∆XPHASE =
F

2SRP − F(2SR − 2R + 1) 

∆XPHASE =
kOV − 1

2R(S − 1) + 1 − kOV
 

∆XPHASE = −
F

2SR − F(2R − 1) 

∆XPHASE = −
kOV − 1

2R + kOV − 1
 

∆XSTRING = 2R
F

SP − FS
 

∆XSTRING = 2R
kOV − 1
S − kOV

 

∆XSTRING = −
2R
S

F 

∆XSTRING = −2R
kOV − 1

kOV
 

∆V87 = V87 =
TF

SRP − F �SR − R − T
1 − T�

1∠0° 

∆V87 = V87 =
T(1 − T)(kOV − 1)

R(S − 1) − T(SR − (R − 1)kOV − 1) 1∠0° 

∆V87 = V87 =
TF

SR − F R − T
1 − T

1∠180° 

∆V87 = V87 =
T(1 − T)(kOV − 1)

R − T�(R − 1)kOV + 1�
1∠180° 

I60P = I60N = 3I2 

 

Notes: 
All values are in per unit. 
∆XPHASE and ∆XSTRING are both in per unit of the 
bank reactance. 
Voltage and current phase angles are relative to the 
faulted-phase voltage. 
∆87V differential signal uses bus voltage scaled 
down to the tap voltage (VTAP – T⋅VBUS). 

T =
XBOTTOM

XTOP + XBOTTOM
 

For nonhomogeneous banks (different unit 
arrangement above and below the tap), P and R are 
parameters of the top part and S is an equivalent 
value, as follows: 

S =
STOP
1 − T 
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UNGROUNDED DOUBLE-WYE CAPACITOR BANK 
Fail-Open Fail-Short 

kOV =
6SPR

6SPR − F(6SR − 6R + 1)
 

F =
6SPR

6SR − 6R + 1
kOV − 1

kOV
 

kOV =
6SR

6SR − F(6R − 1)
 

F =
6SR

6R − 1
kOV − 1

kOV
 

3I2 =
3F

6SPR − F(6SR − 6R + 1)
1∠−90° 

3I2 = 3
kOV − 1

6R(S − 1) + 1
1∠−90° 

3I2 =
3F

6SR − F(6R − 1)
1∠90° 

3I2 = 3
kOV − 1
6R − 1

1∠90° 

V59N =
F

6SPR − F(6SR − 6R + 1)
1∠180° 

V59N =
kOV − 1

6R(S − 1) + 1
1∠180° 

V59N =
F

6SR − F(6R − 1)
1∠0° 

V59N =
kOV − 1
6R − 1

1∠0° 

V87 =
6TF

6SRP − F �6SR − 6R − 5T − 1
1 − T �

1∠0° 

V87 =
6T(1 − T)(kOV − 1)

6R(S − 1) − T(6SR − 6(R − 1)kOV − 5) + 1
1∠0° 

V87 =
6TF

6SR − F 6R − 5T − 1
1 − T

1∠180° 

V87 =
6T(1 − T)(kOV − 1)

6R − T(6(R − 1)kOV + 5) − 1
1∠180° 

I60P = 2I60N = 3I2 

I60N =
1
2

3I2 

V59N = −j
1
3

3I2 

 

Notes: 
All values are in per unit. 
Voltage and current phase angles are relative to the 
faulted-phase voltage. 

T =
XBOTTOM

XTOP + XBOTTOM
 

For nonhomogeneous banks (different unit arrangement 
above and below the tap), P and R are parameters of the 
top part and S is an equivalent value, as follows: 

S =
STOP
1 − T 
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GROUNDED H-BRIDGE CAPACITOR BANK 
Fail-Open Fail-Short 

kOV =
2SPRG

2SPRG − F(2SRG − 2R + 1 − G) 

F =
2SPRG

2SRG − 2R + 1 − G
kOV − 1

kOV
 

kOV =
2SRG

2SRG − F(2R − 1 + G)
 

F =
2SRG

2R − 1 + G
kOV − 1

kOV
 

3I2 =
GF

2SPRG − F(2SRG − 2R + 1 − G)
1∠−90° 

3I2 =
G(kOV − 1)

2SRG − 2R + 1 − G
1∠−90° 

3I2 =
GF

2SRG − F(2R − 1 + G)
1∠90° 

3I2 =
G (kOV − 1)
2R − 1 + G

1∠90° 

∆XPHASE =
GF

2SRPG − F(2SRG − 2R + 1) 

∆XPHASE =
G(kOV − 1)

2SRG − 2R + 1 − GkOV
 

∆XPHASE = −
GF

2SRG − F(2R − 1) 

∆XPHASE = −
G (kOV − 1)

2R + GkOV − 1
 

∆V87 =
HGF

4SRPG − F(4SRG − 4R + 2) 1∠180° 

∆V87 =
HG(kOV − 1)

2(2SRG − 2R + 1 − GkOV)1∠180° 

∆V87 =
HGF

4SRG − F(4R − 2)
1∠0° 

∆V87 =
HG (kOV − 1)

2(2R + GkOV − 1)1∠0° 

I60P =
1
2

F
2SPRG − F(2SRG − 2R + 1 − G)

1∠−90° 

I60P =
1
2

kOV − 1
2SRG − 2R + 1 − G

1∠−90° 

I60P =
1
2

F
2SRG − F(2R − 1 + G)

1∠90° 

I60P =
1
2

kOV − 1
2R − 1 + G

1∠90° 

I60P =
1

2G
3I2 

I60N = � 0 for failures above the bridge 
2I60P for failures below the bridge 

 

Notes: 
All values are in per unit. 
Voltage and current phase angles are relative to the 
faulted-phase voltage.  
H is the per-unit position of the bridge relative to 
the neutral point.  
For failures above the bridge, use G = 1 – H. For 
failures below the bridge, use G = H and add 180° 
to the phase angle. The 180° angle shift does not 
apply to 3I2 and ∆X.  
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UNGROUNDED H-BRIDGE CAPACITOR BANK 
Fail-Open Fail-Short 

kOV =
6SPRG

6SPRG − F(6SRG − 6R + 3 − 2G)
 

F =
6SPRG

6SRG − 6R + 3 − 2G
kOV − 1

kOV
 

kOV =
6SRG

6SRG − F(6R − 3 + 2G)
 

F =
6SRG

6R − 3 + 2G
kOV − 1

kOV
 

3I2 =
3GF

6SPRG − F(6SRG − 6R + 3 − 2G)
1∠−90° 

3I2 =
3G(kOV − 1)

6SRG − 6R + 3 − 2G
1∠−90° 

3I2 =
3GF

6SRG − F(6R − 3 + 2G)
1∠90° 

3I2 =
3G(kOV − 1)
6R − 3 + 2G

1∠90° 

V59N =
GF

6SPRG − F(6SRG − 6R + 3 − 2G)
1∠180° 

V59N =
G(kOV − 1)

6SRG − 6R + 3 − 2G
1∠180° 

V59N =
GF

6SRG − F(6R − 3 + 2G)
1∠0° 

V59N =
G(kOV − 1)

6R − 3 + 2G
1∠0° 

I60P =
3F

6SPRG − F(6SRG − 6R + 3 − 2G)
1∠−90° 

I60P =
3(kOV − 1)

6SRG − 6R + 3 − 2G
1∠−90° 

I60P =
3F

6SRG − F(6R − 3 + 2G)
1∠90° 

I60P =
3(kOV − 1)

6R − 3 + 2G
1∠90° 

I60P =
1
G

3I2 

I60N = I60P 

V59N = −j
1
3

3I2 

 

Notes: 
All values are in per unit. 
Voltage and current phase angles are relative to the 
faulted-phase voltage.  
H is the per-unit position of the bridge relative to the 
neutral point.  
For failures above the bridge, use G = 1 – H. For 
failures below the bridge, use G = H and add 180° to the 
phase angle. The 180° angle shift does not apply to 3I2 
and ∆X. 



28 

X. APPENDIX B. UNBALANCE CALCULATIONS FOR MULTIPLE 
FAILURES 

In Section VI, we explained how to perform unbalance 
calculations for a failure that may involve many capacitor units 
but that occurred at a single location. In this appendix, we 
explain how to apply the superposition principle to perform 
calculations for failures at multiple locations. Using this 
approach, you can perform calculations for evolving and 
equalizing failures and for failures under a pre-existing 
unbalance.  

Capacitor unit failures create only small changes in the bank 
voltages and currents. Equations that tie the capacitor bank 
voltages and currents are linear. Therefore, we can use the 
superposition principle to solve the bank equations for multiple 
failures.  

We can think of a derivation of an unbalance equation as an 
application of the Thevenin principle. An unbalance protection 
operating signal is a superimposed quantity in the Thevenin 
method. The system sources are removed (shorted) as per the 
Thevenin principle and the change in voltage at the failure 
location drives the unbalance signal.  

Because a unit failure does not greatly affect the voltages 
inside the capacitor bank, we can assume nominal conditions 
and neglect the previous failure(s) when calculating the 
unbalance protection signals for the subsequent failure. 
Therefore, simultaneous failures at multiple locations can be 
treated as a superposition of a set of single failures, where each 
single failure occurs separately and under nominal conditions.  

Use the following procedure to perform unbalance 
calculations for multiple failures: 

1. Calculate the unbalance protection signal of interest 
separately for each failure, each time assuming a 
healthy bank prior to the failure (use the equations in 
Appendix A).  

2. Observing the measuring polarity convention, failure 
location (phase, above or below the bridge, etc.), and 
the unbalance signal phase angle, add (vectorially, as 
phasors) the signals obtained separately for each failure 
and obtain the unbalance signal for multiple failures. 

The above approach is not perfectly accurate but is accurate 
enough for practical engineering calculations, especially when 
considering failures that do not result in very large voltage or 
current changes in the bank.  

Example B.1 
Let us continue Example 2 from Subsection V.B and 

calculate the V59N operating signal for the following failure 
scenario: 1) two units fail open in the A-phase, 2) the protection 
system issues an alarm but does not trip, and 3) a single unit 
fails in the B-phase before the bank can be repaired.  

The V59N signal for the first failure (A-phase, F = 2) is: 

V59N =
2 ⋅ 1∠180°

3 ⋅ 4 ⋅ 14 ⋅ 1 − 2 ⋅ (3 ⋅ 4 ⋅ 1 − 3 ⋅ 1 + 1)
= ⋯ 

… = 0.01351 pu ∠180° 

The V59N signal for the second failure (B-phase, F = 1) is: 

V59N =
1 ⋅ 1∠(180° − 120°)

3 ⋅ 4 ⋅ 14 ⋅ 1 − 1 ⋅ (3 ⋅ 4 ⋅ 1 − 3 ⋅ 1 + 1)
= ⋯ 

… = 0.006329 pu ∠60° 

The V59N phase angle is relative to the faulted-phase voltage. 
Therefore, we subtracted 120° when calculating the V59N 
operating signal for the failure in the B-phase.  

The V59N operating signal with both failures present is: 
V59N = 0.01351 pu ∠180° + 0.006329pu ∠60° = ⋯ 

… = 0.01171 pu ∠152° 
The V59N operating signal decreased from 0.01351 pu after 

the first failure to 0.01171 pu after the second failure. This is 
expected because the second failure equalized the bank to some 
extent.  

Assume next that the second failure involves another unit 
(F = 2 in the B-phase). We can recalculate the B-phase failure 
by using F = 2, or we can consider the second unit failure in the 
B-phase as the third failure in the bank. If we follow the latter 
approach, we can calculate the V59N operating signal as follows: 

V59N = 0.01171 pu ∠152° + 0.006329 pu ∠60° = ⋯ 

… =  0.01311 pu ∠123° 
Example B.2 
Consider the grounded double-wye externally fused 

capacitor bank in Subsection VI.C (P = 15, S = 6, and R = 1), 
and calculate the negative-sequence (3I2) and the neutral 
unbalance (I60N) currents for the following evolving failure: 1) 
one unit fails in the A-phase of the left half of the bank, 2) 
followed by another unit failure in the A-phase of the right half 
of the bank, 3) followed by another unit failure in the B-phase 
of the left half of the bank (Fig. B.1).  

 
Fig. B.1.  Progressing failure in the grounded double-wye bank in Example B.2. 

We use equations from Appendix A for the fail-open scenario 
(fused bank) and separately calculate the operating signal 
components resulting from each failure.  
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First unit failure in the A-phase of the left half of the bank: 

3I2(1) =
1
2
⋅

1
6 ⋅ 15 ⋅ 1 − 1 ⋅ (6 ⋅ 1 − 1) 1∠−90° = ⋯ 

… = 0.00588241 pu ∠−90° 

I60N(1) = 3I2(1) = 0.00588241 pu ∠−90° 

Second unit failure in the A-phase of the right half of the bank 
(we invert the I60N polarity to account for the I60N measuring 
convention from the left to the right half of the bank): 

3I2(2) = 3I2(1) = 0.00588241 pu ∠−90° 

I60N(2) = −I60N(1) = 0.00588241 pu ∠90° 

Third unit failure in the B-phase of the left half of the bank 
(we subtract 120° to account for the B-phase being faulted): 

3I2(3) = 3I2(1) ⋅ 1∠−120° = 0.00588241 pu ∠150° 

I60N(3) = I60N(1) ⋅ 1∠−120° = 0.00588241 pu ∠150° 

We apply the principle of superposition and sum the above 
operating signal components (vectorially, as phasors) and 
obtain the following magnitudes of the two operating signals 
for the three stages of the failure: 

Per-Unit Unbalance Protection Signal After Failures 

 First Failure Second Failure Third Failure 

3I2 0.00588241 0.01176482 0.01556339 

I60N 0.00588241 0.00000000 0.00588241 

The 3I2 operating signal increases after each failure because, 
from the point of view of the bank terminals, the bank becomes 
more unbalanced after each failure. The I60N operating signal 
goes back to zero after the second failure. This is because at that 
time, the left and right halves of the bank are symmetrical – they 
both have a single unit failure in the A-phase. When, 
subsequently, the left half of the bank suffers another failure in 
the B-phase, the I60N signal increases again to a value as for a 
single unit failure. This is because at that time, the difference 
between the failed units in the left and right halves of the bank 
is 2 – 1 = 1.  

This example shows that even though the 3I2 and I60N signals 
are identical for a single unit failure, when multiple failures 
occur at different locations in the bank, the 3I2 and I60N signals 
may differ depending on how the failures equalize inside the 
bank.  

Example B.3 
Consider the grounded H-bridge fuseless capacitor bank in 

Subsection VI.D (P = 1, S = 22, R = 2, and H = 0.5 pu), and 
calculate the phase differential voltage (∆V87) and the phase 
unbalance current (I60P) for the following evolving failure: 1) 
one unit fails in the A-phase above the bridge in the left half of 
the bank, 2) followed by another unit failure in the A-phase 
below the bridge in the left half of the bank, 3) followed by 
another unit failure in the A-phase above the bridge in the right 
half of the bank (Fig. B.2). 

 
Fig. B.2. Progressing failure in the grounded H-bridge bank in Example B.3. 

We use equations from Appendix A for the fail-short scenario 
(fuseless bank) and separately calculate the operating signal 
components resulting from each failure.  

First unit failure in the A-phase above the bridge in the left 
half of the bank (G = 1 – H = 0.5): 

∆V87(1) =
0.5 ⋅ 0.5 ⋅ 1

4 ⋅ 22 ⋅ 2 ⋅ 0.5 − 1 ⋅ (4 ⋅ 2 − 2)
1∠0° = ⋯ 

… = 0.00304878 pu ∠0° 

I60P(1) =
1
2
⋅

1
2 ⋅ 22 ⋅ 2 ⋅ 0.5 − 1 ⋅ (2 ⋅ 2 − 1 + 0.5) 1∠90°

= ⋯ 

… = 0.01234567 pu ∠90° 

Second unit failure in the A-phase below the bridge in the left 
half of the bank (we invert the polarity to account for the failure 
below the bridge, G = H = 0.5): 

∆V87(2) =
0.5 ⋅ 0.5 ⋅ 1

4 ⋅ 22 ⋅ 2 ⋅ 0.5 − 1 ⋅ (4 ⋅ 2 − 2)
1∠180° = ⋯ 

… = 0.00304878 pu ∠180° 

I60P(2) =
1
2
⋅

1
2 ⋅ 22 ⋅ 2 ⋅ 0.5 − 1 ⋅ (2 ⋅ 2 − 1 + 0.5) 1∠−90°

= ⋯ 

… = 0.01234567 pu ∠−90° 

Third unit failure in the A-phase above the bridge in the right 
half of the bank (we invert the I60P polarity to account for the 
I60P measuring convention from the left to the right half of the 
bank, G = 1 – H = 0.5): 

∆V87(3) =
0.5 ⋅ 0.5 ⋅ 1

4 ⋅ 22 ⋅ 2 ⋅ 0.5 − 1 ⋅ (4 ⋅ 2 − 2)
1∠0° = ⋯ 

… = 0.00304878 pu ∠0° 

I60P(3) =
1
2
⋅

1
2 ⋅ 22 ⋅ 2 ⋅ 0.5 − 1 ⋅ (2 ⋅ 2 − 1 + 0.5) 1∠−90°

= ⋯ 

… = 0.01234567 pu ∠−90° 
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We apply the principle of superposition and sum the above 
operating signal components (vectorially, as phasors) and 
obtain the following magnitudes of the two operating signals 
for the three stages of the failure: 

Per-Unit Unbalance Protection Signal After Failures 

 First Failure Second Failure Third Failure 

∆V87 0.00304878 0.000000 0.00304878 

I60P 0.01234567 0.000000 0.01234567 

The second failure (one unit failed above and one unit failed 
below the bridge in the A-phase of the left bank) makes the 
parts above and below the bridge of the A-phase of the bank 
symmetrical. Therefore, the operating signals of both the 87V 
and 60P elements drop to zero. The third failure makes the A-
phase unbalanced (two units failed above the bridge and one 
unit failed below the bridge), and the two operating signals 
increase again.  

The 3I2 operating signal increases after each failure because, 
from the point of view of the bank terminals, the bank becomes 
more unbalanced after each failure. The I60N operating signal 
also increases after each failure because, from the point of view 
of the neutral current, the A-phase of the bank becomes more 
unbalanced after each failure compared with the B- and C-
phases. 

Example B.2 and Example B.3 show how multiple protection 
elements can become blind to equalizing bank failures. It is 
beneficial to use several unbalance protection elements to 
mutually cover their weak spots during equalizing failures. 

XI. APPENDIX C. UNBALANCE CALCULATIONS FOR PARTIAL 
CAPACITOR UNIT FAILURES 

In the main body of the paper, we assumed that a failure 
affects the entire capacitor unit or multiple units. In this 
appendix, we introduce a simple method for unbalance 
calculations at the capacitor element level (partial unit failure). 
We represent a partially failed unit by using a fractional value 
of F. This approach allows us to use the unbalance equations 
derived for failed units to perform unbalance calculations for 
failures of capacitor elements. 

When an element fails short in a fuseless or externally fused 
bank, the unit reactance reduces slightly. Similarly, when a fuse 
blows in an internally fused bank, the unit reactance increases 
slightly. We calculate an equivalent fractional failure size, 
FFRAC, that represents the change in the unit reactance because 
of the element failure(s) and use this fractional failure size, 
FFRAC, in the unbalance calculations. 

This method is very convenient because it decouples the 
arrangement of the bank (units, groups, strings, phases, and 
phase connections) and the arrangement of the capacitor unit 
(capacitor elements and fuses). Moreover, our method allows 
unbalance calculations for banks that include capacitor units of 
different types. 

A. Partial Fail-Open Scenario (Internally Fused Banks) 
In the unit fail-open scenario (Fig. 9), the group reactance 

changes as follows: 

XGROUP :  
XU
P

 →  
XU

P − F
 (C.1) 

Assume a partial unit failure (some but not all internal fuses 
in the unit are blown). This partial failure increases the unit 
reactance from the nominal value of XU to some other value, 
XUF. The affected group now comprises (P – 1) healthy units 
and one unit that has a different reactance. The equivalent 
reactance of the group is: 

 
XU ⋅ XUF

XU + (P − 1) ⋅ XUF
 (C.2) 

We equate the group reactance from our failure model (C.1) 
and the actual group reactance (C.2): 

XU
P − FFRAC

=
XU ⋅ XUF

XU + (P − 1) ⋅ XUF
 (C.3) 

We solve (C.3) to obtain the equivalent partial failure size, 
FFRAC, as follows:  

FFRAC = 1 −
XU
XUF

= 1 − 𝛼𝛼, 𝛼𝛼 =
XU
XUF

  (C.4) 

You can perform unbalance calculations for fail-open 
capacitor element failures by using the fractional failure size, 
FFRAC, obtained by using (C.4).  

If the capacitor unit fails open completely, then XUF = ∞ and 
FFRAC = 1, as expected. If there is no failure, then XUF = XU and 
FFRAC = 0, as expected. 

B. Partial Fail-Short Scenario (Fuseless and Externally 
Fused Banks) 

In the unit fail-short scenario (Fig. 10), the string reactance 
changes as follows: 

XSTRING :  
S
P
⋅ XU  →  

S − F
P

⋅ XU (C.5) 

Assume a partial unit failure (a short-circuit of some but not 
all capacitor element groups inside the capacitor unit). This 
partial failure decreases the unit reactance from the nominal 
value of XU to some other value, XUF. The affected string now 
comprises (S – 1) healthy groups and one group that has a 
different reactance. That group has P – 1 healthy capacitor units 
and one partially failed unit. Therefore, the equivalent reactance 
of the string is: 

S − 1
P

⋅ XU + 
XU ⋅ XUF

XU + (P − 1) ⋅ XUF
 (C.6) 

We equate the string reactance from our failure model (C.5) 
and the actual string reactance (C.6): 

S − FFRAC
P

∙ XU =
S − 1

P
∙ XU +

XU ∙ XUF
XU + (P − 1) ∙ XUF

 (C.7) 
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We solve (C.7) to obtain the equivalent partial failure size, 
FFRAC, as follows: 

FFRAC =
XU − XUF

XU + (P − 1) ⋅ XUF
=

𝛼𝛼 − 1
𝛼𝛼 − 1 + P

 (C.8) 

You can perform unbalance calculations for fail-short 
element failures by using the fractional failure size, FFRAC, 
obtained by using (C.8).  

If the capacitor unit fails short completely, then XUF = 0 and 
FFRAC = 1, as expected. If there is no failure, then XUF = XU and 
FFRAC = 0, as expected. 

C. Unbalance Calculations for Partial Unit Failures 
Apply the following procedure to perform unbalance 

calculations for capacitor element failures (partial capacitor 
unit failures): 

1. Calculate the nominal (XU) capacitor unit reactance and 
the reactance of the partially failed unit (XUF). Because 
only the ratio (α) of the two reactances matters, these 
calculations are very simple and can be done by hand 
by just inspecting the internal connection diagram of 
the capacitor unit and counting the capacitor elements 
(see Example C.1 and Example C.2).  

2. Calculate the fractional failure size, FFRAC, by using 
(C.4) for internally fused banks and (C.8) for externally 
fused and fuseless banks.  

3. Use the unbalance equations in Appendix A to 
calculate the unbalance signals of interest based on the 
fractional failure size, FFRAC. 

4. Use the superposition principle described in 
Appendix B to perform calculations for partial and 
complete unit failures, including cases where the two 
failures occur at different locations in the bank.  

Example C.1 
Consider the ungrounded single-wye capacitor bank in the 

setting calculation example in Subsection VI.B. The bank is 
externally fused. Assume that each capacitor unit has 5 
capacitor elements in parallel in a group and 8 groups connected 
in series (Fig. C.1). Calculate the 59N element operating signal 
for the case where 2 groups of capacitor elements fail short 
inside an A-phase capacitor unit.  

 
Fig. C.1. Externally fused capacitor unit in Example C.1. 

The healthy capacitor unit reactance is 8/5 of the capacitor 
element reactance. When two capacitor element groups in a 
capacitor unit are shorted, the capacitor unit reactance becomes 
6/5 of the capacitor element reactance. Therefore, α = (8/5) / 
(6/5) = 8/6. We apply (C.8) and calculate the fractional failure 
size, FFRAC: 

FFRAC =
8/6 − 1

8/6 − 1 + 14
= 0.0233 

Note that the shorting of two capacitor element groups 
removes 10 capacitor elements out of the total of 50. The 
calculated fractional failure size of 0.0233 is close to the simple 
proportion of 10/50 = 0.025. This observation leads to an 
opportunity of using the ratio of removed capacitor elements 
and the total number of elements as an approximation of the 
fractional unit failure.  

Next, we use the equation for the 59N operating signal in an 
ungrounded single-wye bank for the fail-short scenario and 
calculate: 

V59N =
0.0233

3 ⋅ 4 ⋅ 1 − 0.0233 ⋅ (3 ⋅ 14 − 1)
= ⋯ 

… = 0.0021 pu =  0.504 V sec 

For comparison, when we assumed that an entire unit failed 
open (F = 1), we obtained V59N = 0.0063291 pu. When the 
entire unit fails open, the V59N operating signal is out of phase 
with the faulted-phase voltage; when there is a partial fail-short 
failure in the unit, the V59N operating signal is in phase with the 
faulted-phase voltage (see Appendix A). When the capacitor 
elements inside the capacitor unit fail short in a cascading 
fashion, there is a phase inversion of the unbalance protection 
operating signals at a time when the progressing fail-short 
capacitor element failure becomes a permanent fail-open 
capacitor unit failure because of the operation of the external 
fuse.  

Assume you want to calculate the 59N operating signal for 
the case when one unit failed open (F = 1) and some other unit 
failed short partially (FFRAC). You can use the principle of 
superposition and calculate the V59N signal separately for the 
two failures (F = 1, fail open, and F = FFRAC, fail short). To 
obtain the final V59N value, you must add (vectorially, as 
phasors) the two V59N signal components. 

Example C.2 
Consider the grounded double-wye capacitor bank in the 

setting calculation example in Subsection VI.C, but assume the 
bank is internally fused (unlike in Subsection VI.C). Assume 
each capacitor unit has 15 capacitor elements in parallel in a 
group and 5 groups connected in series (Fig. C.2). Calculate the 
60N element operating signal for the case where 4 capacitor 
elements fail open in a single group inside a capacitor unit in 
the A-phase of the left half of the bank.  
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Fig. C.2. Internally fused capacitor unit in Example C.2. 

The healthy capacitor unit reactance is 5/15 of the capacitor 
element reactance. When 4 capacitor elements fail open in a 
group inside the capacitor unit, the capacitor unit reactance 
becomes 1/(15 – 4) + 4/15 = 59/165 of the element reactance. 
Therefore, α = (5/15) / (59/165) = 0.9322. We apply (C.4) and 
calculate the fractional failure size, FFRAC: 

FFRAC = 1 − 0.9322 = 0.0678 

Note that the failure removes 4 capacitor elements out of the 
total of 75. The calculated fractional failure size of 0.0678 is 
close to the simple proportion of 4/75 = 0.0533. The two values 
are not identical because the capacitor element failures 
redistribute the voltage inside the unit and affect the unit 
apparent reactance.  

Next, we use the equation for the 60N operating signal in a 
grounded double-wye bank for the fail-open scenario and 
calculate: 

I60N =
1
2
⋅

0.0678
6 ⋅ 15 ⋅ 1 − 0.0678 ⋅ (6 ⋅ 1 − 1)

= ⋯ 

… = 0.000378 pu 

For comparison, when we assumed that an entire unit failed 
open (F = 1), we obtained I60N = 0.005882 pu. 

Let us go back to (54) and approximate the I60N signal based 
on the number of capacitor elements lost because of the failure. 
The bank has 15 ⋅ 5 = 75 capacitor elements in a capacitor unit 
and 15 ⋅ 6 ⋅ 1 ⋅ 2 = 180 units in a phase, for a total of 75 ⋅ 180 = 
13,500 capacitor elements in a phase. When 4 capacitor 
elements fail open (are removed), the per-unit unbalance can be 
approximated as 4/13,500 = 0.0002962 pu (a 20 percent error 
compared with the accurate value of 0.000378 pu). When the 
entire capacitor unit fails open, the per-unit unbalance can be 
approximated as 1/180 = 0.005555 pu (a 5 percent error 
compared with the accurate value of 0.005882 pu). 
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