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Abstract—A double-line-to-ground (DLG) fault is typically 
modeled as a short-circuit connection from two phases (i.e., 
Phases A and B) to a common point, with a fault resistance from 
the common point to ground. Traditional impedance-based fault 
location algorithms work properly when the fault matches this 
standard topology, and they are potentially challenged when it 
does not. 

This paper presents a generalized representation of a DLG 
fault with three distinct fault resistances: two from the faulted 
phases to the common point and one from the common point to the 
ground. The paper shows how to locate these DLG faults by 
solving voltage loop equations written in the phase domain, using 
A, B, and C components rather than symmetrical components. 
The solution of the loop equations yields the per-unit fault location 
and the three resistance values. This approach is somewhat unique 
since the fault resistance calculation is inherently a part of the fault 
location process. The paper analyzes several other DLG fault 
topologies as well. 

The proposed fault location method uses data from event 
reports stored by relays at both ends of a transmission line. Thus, 
it is a non-real-time solution that can be used for particularly 
challenging cases in which the results of traditional methods are in 
doubt. The method can be used regardless of whether the relays 
are supplied with a GPS time signal, although the solution is 
simpler when a common time reference is available. Time 
synchronization is not required for a radial line. 

To validate the fault locator, the paper analyzes a field case 
involving a radial 115 kV line on the Avista Utilities transmission 
network. In this event, the fault begins as a single-line-to-ground 
fault on A-phase (AG fault) and then evolves into a DLG fault 
involving A- and B-phases (ABG fault with nonstandard 
topology). 

I. DOUBLE-LINE-TO-GROUND (DLG) FAULT LOCATION AND 
LIMITATIONS OF STANDARD METHODS 

Most of the faults that occur in the power system are 
unsymmetrical faults; namely, single-line-to-ground (SLG), 
line-to-line (LL), and DLG faults, with DLG faults being the 
rarest out of the three [1]. In the typical textbook analysis of 
DLG faults, the resistances between the faulted phases and the 
common point are assumed to be negligible, and only the 
resistance from the common point to ground is considered [1] 
[2]. This assumption may not hold true in practice, as not all the 
DLG faults have negligible fault resistance between the faulted 
phases. However, this assumption greatly simplifies the fault 
analysis in the symmetrical component technique. Standard 
single-ended, impedance-based fault location techniques, such 
as the Takagi method, provide accurate results for SLG and LL 
faults on a homogeneous and transposed system. For DLG 
faults, if the resistances from the faulted phases to the common 
point are negligible, the standard techniques can produce 

accurate results. However, if the resistances are not negligible, 
the accuracy of the standard techniques can be compromised. 

To understand why DLG faults challenge fault location 
algorithms, we are going to look at an example of an ABG fault 
on a simple unloaded radial system with a perfectly transposed 
line as shown in Fig. 1. 

 

Fig. 1. Signals recorded by relays for an ABG fault on a radial transmission 
line. 

A fault locating device (protective relay) is marked by a flag 
near Bus S. VAS, VBS and VCS are the voltage phasors measured 
by the relay, and IAS, IBS and ICS are the current phasors 
measured by the relay. The system voltage sources VA, VB, and 
VC drive the circuit on the S-side. The S-side system source has 
positive-sequence impedance Z1S and zero-sequence 
impedance Z0S, and the transmission line has positive-sequence 
and zero-sequence impedances of Z1L and Z0L, respectively. 
The per-unit distance to the fault is mABG, RA, RB and RG are the 
fault resistances. 

Kirchhoff’s voltage law (KVL) equations for the AB loop 
(starting from the relay location) are (1) and (2): 
 ( )AS BS ABG 1L AS BS AF BFV V m  Z I I V V− = − + −   (1) 

 AF BF A AS B BSV V R  I R  I− = −   (2) 

We multiply (1) by the complex conjugate of a phasor 
quantity referred to as a polarizing quantity (pol). The asterisk 
symbol (*) denotes complex conjugation. If the polarizing 
quantity is chosen properly, the multiplication with pol* moves 
the term VAF – VBF (fault point voltage) to the real axis; in other 
words, the imaginary part of the resulting quantity is zero, as 
shown in (3). 

 ( ) *
A AS B BSIm R  I R  I pol 0 − =    (3) 
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From (1) and (3), we can derive (4), which is the general 
fault location equation for AB, ABG, and ABC faults. 

 
( )
( )

*
ABS

ABG *
1L ABS

Im V  pol
m

Im Z I  pol
=   (4) 

Now the question remains as to which phasor should be 
selected for the polarizing quantity. Table I shows three 
possible candidates, the best of which is the phasor quantity that 
closely meets the criterion of (3). 

TABLE I 
POLARIZING QUANTITIES FOR ABG FAULT 

Option Polarizing 
Quantity Description 

1 IABS2 
Negative-sequence current referred to faulted 

phases 

2 IABS Phase-to-phase current of faulted phases 

3 I0S Zero-sequence current 

Looking at (3), we see that there are three separate cases for 
the fault resistances, about which we can make the following 
observations: 

Case 1) RA = RB = 0. For this case, any polarizing quantity 
can produce correct results, since VAF – VBF = 0 and (1) can be 
directly solved for the single unknown, which is the fault 
location. 

Case 2) RA = RB = RF. Here, (3) simplifies into (5). 

 ( )( )*F ABSIm R  I pol 0  =    (5) 

In (5), the fault point voltage (VAF – VBF = RFIABS) is at the 
same angle as Current IABS. Thus, the term (RFIABS)(IABS)* has 
an imaginary part equal to zero. This makes Current IABS the 
correct choice of polarizing quantity for both AB and ABG 
faults. For an AB fault, IABS2 can also function as a correct 
polarizing quantity. IAS + IBS = 0 for an AB fault, which means 
that IABS is in phase with IABS2, as seen in Fig. 2. But for an ABG 
fault, IAS + IBS ≠ 0, meaning that Phasor IABS2 is not generally in 
phase with IABS. 

The phase angle relationship between the fault point voltage 
and IABS2 depends on the fault resistance and the fault location 
for an ABG fault. Therefore, IABS2 is not always a suitable 
polarizing quantity for ABG faults. 

 

Fig. 2. Negative-sequence current IABS2 during AB fault on system of Fig. 1. 

The third polarizing option of zero-sequence current (I0) 
does not work for an AB fault since the fault does not produce 
any I0. For an ABG fault, the angle of the resulting I0 depends 

on the fault location and involved fault resistances, resulting in 
a lack of a fixed phase angle relationship between the fault point 
voltage and I0. Therefore, I0 is not a suitable polarizing quantity 
for ABG faults. 

Case 3) RA ≠ RB ≠ 0. In this case, for an AB fault, the 
observations made in Case 2 still hold true, and either IABS or 
IABS2 can function as a correct polarizing quantity. But none of 
the quantities listed in Table I work correctly for an ABG fault, 
since both RAF and RBF are unknowns, and the resulting term 
(RAIAS – RBIBS) does not have a definite phase angle relation 
with any of the candidate polarizing quantities. To determine 
the fault location for this type of fault requires solving a system 
of equations for all of the unknowns (fault location and fault 
resistances). The system of KVL equations can be written either 
in the phase domain network or in the symmetrical component 
domain (sequence domain) network. 

We attempt to solve equations in the sequence domain first. 
Fig. 3 is a representation of the system of Fig. 1 in the 
symmetrical component domain [3]. 

 

Fig. 3.  ABG fault representation in the sequence network. 

In Fig. 3, voltage and current phasors (V0CS, V1CS, V2CS, I0CS, 
I1CS, I2CS) are available from the relay measurements, and the 
fault location and the fault resistances are the unknown 
variables. 

It is important to note here that the unknown quantities are 
real numbers and not complex numbers. This allows us to solve 
for all four unknowns (mABG, RA, RB and, RG) by writing two 
complex-valued KVL equations that can be split into real and 
imaginary parts to form four real-valued equations in total. 
Equation (6) is the matrix representation of the resulting KVL 
equations. 

 [ ] [ ]

ABG

–1A

B

G

m
R

M V
R
R

 
 
  =
 
 
  

  (6) 

where: 
M is a 4 by 4 matrix of system impedances and Bus S 
currents. 
V is a 4 by 1 matrix of Bus S voltages. 
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From Fig. 3, it is evident that the sequence networks are 
mutually coupled, and this substantially nullifies the benefit of 
using symmetrical components (i.e., decoupling of the 
sequence networks). Also in practice, transmission lines may 
not be perfectly transposed, or they may be untransposed. This 
results in further coupling between the sequence networks. 
Since general ABG fault analysis inevitably involves solving a 
coupled system, it is arguably more convenient to solve in the 
phase domain in terms of (A, B, C) components. Sections III 
and IV discuss phase domain analysis of general ABG faults, 
but first, we discuss the process of checking fault location 
results in Section II. 

II. USING EVENT REPORT DATA TO CHECK THE RESULTS OF 
DLG-FAULT-LOCATING ALGORITHMS 

When a DLG fault occurs on a transmission line within the 
protection zone, a modern protective relay issues a trip, 
calculates a fault location, and records an event report. If the 
fault location result is in doubt, it can be checked using event 
report data from both ends of the transmission line (see Fig. 4). 
In Fig. 4, the transmission line is transposed and has self-
impedance, ZS, and mutual impedance, ZM. With minor 
modifications, the methods described in this paper can be 
applied to untransposed lines as well. The relay locations are 
shown as flags at the S and R Terminals. 

 

Fig. 4.  Signals recorded by relays for a DLG fault on a transmission line. 

S-terminal signals (VAS, VBS, VCS, IAS, IBS, ICS) and 
R-terminal signals (VAR, VBR, VCR, IAR, IBR, ICR) are taken from 
relay event reports after the fault has occurred. If the data from 
the two ends are synchronized to a common time source (such 
as GPS), we can easily establish a common angular reference 
for both sets of data. Later sections describe how to use 
unsynchronized data for fault location purposes. 

To check the quality of the relay fault location result, we 
compare the values of fault voltages VAF, VBF, and VCF 
calculated from the S-terminal and R-terminal and verify that 
they match. In the following equations, mABG is the per-unit 
fault location given by the S-terminal relay. 

 ( )AF _ S AS ABG S AS M BS CSV V m Z I Z I I= − + +     (7) 

 ( )BF _ S BS ABG S BS M AS CSV V m Z I Z I I= − + +     (8) 

 ( )CF _ S CS ABG S CS M AS BSV V m Z I Z I I= − + +     (9) 

 ( ) ( )AF _ R AR ABG S AR M BR CRV V 1 m Z I Z I I= − − + +     (10) 

 ( ) ( )BF _ R BR ABG S BR M AR CRV V 1 m Z I Z I I= − − + +     (11) 

 ( ) ( )CF _ R CR ABG S CR M AR BRV V 1 m Z I Z I I= − − + +     (12) 

If (13) holds true, the quality checks pass (where |•| denotes 
the absolute value of a complex number): 

AF _ S AF _ R BF _ S BF _ R CF _ S CF _ RV V V V V V 0− + − + − ≈   (13) 

If these quality checks do not pass, the actual fault topology 
may differ from the standard fault topology. In such a case, one 
may solve for the fault location assuming a nonstandard 
topology and see if that analysis yields better results. In the 
following sections, we examine several nonstandard DLG fault 
topologies. 

III. GENERALIZED DLG FAULT ANALYSIS (TOPOLOGY 1) 
The first nonstandard DLG fault topology we analyze, 

Topology 1 (T1), is a generalization of the classic DLG fault, 
containing three fault resistances as shown in Fig. 5. For an 
ABG fault, there are four real-valued unknowns to solve for: 
fault resistances RA, RB, and RG, and per-unit fault position 
mABG. With data from both ends of the line, it is possible to solve 
for mABG without calculating the values of the fault resistances. 
However, if the fault is on a radial line and only one event report 
is available, the fault resistance must be incorporated into the 
solution to complete the KVL loops. We present a general 
solution for a two-source system that incorporates the fault 
resistance and only requires trivial modifications for 
application to radial lines. Including fault resistance 
calculations as part of fault location can yield additional 
information and insight regarding the nature of power system 
faults. 

 

Fig. 5. Generalized DLG circuit representation of an ABG fault. 
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 ( ) ( ) ( )AS ABG s AS M BS CS A AS AR G AS AR BS BRV m Z  I Z I I R I I R I I I I 0− + + − + − + + + =     (14) 

 ( ) ( ) ( )BS ABG s BS M AS CS B BS BR G AS AR BS BRV m Z  I Z I I R I I R I I I I 0− + + − + − + + + =     (15) 

 ( ) ( ) ( )AS ABG S AS M BS CS A AS AR G AS AR BS BRRe(V ) m Re Z  I Z I I R Re I I R Re I I I I= + + + + + + + +     (16) 

 ( ) ( ) ( )AS ABG S AS M BS CS A AS AR G AS AR BS BRIm(V ) m Im Z  I Z I I R Im I I R Im I I I I= + + + + + + + +     (17) 

 ( ) ( ) ( )BS ABG S BS M AS CS B BS BR G AS AR BS BRRe(V ) m Re Z  I Z I I R Re I I R Re I I I I= + + + + + + + +     (18) 

 ( ) ( ) ( )BS ABG S BS M AS CS B BS BR G AS AR BS BRIm(V ) m Im Z  I Z I I R Im I I R Im I I I I= + + + + + + + +     (19) 

We start by writing the two complex-valued voltage drop 
equations, (14) and (15), for the faulted phases (A and B), 
starting at the S-terminal relay and going through the fault. 

We split the two complex-valued equations into real and 
imaginary parts to yield a system of the four real-valued linear 
equations, (16), (17), (18), and (19), to solve for mABG, RA, RB, 
and RG. Re() and Im() denote the real and imaginary parts of 
complex numbers. 

While solving for the four unknowns, the voltage drops 
between the fault and the R-terminal are not accounted for. 
Having solved for mABG, RA, RB, and RG, the quality checks from 
Section II can now be applied to provide additional confidence 
in the solution. 

IV. SIMULTANEOUS SLG FAULTS (TOPOLOGY 2) 
The second topology we analyze, Topology 2 (T2), consists 

of two simultaneous SLG faults within the protection zone, as 
shown in Fig. 6. For simultaneous AG and BG faults, there are 
four real-valued unknowns to solve for: the fault resistances RAG 
and RBG and the per-unit fault positions mAG and mBG. In this 
case, the AG fault is closer to the S-terminal than the BG fault. 
For the case in which the BG fault is closer than the AG fault, 
the analysis is similar, although some modifications are 
required. 

As previously mentioned, if the data from the two ends are 
synchronized to a common time source (such as GPS), we can 

easily establish a common angular reference for both sets of 
data, permitting a linear algebra solution. 

 

Fig. 6. Simultaneous AG and BG faults. 

We start by writing two complex-valued voltage drop 
equations for the faulted phases (A and B), starting at the  
S-terminal relay, (20) and (21). 

We rearrange to get (22) and (23). 
We split (22) and (23) into real and imaginary parts to yield 

a system of four real-valued linear equations to solve for mAG, 
mBG, RAG, and RBG, (24), (25), (26) and (27). Re() and Im() 
denote the real and imaginary parts of complex numbers. 
Unknowns mAG and RAG can be solved for separately using a 
2 by 2 linear system, as desired. 

 ( ) ( )AS AG S AS M BS CS AG AS ARV – m Z  I Z I I – R I I 0+ + + =    (20) 

 ( ) ( ) ( ) ( )BS AG S BS M AS CS BG AG S BS M AR CS BG BS BRV – m Z  I Z I I – m – m Z  I Z –I I – R I I 0+ + + + + =         (21) 

 ( ) ( )AS AG S AS M BS CS AG AS ARV m Z  I Z I I R I I= + + + +     (22) 

 ( ) ( ) ( )BS AG M AS AR BG S BS M AR CS BG BS BRV m  Z I I m Z  I Z –I I R I I= + + + + + +     (23) 

 ( ) ( )AS AG S AS M BS CS AG AS ARRe(V ) m Re Z  I Z I I R Re I I= + + + +     (24) 

 ( ) ( )AS AG S AS M BS CS AG AS ARIm(V ) m Im Z  I Z I I R Im I I= + + + +     (25) 

 ( ) ( ) ( )BS AG M AS AR BG S BS M AR CS BG BS BRRe(V ) m Re Z I I m Re Z  I Z –I I R Re I I= + + + + + +         (26) 

 ( ) ( ) ( )BS AG M AS AR BG S BS M AR CS BG BS BRIm(V ) m Im Z I I m Im Z  I Z –I I R Im I I= + + + + + +         (27)
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 ( )AF _ S AS AG S AS M BS CSV V m Z  I Z I I= − + +     (28) 

 ( ) ( ) ( )BF _ S BS AG S BS M AS CS BG AG S BS M AR CSV V m Z  I Z I I m m Z  I Z –I I= − + + − − + +         (29) 

 ( ) ( ) ( )CF _ S CS AG S CS M AS BS BG AG S CS M AR BSV V m Z  I Z I I m m Z  I Z –I I= − + + − − + +         (30) 

 ( ) ( ) ( ) ( )AF _ R AR BG S AR M BR CR BG AG S AR M BS CRV V 1 m Z  I Z I I m m Z  I Z –I I= − − + + − − + +         (31) 

 ( ) ( )BF _ R BR BG S BR M AR CRV V 1 m Z  I Z I I= − − + +     (32) 

 ( ) ( )CF _ R CR BG S CR M AR BRV V 1 m Z  I Z I I= − − + +     (33) 

While solving for the four unknowns, not all line voltage 
drops are accounted for. As a final quality check, we compare 
the values of fault voltages VAF, VBF, and VCF calculated from 
the S-terminal and R-terminal to verify that they match, using 
(28), (29), (30), (31), (32), and (33). Even though C-phase is 
not faulted, VCF is defined as being the C-phase line voltage at 
position mBG (see Fig. 6). At this point, the values of mAG, mBG, 
RAG, and RBG have been solved for and are known. 

If (34) holds true, the quality checks pass: 

 AF _ S AF _ R BF _ S BF _ R CF _ S CF _ RV V V V V V 0− + − + − ≈   (34) 

V. SOLVING WITH UNSYNCHRONIZED DATA AND  
NONLINEAR SYSTEM EQUATIONS 

If the event reports from the line ends are not synchronized, 
the angle between VAS and VAR is an unknown that must be 
solved for, in addition to the fault position and fault resistance 
values. In the unsynchronized case, we can take the signal VAS 
as the angle reference for all signals (from Terminals S and R). 
Define signals (VAR′, VBR′, VCR′, IAR′, IBR′, ICR′) as the 
R-terminal signals referenced to VAR (with VAR′ having a phase 
angle of zero). Because the data from the two ends are not 
synchronized, the actual R-terminal signals (referenced to VAS) 
can be expressed as in (35): 

 

j
AR AR

j
BR BR

j
CR CR

j
AR AR

j
BR BR

j
CR CR

V V '  e
V V '  e
V V '  e

I I '  e
I I '  e
I I '  e

θ

θ

θ

θ

θ

θ

=

=

=

=

=

=

  (35) 

These expressions for the R-terminal signals can be inserted 
into the fault location equations derived in Sections III and IV. 
The incorporation of the extra complex exponential term makes 
the equations nonlinear. Thus, iterative solution methods are 
required to locate complex DLG faults using unsynchronized 
data. Reference [4] presents an iterative solution that uses 
unsynchronized event report data to locate shunt faults with 
standard topologies. 

If two AG faults occur simultaneously in the protection 
zone, there are effectively six real-valued unknowns (see 
Fig. 7). These are the two fault locations (mAG1 and mAG2), the 
two fault resistances (RAG1 and RAG2), and the real and 

imaginary components of the current IAX between the faults 
(IAXR and IAXI). 

 

Fig. 7. Simultaneous AG faults within the protection zone. 

Define the voltages at the fault points as follows: 

 ( )AF1 AS AG1 S AS M BS CSV V m Z  I Z I I= − + +     (36) 

 ( )BF1 BS AG1 S BS M AS CSV V m Z  I Z I I= − + +     (37) 

 ( )CF1 CS AG1 S CS M AS BSV V m Z  I Z I I= − + +     (38) 

 ( ) ( )AF2 AR AG2 S AR M BR CRV V 1 m Z  I Z I I= − − + +     (39) 

 ( ) ( )BF2 BR AG2 S BR M AR CRV V 1 m Z  I Z I I= − − + +     (40) 

 ( ) ( )CF2 CR AG2 S CR M AR BRV V 1 m Z  I Z I I= − − + +     (41) 

The values of mAG1, mAG2, RAG1, RAG2, IAXR, IAXI must satisfy 
the following equations. 
 ( )AF1 AG1 AS AXV R I I= −   (42) 

 ( )AF2 AG2 AR AXV R I I= +   (43) 

 ( ) ( )AF1 AG2 AG1 S AX M BS CS AF2V m m Z  I Z I I V− − + + =     (44) 

 ( ) ( )BF1 AG2 AG1 S BS M AX CS BF2V m m Z  I Z I I V− − + + =     (45) 

 ( ) ( )CF1 AG2 AG1 S CS M AX BS CF2V m m Z  I Z I I V− − + + =     (46) 

We observe that these equations contain terms in which the 
unknown fault resistances RAG1 and RAG2 are multiplied by the 
unknown current IAX. There are also terms in which the 
unknown fault locations mAG1 and mAG2 are multiplied by the 
unknown current IAX. Thus, the equations are nonlinear and 
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must be solved iteratively, even if the relays at the two ends are 
synchronized by a common time source. 

For the case of two simultaneous AG faults, the appropriate 
choice of an iterative solution method depends on whether the 
event report data are synchronized. With synchronized data, we 
can start with the complex-valued equations, (42), (43), and 
(44), and split these into real and imaginary parts, forming six 
real-valued equations to solve for the six unknown quantities 
(mAG1, mAG2, RAG1, RAG2, IAXR, IAXI). Since the number of 
equations matches the number of unknowns, a multivariate 
Newton-Raphson solution can be implemented in this case. 
Equations (45) and (46) can then be evaluated as quality checks. 

With unsynchronized data, there is an additional 
synchronizing angle (𝜽𝜽) to solve for (see (35)). Thus, the seven 
unknowns in this case are mAG1, mAG2, RAG1, RAG2, IAXR, IAXI, and 
𝜽𝜽. We can only form even numbers of real-valued equations by 
writing complex-valued equations and splitting them into real 
and imaginary parts. Consequently, we cannot write seven real-
valued equations to solve for the seven unknowns, and the 
system cannot be described by a square matrix. In this case, the 
standard multivariate Newton-Raphson technique cannot be 
used. Genetic algorithms and Gauss-Newton iteration are 
examples of solution methods that can be applied to systems of 
nonlinear equations in which the number of equations does not 
match the number of unknowns. See [5], [6], and [7] for more 
information on iterative numerical techniques. Section VI 
presents numerical results for both the synchronized and 
unsynchronized double-AG fault cases. 

VI. NUMERICAL SIMULATION CASES 
The following three example cases illustrate the 

performance of the proposed solutions for ABG faults of T1 
(general ABG) and T2 (simultaneous AG and BG), as well as 
for a fault consisting of two simultaneous AG faults within the 
protection zone. Faults were simulated for a transposed 
100 kilometer and 230 kV transmission line in the real-time 
digital simulator (RTDS). Line parameters Z1L = 32.48 at  
87.10 degrees and Z0L = 139.66 at 75.31 degrees (primary 
ohms) were used. 

In the first two cases, three solutions were run, each with an 
associated quality check or error term (in primary volts), 
derived using equations similar to (13) from Section II. In both 
of these cases, only one solution calculates the fault correctly 
(the solution corresponding to the actual fault topology), and it 
has an error term much smaller than those of the other two 
methods. The error term for the successful solution is also very 
small compared to the system voltage. Comparison of the error 
quantities permits a rough determination of the fault topology 
in each case. Results are given to two significant figures. 

A. Generalized ABG Fault With Synchronized Data 
An ABG fault of T1 (general ABG) is simulated at 0.3 pu of 

line length with RA = 10 ohms primary, RB = 1 ohm primary, 
and RG = 2 ohms primary. Results for the different algorithms 
are shown in Table II, Table III, and Table IV. 

TABLE II 
GENERAL ABG FAULT—IAB POLARIZATION RESULTS 

Calculated Fault 
Parameters 

Results with Traditional  
Double-Ended IAB Polarization 

mABG (pu) 0.21 

Error (kV primary) 16 

TABLE III 
GENERAL ABG FAULT—T1 SOLUTION RESULTS 

Calculated Fault 
Parameters 

Results of T1 Solution 

mABG (pu) 0.29 

RA (ohms primary) 10 

RB (ohms primary) 1.2 

RG (ohms primary) 2.3 

Error (kV primary) 1.6 

TABLE IV 
GENERAL ABG FAULT—T2 SOLUTION RESULTS 

Calculated Fault 
Parameters 

Results of T2 Solution 

mAG (pu)  0.22 

mBG (pu)  0.22 

RAG (ohms primary) 12 

RBG (ohms primary)  3.9 

Error check (kV primary) 14 

B. Simultaneous AG and BG Faults With Synchronized Data 
Simultaneous AG and BG faults (T2) are simulated at 0.3 pu 

and 0.7 pu of the line length, respectively. Fault resistances are 
RAG = 20 ohms primary and RBG = 10 ohms primary. Results 
for the different solutions are shown in Table V, Table VI, and 
Table VII. 

TABLE V 
SIMULTANEOUS AG AND BG FAULTS—IAB POLARIZATION RESULTS 

Calculated Fault 
Parameters 

Results with Traditional  
Double-Ended IAB Polarization 

mABG (pu) 0.56 

Error (kV primary) 55 

TABLE VI 
SIMULTANEOUS AG AND BG FAULTS—T1 SOLUTION RESULTS 

Calculated Fault 
Parameters 

Results of T1 Solution 

mABG (pu) 0.51 

RA (ohms primary)  15 

RB (ohms primary)  20 

RG (ohms primary)  6.7 

Error check (kV primary) 54 
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TABLE VII 
SIMULTANEOUS AG AND BG FAULTS—T2 SOLUTION RESULTS 

Calculated Fault Parameters Results of T2 Solution 

mAG (pu) 0.28 

mBG (pu) 0.70 

RAG (ohms primary) 20 

RBG (ohms primary) 10 

Error (kV primary) 3.7 

C. Two Simultaneous AG Faults With Synchronized and 
Unsynchronized Data 

Two simultaneous AG faults at 0.3 pu with 
RAG1 = 20 ohms primary and 0.7 pu with RAG2 = 10 ohms 
primary are simulated. A multivariate Newton-Raphson 
algorithm is used to solve with synchronized data (see results 
in Table VIII), and a genetic algorithm is used to solve with 
unsynchronized data (see results in Table IX). The genetic 
algorithm yields less accurate fault resistance calculations than 
the Newton-Raphson method does, but the calculated values 
still match the true values to within a factor of two. The 
calculated error value for the genetic algorithm solution is 
correspondingly higher as well. 

TABLE VIII 
SIMULTANEOUS AG FAULTS—NEWTON-RAPHSON SOLUTION RESULTS WITH 

SYNCHRONIZED DATA 

Calculated Fault Parameters Results of Newton-Raphson 
Solution 

mAG1 (pu) 0.30 

mAG2 (pu) 0.71 

RAG1 (ohms primary) 19 

RAG2 (ohms primary) 11 

Error check (kV primary) 0.93 

TABLE IX 
SIMULTANEOUS AG FAULTS—GENETIC ALGORITHM SOLUTION RESULTS 

WITH UNSYNCHRONIZED DATA 

Calculated Fault Parameters Results of Genetic Algorithm 
Solution 

mAG1 (pu) 0.34 

mAG2 (pu) 0.71 

RAG1 (ohms primary) 15 

RAG2 (ohms primary) 15 

Error check (kV primary) 5.3 

VII. ANALYSIS OF AN EVOLVING FAULT ON AVISTA’S  
115 KV TRANSMISSION SYSTEM 

On January 13, 2021, a severe windstorm swept through the 
Inland Pacific Northwest. Avista saw over 130 total breaker 
operations throughout its system, with around 37 operations on 
the transmission network. One of the transmission faults 
occurred on a 115 kV line in the central portion of the Idaho 
panhandle. The line is 45 miles long and has three distribution 
substations tapped off it, as shown in Fig. 8. Motor-Operated 

Air Switch (MOAS) G is normally open and MOAS H is 
normally closed, creating two radial lines. 

 

Fig. 8. Faulted 115 kV line configuration. 

At 7:23 a.m., a 700 A AG fault developed at the 32.6 mile 
marker on the section of line fed by Substation E (m = 0.28 pu 
from Substation E, as confirmed by the line crew). The fault 
magnitude and fault resistance initially prevented the relay 
elements 67G1 and 21G1 (quad) from asserting. Five cycles 
after fault inception, B-phase faulted (950 A) while the A-phase 
fault persisted, and then the ground current surpassed the 67G1 
pickup level (1,140 A) allowing the relays to trip the breaker. 
When Breaker E began to open, the A-phase fault current was 
2.3 kA, and the B-phase fault current was 1.6 kA. The relay 
autoreclosed the breaker back into the ABG fault. However, 
this time the A-phase fault current was 1.4 kA, and the B-phase 
fault current was 1.9 kA. The relays immediately tripped the 
breaker to lock out on their switch onto fault logic. 

Following the lockout, Avista personnel opened MOAS H 
and closed MOAS G to pick up the Tap G and H loads from 
Substation D. Later in the day, a line crew found the A- and 
B-phase conductors near Structure 32/3 (mile 32.6, or 0.28 pu 
from Substation E) lying on the ground with a tree on top of 
them. The center pole (holding B-phase) of Structure 32/3 was 
split at the top from the conductor getting pulled down. The 
crew was able to make the temporary repair shown in Fig. 9 
using a distribution cross arm to reattach the insulator strings. 
The following month, a crew replaced the entire wooden 
structure with a steel design. 

 

Fig. 9.  Structure 32/3 temporary repair. 

The first event report from Substation E (prior to the breaker 
opening) contains both the initial AG fault waveform data and 
the ABG fault data. The relay fault identification logic declared 
the fault to be of type AG because most of the event report data 
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were recorded during the period prior to B-phase becoming 
involved. 

Before presenting the quantitative analysis of the first event 
report (prior to reclosing), we outline some tentative 
conclusions about the nature of the fault that are in harmony 
with the quantitative results: 

1. The fault began as type AG when a tree fell on the 
line. 

2. The tree made contact with the B-phase five cycles 
later, causing the fault to evolve into a nonstandard 
ABG topology. The A-phase was the outermost 
conductor on the line, with the B-phase in the middle, 
making this a plausible scenario. 

3. With the A-phase and B-phase involved, the resistance 
from the A-phase to the ground was considerably 
smaller than the resistance from the B-phase to the  
A-phase. This may be because the relatively thick, 
bare tree trunk was in contact with the A-phase while 
a smaller branch with needles was in contact with the 
B-phase, providing additional resistance. 

Fig. 10 illustrates the scenario described in Point 3, albeit in 
an oversimplified way. The fault on the left is equivalent to 
simultaneous AG and BG faults at the same location, which is 
a special case of T2 described in Section IV. It is also equivalent 
to a special case of ABG T1 described in Section III in which 
RA and RG are small compared to RB. Thus, for this fault, T1 and 
T2 converge, and the following quantitative results demonstrate 
this convergence. 

 

Fig. 10. Proposed scenario for a fallen tree causing a nonstandard ABG 
fault. 

To test the DLG fault location algorithms proposed in this 
paper against the field data and against traditional DLG 
algorithms, we can process the event report data using a 
general-purpose programming language to derive results. 
Because the fault is on a radial line and only one event report is 
available, no data synchronization is required. 

The following methods are used: 
1. A traditional negative-sequence polarized AG fault 

locator analyzes the AG fault period within the first 
event report. The per-unit fault location output of this 
algorithm is referred to as mAG_IA2. 

2. A traditional negative-sequence polarized ABG fault 
locator (Ipol = IAB2 = IA2 – IB2) analyzes the ABG faults 
before and after reclosing. The per-unit fault location 
output of this algorithm is referred to as mABG_IAB2. 

3. A traditional loop-current polarized ABG fault locator 
(Ipol = IAB = IA – IB) analyzes the ABG faults before 
and after reclosing. The per-unit fault location output 
of this algorithm is referred to as mABG_IAB. 

4. The generalized DLG fault location algorithm from 
Section III (T1) adapted for a radial line by setting the 
remote current values to zero. The outputs of this 
algorithm are the per-unit fault location mABG_T1 and 
fault resistances RA_T1, RB_T1, and RG_T1. Quality checks 
cannot be performed in this case because the line is 
radial and only one event report is available. The 
calculated mABG_T1 and RA_T1 values are meaningful 
after the inception of the AG fault. The calculated 
RB_T1 value is meaningful after B-phase becomes 
involved in the fault. 

5. The generalized DLG fault location algorithm from 
Section IV (T2) adapted for a radial line by setting the 
remote current values to zero. The outputs of this 
algorithm are the per-unit fault locations mAG_T2 and 
mBG_T2 and fault resistances RAG_T2 and RBG_T2. Quality 
checks cannot be performed in this case because the 
line is radial and only one event report is available. 
During the AG fault period, mAG_T2 and RAG_T2 are 
calculated using a 2 by 2 linear system. The mBG_T2 
and RBG_T2 values are only meaningful after B-phase 
becomes involved in the fault. 

Fig. 11 shows the primary currents and voltages during the 
first event. The AG fault occurs approximately 3.5 cycles into 
the event and the B-phase becomes involved approximately  
8.5 cycles into the event. 

 

Fig. 11. Primary currents and voltages for the first event. 

The per-unit fault location results from the various methods 
are shown in Fig. 12. The fault location algorithms are run on 
every data sample from the event report. The plot begins at the 
inception of the AG fault and ends just before the breaker 
opens. 
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Fig. 12. Calculated per-unit fault locations (first event). 

The primary fault resistance results associated with T1 and 
T2 are shown in Fig. 13. The plot begins at the inception of the 
AG fault and ends just before the breaker opens. Prior to the 
involvement of B-phase in the fault, the values of RB_T1 and 
RBG_T2 are much larger than the values of RA_T1 and RAG_T2, as 
expected. 

 

Fig. 13.  Calculated primary fault resistances for T1 and T2 (first event). 

The following are some key observations from the 
quantitative fault analysis results: 

1. During the AG fault period (after some settling of 
transients), all three related fault location values 
(mABG_T1, mAG_T2, and mAG_IA2) are around 0.3 to 
0.35 per unit, which agrees reasonably well with the 
0.28 per unit fault location reported by the field crew. 

2. When B-phase becomes involved, the negative-
sequence polarized AG fault locator (mAG_IA2) yields 
unreliable results because its polarizing quantity 
becomes corrupted. Quantities mABG_T1 and mAG_T2 
remain relatively unaffected. 

3. After the fault evolves, the standard negative-sequence 
polarized and loop-current polarized ABG fault 
locators (mABG_IAB2 and mABG_IAB, respectively) yield 
values between 0.55 and 0.7 per unit. These values 
differ considerably from the known AG fault location 
value (0.28 per unit), suggesting that the fault evolved 
into a nonstandard ABG topology, resulting in 
mABG_IAB2 and mABG_IAB having incorrect values. 

4. By contrast, the results of the fault location methods 
presented in this paper (mABG_T1, mAG_T2, and mBG_T2) 
all agree reasonably well with each other during the 
ABG fault period. They also agree with the previous 
AG fault location result and with the location reported 
by the field crew. These methods yield values between 
0.25 and 0.35 per unit. T1 and T2 converge for this 
event, and the fault appears to consist of an AG fault 
and a BG fault at the same location. Recall that in T2, 
the AG and BG fault locations are not required to be 
the same, although they were in this case. 

5. Calculated fault resistances RA_T1, RG_T1, and RAG_T2 are 
small compared to RB_T1 and RBG_T2, serving as further 
evidence of the convergence between T1 and T2 for 
this fault. 

After reclosing four seconds later, there was fault current on 
A-phase and B-phase as shown in Fig. 14, indicating the 
continued presence of the ABG fault. This correlates with the 
two conductors the crew found lying on the ground because the 
conductors had time to fall during the pole-open interval. In 
Fig. 14, the time axis reflects the fact that reclosing occurred 
approximately four seconds (≈ 240 cycles) after the beginning 
of the first event. The A-phase fault current was substantially 
lower than its previous value and closer in magnitude to the 
B-phase current following reclose, and the calculated A-phase 
fault resistance was correspondingly higher and closer in value 
to B-phase’s fault resistance (Fig. 15), which one would expect 
with both conductors contacting the ground after initially being 
in contact with different portions of the tree. After the reclose, 
the outputs of traditional fault locators (mABG_IAB2 and mABG_IAB) 
are much closer to the actual fault location than before (see 
Fig. 16), and the fault location results for T1 and T2 (mABG_T1, 
mAG_T2, and mBG_T2) are somewhat less accurate than before. The 
resistance plots once again illustrate the convergence between 
T1 and T2 (RG_T1 ≈ 0, RA_T1 ≈ RAG_T2, RB_T1 ≈ RBG_T2), indicating 
that the fault still appeared as AG and BG faults in the same 
location after reclosing. 

 

Fig. 14. Primary current and voltages after reclosing. 
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Fig. 15. Calculated primary fault resistances to T1 and T2 (after reclosing). 

 

Fig. 16. Calculated per-unit fault locations after reclosing. 

The resistance results from T1 and T2 may help to explain 
why the traditional ABG fault locator results are much more 
accurate after reclosing than before reclosing. As discussed in 
Section I, when the fault corresponds to T1 and RA ≈ RB, the 
loop-current polarized ABG fault locator yields accurate 
results. The resistance plots in Fig. 15 indicate that this was 
roughly the case after reclosing, in contrast to the very different 
A-phase and B-phase resistances calculated from the first event 
report. 

VIII. CONCLUSION 
Complex DLG faults can be solved using phase domain 

methods that naturally incorporate fault resistance into the 
solution. These methods use event report data from both ends 
of the transmission line. Synchronized data (e.g., GPS time 
signals present at both line ends) allow for linear algebra 
solutions. Iterative solution methods are required when the data 
are unsynchronized or when the same phase is faulted at 
multiple locations within the protection zone. Radial lines do 
not require synchronized data or iteration, and they can be 
analyzed with modified versions of the general solutions (with 
the remote currents set to zero). The proposed algorithms 
include quality checks that can be used to confirm the fault 
topology. This paper demonstrates the applicability of the 
proposed methods to a real-life ABG fault with a nonstandard 
topology. 
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