

Application Note

Test Set Configuration for Open-Delta PT Connection

Sujay Dasgupta and Ryan McDaniel

INTRODUCTION

This application note explains how to inject the proper phase-to-phase voltages to test a relay that is connected to an open-delta PT. SEL recommends grounding the B-phase near the relay location for safety purposes, as shown in Figure 1.

Figure 1 Open-delta PT connection

In an open-delta PT connection, V_A , V_B , and V_C voltages are connected to the VA_{RELAY}, VB_{RELAY}, and VC_{RELAY} inputs. VB_{RELAY} is connected to VN_{RELAY} using a jumper, which should be as short as possible and not have an isolation device (such as a potential switch) between VB_{RELAY} and VN_{RELAY}. Since the relay defines VN_{RELAY} to be zero volts (reference), VB_{RELAY} = VN_{RELAY} = 0 volts.

The relay measures VA_{RELAY} to VN_{RELAY} as V_{AB} and VC_{RELAY} to VN_{RELAY} as V_{CB} . From these two voltages, the relay calculates V_{BC} and V_{CA} . Figure 2 shows the system voltages (V_{AB} , V_{BC} , and V_{CA}) and ideal phase-to-ground voltages.

Figure 2 Phase-to-phase voltages in open-delta PT connection with I_A as reference at power factor = 1 (ABC phase rotation)

The relay calculates the actual phase-to-phase voltages, as follows:

- $V_{AB} = VA_{RELAY} VN_{RELAY}$
- $V_{BC} = -(VC_{RELAY} VN_{RELAY})$
- $V_{CA} = VC_{RELAY} VA_{RELAY}$

When completing a metering test, remember that the V_{AB} voltage leads the I_A current by 30 degrees for a power factor = 1 condition (ABC phase rotation).

With respect to the A-phase current (I_A) as reference (0 degrees) as shown in Figure 2, inject the following voltages into the relay, where 120 V is the nominal phase-to-phase secondary voltage:

- $V_A V_N = 120 \angle 30$ (ABC), $120 \angle -30$ (ACB)
- $V_B V_N = 0$ (ABC and ACB)
- $V_C V_N = 120 \angle 90$ (ABC), $120 \angle -90$ (ACB)

Using these voltages with a balanced three-phase current (I_A at 0 degrees), the relay displays a power factor = 1 condition.

 $\ensuremath{\mathbb{C}}$ 2019 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 USA Tel: +1.509.332.1890 • Fax: +1.509.332.7990 www.selinc.com • info@selinc.com