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Fault Currents, Circuit Breakers, and a New Method 
for X/R Calculations in Parallel Circuits 

Amir Norouzi, Schweitzer Engineering Laboratories, Inc. 

Abstract—This paper first provides an analysis of the 
asymmetrical characteristics of fault currents and reviews the 
fundamental concepts in the ANSI/IEEE symmetrical rating 
method for circuit breakers. Next, the paper examines the 
problem of determining a system’s X/R when there are parallel 
circuits at the fault, where there is no single X/R precisely 
describing the current. The paper develops a rigorous method to 
construct and algebraically solve the differential equation of the 
fault current, which provides its accurate transient component. 
Illustrative examples are provided, and the concept of a variable 
X/R is proposed to consider the actual impact of the transient 
current. 

I. INTRODUCTION 
Unlike load flow currents, fault currents involve transient 

components that cannot be ignored when dealing with circuit 
breaker ratings. Although, compared to the steady state current, 
the transient part of the fault current is short-lived and lasts only 
a few cycles, it needs to be included in the overall current as 
circuit breakers operate within a similar time frame when the 
transient part is still very much alive. 

This transient current is generally modeled as an 
exponentially decaying dc current with a time-constant (τ) 
determined by the X/R ratio of the power system at the fault 

point, namely, X / R
τ =

ω
. Hence, X/R is a critical number that 

specifies the amount of transient current, in addition to the 
steady state ac current, when a circuit breaker attempts to open 
its contacts. In industry standards such as ANSI/IEEE the 
transient dc current is expressed as an equivalent additional rms 
value that a circuit breaker must interrupt; thus, the breakers are 
rated purely based on ac symmetrical currents. 

The idea of the transient current being considered as a single 
decaying dc term with a single time-constant originates from 
first order circuits with one R and one L component, as 
described in the following sections. The transient current in 

such circuits has a general form of 
– t
X/R

0I e
ω

 where I0 is the 
maximum dc current and X = Lω. In higher order systems 
though, such as when there are parallel branches contributing 
to the fault current, the transient current consists of multiple 
components, each with a different time-constant which cannot 
mathematically be combined as a single exponential decaying 
term. To handle this problem, two assumptions have 
traditionally been made, even if not stated explicitly. One is 
that, regardless of the complexity of the circuit, the transient 
current can be expressed with only one time-constant. What 
naturally follows is that each parallel branch would provide a 
transient current with the same time-constant, otherwise they 

cannot be all combined to one exponential term. Hence, circuit 
reduction techniques such as Thévenin method may be used 
which would provide system’s X/R. The other assumption is 
that the transient current is essentially a decaying dc current, in 
the sense that it is a decaying constant, which strikes as obvious 
in an RL circuit. We will, however, see that while these two 
assumptions are accurate in first order circuits, they don’t 
necessarily hold true in higher order circuits where there are 
multiple parallel branches. 

The problem in higher order circuits is twofold: First, 
finding the exact components of the transient current will 
require setting up and solving a differential equation, which is 
a daunting task if tackled directly. We cherish our phasor 
analysis tools because they help us avoid dealing with 
differential equations by reducing the steady state sinusoidal 
calculations to algebraic operations. But phasor analysis won’t 
be helpful here as transient response is automatically ignored. 
Second, even if the exact components of the transient current 
are calculated, we would still need to come up with a single 
exponential term to be able to use the concept of symmetrical-
based rating for circuit breakers, which is based on one X/R 
value. 

The paper first reviews the basic concepts in fault current 
characteristics and formulation with application in circuit 
breaker rating. Basic ideas used in ANSI/IEEE breaker rating 
structure and calculations are also surveyed. To calculate the 
complete transient component of the fault current, a general 
circuit configuration is set up to describe a system with multiple 
parallel branches contributing to the current at the fault point. 
By deriving the differential equation of the fault current for 
some lower order circuits, the pattern of the equation for an nth 
order system, with n parallel branches, is identified. This is the 
first major step in finding the accurate transient components of 
the fault current in a circuit with parallel branches. 

Next, some basic concepts in linear ordinary differential 
equations (ODE) are briefly reviewed and are then applied to 
the ODE of our system. It is shown how the mathematical 
concepts of ODEs, such as characteristic equation and initial 
conditions, are applied to an ac circuit with sinusoidal inputs to 
calculate the complete transient fault current. The key is that in 
power systems the coefficients of the fault current ODE are real 
and constant numbers, and this is what makes it possible to 
reduce the procedure of solving the ODE to purely repetitive 
algebraic operations. Since these algebraic operations can be 
computerized, the order of the circuit and complexity of the 
calculations will be of little concern, the same way that, 
regardless of the size of a power system, load flow calculations 
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can be reduced to some matrix operations for computerized 
processing. 

As it turns out, in higher order systems, that is in circuits 
with higher number of parallel branches at the fault, it is 
possible that the transient component is no longer a pure 
decaying dc current, but either a decaying sinusoidal current or 
a combination of decaying dc and sinusoidal terms. This will 
have major implications for our fundamental assumption that 
the transient current can be expressed with a single X/R and that 
this X/R can be used to size an appropriate circuit breaker. The 
actual fault current calculated as such may now be substantially 
larger than what is estimated by the X/R method at the time of 
circuit breaker opening, potentially surpassing its interrupting 
capability. 

To properly account for the actual transient current due to 
parallel branches and still be able to use the concept of, and 
ratings associated with, a single X/R, we may define a variable 
X/R where it is no longer a constant value over the duration of 
fault, but would vary to properly simulate the actual transient 
current at any time. Of interest, is the breaker’s contact parting 
time when we need to know the magnitude of the current that 
must be interrupted. To do this, we can calculate the transient 
current at any time and then work backwards to come up with 
an X/R that would provide the same transient current at that 
moment had the fault started with that X/R. The paper provides 
the basis and calculations for this variable X/R. The variable 
X/R can also be used in other applications such as current 
transformer sizing where saturation considerations have 
important consequences in protective relaying design. 

II. CHARACTERISTICS OF FAULT CURRENTS 
Power systems are typically inductive and can be modeled 

with RL circuits, so an analysis of transient response of a simple 
RL circuit can provide some insight into the characteristics of 
fault currents. 

Fig. 1 shows an RL circuit with a sinusoidal voltage source, 
Vmsin(ωt + θ). A fault occurs when the switch is closed. Since 
the relationship between an inductor’s voltage and current 

involves a derivative ( div L
dt

= ), we will have to deal with 

some form of a differential equation in calculating the current. 
Here, the equation describing the fault current is a simple KVL 

equation: ( )m
di(t)L Ri(t) V sin t

dt
+ = ω + θ . This is a first order, 

linear ordinary differential equation as it involves only the first 
derivative and no partial derivatives. Solution techniques of 
ODEs will be briefly discussed later, but it can be shown that 
the complete solution to the above equation is per below: 

( ) ( )

steady state
– t

m m X/R

transient

V V
i(t) sin t – – sin – – i(0) e

Z Z

ω = ω + θ α θ α  





  (1) 

In the above equation, 2 2Z R (L )= + ω , –1 Ltg
R
ω

α = , and 

2 fω = π . It is assumed that the initial condition of the system, 

that is the current right at the time of closing the switch, is i(0). 
Complete solution of ODEs requires knowing the initial 
conditions of the dynamic system, which will be additionally 
discussed later. Although initial conditions determine the 
specific response of a dynamic system, they don’t change the 
general formulation or characteristics of the system’s response. 
In our circuit, assuming an initial current of zero will only 
change the amplitude of the transient part of the current while 
the general formulation or nature of the response remains the 
same. 

 

Fig. 1. Simple RL Circuit 

Inspecting (1) shows that the current has two parts. One is 
transient in nature as it will diminish over time due to the 
exponential decaying term. The other part is a sinusoidal term 
that will last if the input voltage remains in the circuit; this is 
the steady state response of the system. The steady state 
response is basically the part that we obtain from our well-

known phasor analysis where its amplitude, mV
z , is calculated 

from the system’s ac impedance, and the angle α is the phase 

shift determined by the impedance angle ( –1 Xtg
R

α = ). 

The transient part of the current has a time-constant of 
X / R

τ =
ω

 which is solely determined by the system’s X/R for 

the specific frequency of the power system. The larger the X/R, 
the longer it takes for the transient current to fade away. 
Intuitively, from our ac analysis knowledge we know that a 
more inductive circuit will take more time for its current to 
diminish once the source of the current is removed; and a more 
inductive circuit means a larger X/R. This is how X/R plays an 
important role in the characteristic of the transient component 
of the fault current. It is also important to notice that the time-
constant of the system is solely determined by the circuit’s 
elements R and L; no other variable such as voltage amplitude 
and phase or the initial conditions of the circuit has any impact 
on the time-constant. In other words, the time-constant is a 
physical characteristic of the system. 

While the rate of decay of the transient current depends only 
on the circuit elements, its amplitude depends on input voltage, 
circuit elements, and, importantly, on the initial conditions of 
the system. Even for a specified set of circuit elements and input 
voltage, the amplitude of the transient current can substantially 
vary based on the initial conditions of the system, which is the 
initial current in the inductor at the time of fault. For example, 
it is possible to have no transient current if the switch is closed 
at a time such that the transient current will have zero 
amplitude. 
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For fault studies and circuit breaker rating, what matters is 
the highest possible current that each piece of equipment must 
withstand and, in the case of a breaker, interrupt. The transient 
current in (1) becomes maximum when the initial current is zero 
and the angle (θ – α = 90°) is any integer multiple of 90°, which 
would make the sine function ±1 for a positive or negative 
maximum transient current. Hence, for a negative maximum 
transient current (θ – α = 90°) the highest fault current 
becomes: 

 
– t

m X/R
max

V
i (t) cos( t) – e

Z

ω 
= ω 

  
  (2) 

Fig. 2, created in MATLAB, shows imax(t) in per unit of mV
z

 

for X 17
R

= , equivalent to a time-constant of 45ms, which is a 

standard X/R in ANSI/IEEE standards for circuit breaker 
rating. The time axis is in power system cycles to provide a 
more insightful view into the transient current. The initial 
condition of the system is selected in such a way that the 
transient component has the maximum amplitude of one per 
unit at the beginning of the fault, hence the circuit breaker will 
see the highest possible current that may occur. Generally, it is 
desired for a fault to be cleared within 5 cycles after occurrence, 
and hence we can see why we need to pay special attention to 
the transient current. Besides, X/R is often greater than the 
standard value of 17, which makes the transient current even 
stronger when a breaker attempts to clear the fault. 

 

Fig. 2. Fault Current Characteristics 

In (2), the transient component is a decaying constant current 
and therefore it is typically called the dc component of the fault 
current. We should be aware that, for higher order systems, the 
transient component is not necessarily a decaying constant. For 
these systems, it is possible that the transient current could be a 
decaying sinusoidal term, and hence the term “transient” is a 
more general description than “dc.” 

Phasor analysis, although a very powerful tool, is 
completely blind to the transient response of the system and to 
the characteristics that have been discussed so far. In fact, 
ignoring the transient part of the response is what makes the 
phasor analysis possible. The power and magic of phasor 
analysis is that it reduces the sinusoidal ac analysis to purely 
algebraic operations, which is enormously easier than dealing  

with differential equations. Besides, these repetitive operations 
can be easily implemented in digital computers which makes it 
possible to perform load flow and other steady state analyses 
for any size and degree of complexity in power systems. As we 
will see, in the standard circuit breaker sizing computations the 
transient current is estimated as a percentage of the steady state 
fault current, making it possible to use the phasor analysis as 
the basis for the total fault current calculations. 

In the next section, we discuss how the system’s X/R can be 
used to establish a simple basis for calculating the transient 
current of the fault and use that to determine interrupting 
capabilities of circuit breakers. 

III. FAULT CURRENTS AND CIRCUIT BREAKER RATING 

A. Basic Concepts 
Perhaps the most important rating of a circuit breaker is its 

interrupting capability. Simply put, it is the highest current, 
expressed in ac symmetrical rms value, that a circuit breaker 
can safely interrupt when it attempts to do so. Hence, the effect 
of the transient component of the fault current is expressed in 
rms value, so that the breaker’s rating can be put into a single 
ac rms value. 

While we need to include the effect of the transient current 
in the interrupting capability of circuit breakers, we also want 
to avoid dealing with the system’s differential equation. The 
first thing to agree on is that only the highest possible amplitude 
of the transient current needs to be taken into consideration; 
once the breaker is rated for the highest current it will also do 
well under all other conditions. We saw how this led to (2), 
which provides the maximum fault current. Second, we would 
like to rate circuit breakers based on only one rms current that 
already includes the effect of the transient component, and 
hence not have to deal with two types of currents. 

We can simply calculate the rms current obtained from (2) 
and express it as one current value that includes the effects of 
both ac and transient components. From basic signal analysis, 
we know that the rms value of a signal consisting of a sinusoidal 

and a dc component is 
2

2 1a
a

2ο
 

+  
 

, where ao is amplitude of 

the dc component and a1 is the amplitude of the sinusoidal 
component. In (2), the amplitude of the ac component is 

m
1

V
a

z
=  and the amplitude of the dc component is 

– t
m X/RV

a e
z

ω

ο = . By designating the rms value of the steady state 

current as m
sym

V
I

2z
= , the rms value of the total current, Iasym, 

can be expressed as 
2– t

2 X/R
sym symI 2I e

ω 
+   

 
 or: 

 
–2 t
X/R

asym symI I 1 2e
ω

= +   (3) 
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Equation (3) provides the total rms current of (2) due to both 
ac and dc components, where Isym is the steady state rms current 
and Iasym is total rms current. The total rms current is also called 
asymmetrical current, because it involves both ac and transient 
components of the current. For practical purposes, it is also 

customary to express (3) as 
2

asym sym
dc%I I 1 2
100

 = +  
 

 where 

dc% is calculated as 
– t
X/Rdc% 100e

ω

= . 
Thus, for the first order circuit of Fig. 1 the total maximum 

fault current is obtained as a function of time by knowing only 
the steady state current, from phasor analysis, and the system’s 
X/R. This is perfect, because instead of a differential equation 
we now need to deal with only a simple exponential formula to 
calculate the total current that a circuit breaker must interrupt at 
any certain time. 

B. Interrupting Capability of a Circuit Breaker 
The total asymmetrical current from (3) is the current that a 

circuit breaker must interrupt at its contact parting time. Per 
IEEE C37.04, contact parting time is the sum of ½ cycle, as the 
minimum relay operation time, and the minimum operating 
time of the breaker. For example, contact parting time, 
including ½ cycle for relay operation, is assumed as 1.5 cycles 
for 2-cycle breakers, 2 cycles for 3-cycle breakers, and 3 cycles 
for 5-cycle breakers. If the contact parting time is different from 
the above-mentioned assumed times, for example due to faster 
or slower relay operation, the required asymmetrical 
interrupting capability should be accordingly adjusted per (3). 

In ANSI/IEEE standards of C37.010 and C37.04, the circuit 
breaker rating calculations are based on a time-constant of 

45ms, corresponding to X 17
R

=  at 60 Hz. The breaker rated 

interrupting capability is expressed in symmetrical rms current 
while the impact of the transient component of the current is 

already included in the rating for any X 17
R

≤ . For example, for 

a contact parting time of 3 cycles, a circuit breaker is required 

to be able to interrupt a fault current with 
–0.05

17e 32.9%
ω

=  of 
dc component, and hence the total asymmetrical current that the 
circuit breaker must be capable of interruption is 

( )21 2 0.329 1.10+ =  times of its specified symmetrical short 

circuit rating. However, if the circuit breaker is to be applied in 

a system with X 40
R

= , the dc component will be 

–0.05
40e 62.4%

ω

=  of the steady state current and thus the total 
asymmetrical current that the breaker must be capable of 

interruption is ( )21 2 0.624 1.33+ =  times its symmetrical 

short circuit rating. Therefore, the steady state fault current 

must be first multiplied by 1.33 1.211.10 =  and then compared to 

the symmetrical short circuit rating of the breaker to ensure 
there is enough capability. 

This is the basis of symmetrical rating of circuit breakers in 

ANSI/IEEE standards [1] [2]. If X 17
R

≤  the effect of the dc 

(and ac) decrements are already included in the rating 
calculations of the circuit breaker and it can interrupt the 
additional dc current as well, although it is not explicitly 
mentioned in the breaker’s short circuit rating. In such cases, 
100% of the breaker’s capability can be used at the standard 
minimum contact parting time. Also, per the ANSI/IEEE 
standards, if the calculated steady state fault current, Isym, is 
below 80% of the breaker’s short circuit rating, there is no need 
to calculate the system’s X/R and the breaker can be applied to 
any system. This method is called “E/X Simplified Method” in 
C37.010-1964 and after, as the steady state current is calculated 
from dividing the voltage, E, by the reactance, X. 

However, if the system’s X/R is greater than 17, or if the 
calculated E/X steady state current is greater than 80% of the 
breaker’s short circuit rating, the effect of the dc component 
needs to be computed more accurately. For simplification of the 
calculations, the basic idea in C37.010 is that multipliers, 
provided in standard curves, need to be applied to the calculated 
E/X current to consider the fact that the dc component of the 
fault current will be larger, at the time of contact parting, for 
greater X/R. These curves were produced by considering the dc 
component calculation in (3) as well as the impact of ac 
decrement (due to the dynamics of Xd of synchronous 
generators). These multipliers are typically between 1 and 1.25 
which are applied to the calculated steady state fault current for 
a specific contact parting time and X/R greater than 17. 

In short, if the system’s X/R is below 17 all that needs to be 
done is to make sure that the calculated E/X current is not larger 
than 80% of the breaker’s interrupting capability. If X/R > 17 
or the steady state fault current is larger than 80% of the 
breaker’s interrupting capability, then the ANSI/IEEE curves of 
C37.010 should be used to find a multiplier and apply it to the 
E/X current to ensure that the short circuit rating will still be 
greater than the adjusted steady state fault current. 

As another example, let’s consider the impact of the relaying 
operation time faster than ½ cycle, as this is the minimum 
operating time considered in the standard contact parting times. 
For a contact parting time of 3 cycles (5-cycle breaker) which 
also includes ½ cycle relaying time, we want to reduce the 
relaying operation time to ¼ cycle and calculate the impact on 
the total asymmetrical current at the new contact parting time. 

We can use (3) with X 17
R

= , and two different contact parting 

times of 3 (old) and 2.75 (new) cycles. The new asymmetrical 
current compared to the old current is: 

 new

old

–2 •2.75
17•60asym
–2 •3

asym 17•60

I 1 2e 1.018
I

1 2e

ω

ω

+
= =

+
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This means that with relay minimum operating time 
dropping to half of its assumed value, that is from ½ to ¼ of a 
cycle, the total asymmetrical current will increase by 1.8% at 

the new contact parting time with X 17
R

= . The same 

calculation for a system with X 40
R

=  yields an increase of 

1.77% in the total asymmetrical current due to shorter relaying 
time. Hence, the increase in the total current due to faster 
relaying time is marginal, as the reduced operation time of 
about 4ms is small compared to the time-constant of power 
system with typical values of 30–200ms. 

That the minimum relaying time could be below 0.5 cycle 
has been acknowledged in the latest C37.010-2016 standard, in 
which IEEE recommendation is that if a circuit breaker is 
applied below 80% of its symmetrical rating, faster relaying 
time below 0.5 cycle has no significant impact on the breaker’s 
interrupting capability. For application above 80% of breaker’s 
symmetrical rating, consultation with breaker’s manufacturer is 
suggested by IEEE. 

Historical Note: C37.5-1953 provided a simple method to 
calculate the total fault current for comparison with a breaker’s 
interrupting capability, a rating that was based on total current, 
as opposed to symmetrical current. A breaker’s total 
interrupting rating was composed of the combined ac and dc 
components and the calculated total fault current was compared 
to the total interrupting capability of the breaker. The system’s 
X/R and breaker’s actual contact parting time were not 
considered in the rating calculations. In early 1950’s and with 
power systems becoming more complex, AIEE (IEEE’s 
predecessor) started developing a new rating structure based on 
symmetrical current [3] [4], culminating in the publication of 
C37.04-1964 and C37.010-1964. The goals of the new rating 
structures were to simplify the rating, bring the American 
standards closer to their IEC counterparts, and include X/R and 
contact parting time in the rating calculations [5]. So, while in 
the old total-based rating the total asymmetrical fault current 
was compared to a breaker’s total short circuit rating, in the new 
symmetrical-based rating the symmetrical E/X current is 
adjusted with multipliers and compared to a breaker’s 
symmetrical rating, knowing that the asymmetrical part of the 
current is already included in both the fault current and the 

breaker’s rating. A factor, S, was also defined as asym

sym

I
S

I
=  that 

would determine the relationship between symmetrical rating 
of a circuit breaker and its required asymmetrical capability, 
although in practice it became redundant; that relationship was 
included and considered in the multiplying factors provided in 
the standard, and therefore the S factor was removed from 
C37.04 and C37.010 standards in 1999. Today all ratings and 
calculations related to circuit breakers are based on symmetrical 
currents. 

IV. FAULT CURRENTS IN HIGHER ORDER CIRCUITS 
Looking at the concepts and calculations that eventually led 

to (3)—the basis for the asymmetrical fault current–it is worth 

recalling that everything started out with a simple RL circuit. 
We then calculated the complete fault current and analyzed it 
to come up with generalized concepts that can help us 
determine the maximum expected asymmetrical fault current. 
We were then able to obtain the total fault current as a function 
of only time and the system’s X/R. This is a simple and very 
effective method as the transient response was assumed to 
contain only one component: a decaying dc current with a 
single time-constant. The power system isn’t always a simple 
RL circuit; there are often multiple sources contributing to the 
fault current. The underlying assumption in using the above 
method for higher order inductive systems is that any system 
can be reduced to an equivalent first order RL circuit, at which 
time our method can be applied. 

Although reduction techniques, such as Thévenin 
equivalent, can be applied to obtain steady state ac response of 
a system with no accuracy concern, it is not equally applicable 
to transient response. A higher order circuit, which is a circuit 
with higher order differential equation, will produce a transient 
response with multiple components, each with a different 
decaying time-constant. For example, the fault current in a 
circuit with three parallel branches contributing to the fault, 
may include a transient current in the general form of 

31 2 k tk t k t
dc 1 2 3i I e I e I e= + + . This is a combination of three 

decaying currents. Mathematically, this current cannot be 
reduced to one decaying current having a single time-constant. 
In other words, no I and k exist such that idc can be expressed as 
Iekt for all t, except when k1, k2, and k3 are all the same. So, the 
Thévenin equivalent of a system, having one R and one L and 
therefore one time-constant, cannot possibly provide the same 
transient current as the original circuit with three transient 
components. Intuitively speaking, each component of idc decays 
at a different rate and no single decaying rate can exactly 
reproduce the same effect. 

While in second and third order systems the transient current 
is typically still a combination of multiple decaying dc currents, 
it may be more complex in higher order circuits, and we would 
need to find the actual transient current by solving the 
associated differential equation. These higher order ODEs will 
become extremely complex and any attempt to directly solve 
them will require substantial computing resources, including 
hardware and software. In this section a general procedure is 
developed that can be used to solve the high order ODEs, in a 
computationally efficient way, by reducing the solution to 
algebraic operations. This is possible because the power system 
is a linear and time-invariant dynamic system whose 
characteristics and components don’t change with time, hence 
leading to ODEs with constant coefficients. Besides, the inputs 
to power system are sinusoidal functions and we already have 
efficient tools to deal with them. 

Next, we will briefly review some major concepts in 
Ordinary Differential Equations to assemble the techniques that 
are required to obtain the general solution of the fault current 
ODE in higher order systems. 

A summary of the steps and procedures described in the 
following Subsections A, B, C and D are provided in 
Subsection E for quick reference and review. 
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A. A Brief Review of ODEs 
A linear ODE is an equation containing a function, y, and its 

derivatives in a general form of: 

 ( )n –1n
n n –1 1a y a y ... a y a y f (t)ο′+ + + + =   (4) 

In general, the coefficients ai can be time-dependent. y(k) is 
the kth derivative of y, which is a function of time only. The 
equation is called linear because the function y or its derivatives 
appear only once in each term. This is an nth order ODE, as n 
is the highest derivative in the equation. It is also ordinary 
because there are no partial derivatives involved. f(t) is the 
forcing function or the input to the system. ODEs typically 
describe a dynamic system such as a mechanical or electrical 
system. 

Equation (4) is called homogeneous when there is no input 
to the system; that is, when f(t) = 0. A homogeneous equation 
describes a dynamic system’s response to its initial conditions 
only and in the absence of any forcing function, such as the 
response of an RL circuit with some initial current and no input 
voltage. Homogeneous response is a characteristic of the 
system and depends only on the system’s structure and its initial 
conditions, hence it is also called the natural response. In our 
RL circuit, the homogeneous response depends only on the 
values of R, L, and the initial current. 

A special class of ODEs involve those with constant ai 
coefficients. In power systems, we generally deal with ODEs 
with constant coefficients, as the systems elements such as R 
and L are time-invariant. This class of ODEs is much easier to 
solve than when the coefficients are time-varying. In constant-
coefficient ODEs the polynomial equation: 

 n n –1
n n –1 1a m a m ... a m a 0ο+ + + + =   (5) 

is called the characteristic equation, which has the same order 
and coefficients as the original ODE. So, for an nth order ODE 
the characteristic equation will be an nth order polynomial with 
constant coefficients. As the name suggests, the characteristic 
equation is important because its roots, m, determine the 
general solution to the homogeneous equation. In other words, 
it provides the general response to the initial conditions of the 
system. 

The characteristic equation has n roots, which could be real, 
complex, or a combination of real and complex numbers; some 
of the roots could be repeated too, which is not discussed here 
as this is not expected to occur in power systems. For any real 
root α, the term Ceαt is a component of the response of the 
homogeneous equation. Similarly, if λ ± jµ is a complex root, 
then Aeλtcos(µt) + Beλtsin(µt) is a component of the 
homogeneous response. The reason that the complex root is 
shown as a complex conjugate pair is that in polynomial 
equations it is shown that if all the coefficients in (5) are real 
numbers, which is the case in electric circuits, then any complex 
conjugate of a complex root is also a root of the equation; 
therefore, all complex roots will be in conjugate pairs, each pair 
counted as two roots. The constants C, A, and B in the above 
response terms are determined by the initial conditions of the 
system. For example, if a fourth order characteristic equation of 
a homogeneous ODE has two real roots, α1 and α2, and one pair 

of complex conjugate roots, λ ± jµ, then the general solution is:
1 2t t t t

h 1 2y (t) C e C e Ae cos(µt) Be sin(µt)α α λ λ= + + + , where 
yh(t) is the homogeneous response. By knowing the initial 
conditions of the system and its derivates at t = 0, the unknown 
coefficients can be calculated. 

When the forcing function f(t) is nonzero, the ODE is called 
nonhomogeneous, which describes a dynamic system with 
inputs, such as when there is a voltage source in an RL circuit. 
There is a fundamental relationship between the solutions to the 
nonhomogeneous equation and the solutions to the 
corresponding homogeneous equation [6]. If yh(t) is the general 
solution to the homogeneous ODE and yp(t) is any specific 
function that satisfies the nonhomogeneous equation, then 
y(t) = yh(t) + yp(t) is a general solution to the nonhomogeneous 
equation. Besides, every solution is expressed in this sum. In 
other words, the general response of a dynamic system with 
forced input that can be described by (4) is the sum of its general 
natural response and a specific response of the system. 

Although finding a specific solution to the nonhomogeneous 
ODE is not a trivial task, there are relatively simple methods to 
find a specific solution for ODEs with constant coefficients and 
when the forcing function is of certain types such as sinusoidal 
inputs. However, in ac circuit analysis we have a great tool that 
readily provides us with the specific solution: phasor analysis. 
Hence, we are left with finding the natural response of our ac 
system, but before that we first need to be able to set up the 
ODE of the ac circuit. Next, we are going to find out how the 
system’s ODE can be established and how we can apply the 
basic properties that were discussed here to find the complete 
response of an ac system with parallel circuits. 

B. Application in AC Circuit Analysis 
In our search for the transient component of the fault current 

in second and higher order systems we need to find the 
complete solution to the ODE that describes the fault current. 
The solution of this ODE is obtained by adding the general 
response to the associated homogeneous equation, and a 
specific solution that satisfies the nonhomogeneous equation. 
We then need to find the unknown coefficients of the total 
response by applying the initial conditions of the system to the 
solution. 

One way to think of the specific solution to the 
nonhomogeneous equation is that it is the response when the 
homogeneous solution, yh(t), is zero in the total solution of the 
system, y(t) = yh(t) + yp(t), which is when all the coefficients in 
yh(t) are zero. This situation happens when the initial condition 
of the system is equal to the steady state conditions at t = 0. 
Under these circumstances, no transient will be experienced by 
the system and the steady state conditions will be immediately 
established upon application of the inputs. Therefore, the 
specific solution, yp(t), is in fact the steady state response. 
Another way of reasoning for this, is that when yh(t) diminishes, 
after a while only yp(t) is left in the total response; since the 
system’s response is the steady state solution after the transient 
response is diminished, we conclude that yp(t) is in fact the 
steady state solution. This is true for a system whose ODE has 
constant or time-independent coefficients which makes it a 
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time-invariant system; and in a time-invariant system, as 
opposed to time-dependent systems, there is only one specific 
response which is the steady state solution.  

In short, the specific response of the nonhomogeneous ODE 
of an ac system is in fact the steady state solution which can be 
obtained from phasor analysis, a powerful tool that can handle 
ac systems with any complexity. We may describe the steady 
state fault current as Imcos(ωt + θ), where Im is the amplitude of 
the steady state fault current and θ is its phase angle. In phasor 
notation, this current is represented as Im∠θ. 

Now we need to obtain the general solution to the 
homogeneous ODE of the circuit to add it to the steady state 
response. But before that we first need to set up the differential 
equation that describes the fault current. 

Fig. 3 shows a general circuit configuration from a fault 
viewpoint. It includes n parallel contributing branches, a fault 
resistance, Rf, and a fault inductance, Lf. The fault point could 
be, as an example, considered on a transmission line. Each 
parallel branch has a source, Vk, a resistance, Rk, and an 
inductance, Lk, which could be the result of circuit reduction 
techniques on that part of the power system. A similar circuit 
configuration could be on the right side of the fault point too, 
contributing to the fault current, fi , where similar calculation 
methods will be applicable. This circuit is used as the general 
representation of the power system at a fault where multiple 
parallel branches, each assumed to be inductive, add to the fault 
current. 

 

Fig. 3. General Configuration of a Faulted System With Parallel Branches 

We are looking only for the homogeneous response for the 
fault current since the steady state solution will be obtained 
from phasor analysis. Recall that the homogeneous equation 
has no forcing function or input, and the system responds to its 
initial conditions only. Hence, in deriving the ODE, all voltage 
sources are ignored. Deriving the homogeneous ODE for fault 
current in Fig. 3 will quickly become extremely complicated for 
three and higher parallel branches. The idea here is to obtain the 
ODE, starting from the lowest number of branches, and try to 
find a repetitive pattern to set up the ODE for any number of 
branches. 

Appendix I provides the procedure to find the homogeneous 
ODE of the fault current in Fig. 3 and a general method to 
construct the ODE for any number of parallel branches. The 
equation is an nth order ODE, equal to the number of parallel 

branches. It has constant coefficients, each being a function of 
the circuit R’s and L’s only. Once we know the number of 
branches and the elements in each of them, as well as the fault’s 
resistance and inductance, the homogeneous ODE can be set up 
by some repetitive products and sums of circuit resistances and 
inductances. An example of a third order circuit is provided in 
Appendix I. This is a first major step, which makes it possible 
to construct the circuit’s ODE without any need to get involved 
with conventional KCL or KVL equations. The procedure is 
purely algebraic and can be computerized with simple 
operations. 

Once the homogeneous ODE is set up, the first step for 
calculating its general solution is to solve the associated 
polynomial characteristic equation, the roots of which 
determine the general solution of the fault current’s ODE. The 
characteristic equation is an nth order equation with n roots, 
which may be a combination of real and complex numbers. 
General software tools can be used to solve this polynomial 
equation. 

C. Characteristics of the Homogeneous Response 
As can be seen in Appendix I, the coefficients of the fault 

current’s ODE are all real positive numbers. Per Descartes’s 
Rule in algebra, the number of positive roots in a polynomial 
with real coefficients is equal to the number of sign changes 
(positive to negative or vice versa) of the polynomial 
coefficients. Since the coefficients of our ODE are all positive 
with zero change in their signs, there will not be any positive 
real roots; the roots are either real negative numbers or complex 
conjugate pairs. This is what we expect in circuit analysis: 
positive real roots will create an exponential term with a 
positive exponent, which means the response will only increase 
with time, making the system unstable. While this rule 
guarantees decaying exponential terms associated with the real 
roots, it doesn’t guarantee that the complex roots will have 
negative real parts that will appear in the exponent of the 
corresponding response, as in Aeλtcos(µt) + Beλtsin(µt) for 
complex roots of λ ± jµ. But we intuitively expect the complex 
roots to have negative real parts, making a decaying 
homogeneous response; we cannot think of a set of initial 
conditions in an electric circuit that would make the natural 
response an ever-increasing unstable current. 

Since the complex roots will only appear in complex 
conjugate pairs, for any circuit of an odd order there must exist 
some real roots, while for even order circuits there is a 
possibility that all roots could be complex conjugate pairs. 
Nonetheless, for a general case of combined real and complex 
roots for the characteristic equation, the transient response of 
the circuit will have a general structure of 

( ) ( )k i it t t
k i i i iI e A e cos µ t B e sin µ tα λ λ + + ∑ ∑ . Here, αk are 

all the real roots of the characteristic equation, and λi ± jµi are 
all the roots in complex conjugate pairs. 

The above homogeneous solution, or in fact the transient 
part of the complete fault current, is only the general solution 
with unknown coefficients Ik, Ai, and Bi that need to be 
determined. These coefficients are determined by the initial 
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conditions of the electric circuit right at the instant of the fault. 
The general procedure is to first set up the total response by 
adding together the transient (homogeneous) and steady state 
(specific) responses; this is yh(t) + yp(t), as we saw earlier. Then 
by applying the initial conditions, and their (n–1) derivatives, 
to the total response we can calculate the coefficients of the 
transient response. This is what we are going to investigate 
next. 

D. Initial Conditions and the Coefficients of the Transient 
Component of the Fault Current 

The last step in calculating the complete solution to the fault 
current’s ODE is to find the coefficients of the transient 
response, which are determined by the initial conditions of the 
circuit. It is assumed that there is no load current in the faulted 
transmission line prior to the fault. This provides the first initial 
condition, which is fi (0) 0= . 

The number of unknown coefficients in the transient 
response is equal to the order of the ODE, which is the same as 
the number of parallel branches in Fig. 3. So, for an nth order 
circuit we need n equations to solve for the coefficients. We 
already have one in fi (0) 0= , as zero load current is considered 
on the fault path on the transmission line prior to fault; but we 
need (n–1) more equations, corresponding to (n–1) more 
conditions. The rest of the equations should come from the 
derivatives of the initial conditions of the circuit as this is all 
we can know; we don’t know the exact dynamics of the system 
beyond t = 0. Hence, we need to find the values for all (n–1) 
derivatives of fi (0) , that is ( )n –1

f f fi (0), i (0),..., i (0)′ ′′ . It is 
important to note that even when the initial currents in the 
circuit, including fi (0) , are zero, it doesn’t mean that their 
derivatives are zero too [7]. The circuit currents are changing 
rapidly and have values for their derivatives, even if they are 
zero at the instant of the fault. Think of a sine function which is 
zero at a specific time, but its derivative, a cosine function, is 
not zero at that moment. So, all the derivatives need to be 
obtained from the initial conditions of the circuit, right at the 
time of fault. 

A curious question may now be asked: since a fault can 
occur at any time during the steady state pre-fault conditions, 
corresponding to many initial conditions of the system at the 
time of the fault, what time do we need to consider in 
calculating the transient component of the fault current? 
Depending on the initial conditions that we pick, a specific 
transient response is obtained. We know that the total fault 
current is expressed as: 

 
steady-state

f transient mi (t) i(t) I cos( t )= + ω + θ


  (6) 

The second term of the above equation is the steady state 
fault current. We are interested in the maximum of fi (t)  
because what we are trying to determine is the maximum 
current that a circuit breaker must interrupt, and other system 
components must withstand. The transient current is a decaying 
current and so to have the maximum fault current, it should start 
from the maximum transient current, that is when i(0)transient is 

at its extremum (highest positive or negative); after that, the 
transient component will only decrease. When i(0)transient in (6) 
is at its extremum value, the steady state current will have to be 
at its opposite extremum to satisfy the requirement that the total 
fault current at t = 0 be zero. For example, if i(0)transient is a 
positive maximum, the steady state current must be at an equal 
but negative minimum value. Since the fault can occur at any 
moment, including a time when the steady state component 
starts at its extremum value, we can conclude that 1) the 
extremum value of i(0)transient can get to the same value of the 
extremum value of the steady state fault current, and 2) the 
extremum of the i(0)transient cannot be higher than that of the 
steady fault state current, otherwise the requirement of fi (0) 0=  
will be violated. This means that the extremum value of 
i(0)transient is equal and opposite to i(0)steady state, which is in fact 
Im. Going back to the question of what initial conditions we 
need to consider when calculating the fault current for breaker 
sizing, we realized that we need to make i(0)transient at its 
extremum value and that this happens when steady state fault 
current, Imcos(ωt + θ), is at its extremum at the time of fault 
occurrence. For steady state current to be at an extremum value, 
the argument of the cosine, (ωto + θ), should be zero or any 
integer multiple of π, where to is the time of the fault 
occurrence. This condition will make the value of the steady 
state component of the fault current equal to ±Im, and hence 

i(0)transient = ∓Im. Therefore, o
–t θ

=
ω

 will make the steady state 

component at its positive maximum and o
–t π θ

=
ω

 will make 

it at its negative minimum. Full cycles could be added to to with 
the same results. Besides, whether we use the time 
corresponding to the positive or negative extremum will merely 
change the starting point of the fault current from a positive or 
negative value, with no impact on the rms value of the total 
current that we are interested in for breaker sizing. 

Now that we determined the time that the initial conditions 
should be evaluated for maximum fault current, we can start 
calculating ( )n –1

f f fi (0), i (0), ..., i (0)′ ′′  and solve for the 
coefficients of the transient component of the fault current. The 
key steps are described here, with reference to Fig. 3 as the 
general configuration of the system. At the fault’s point, we 
have 1 2 ni (0) i (0) ... i (0) 0+ + + = , where im(0) is the current of 
the mth parallel branch at the time of fault, which we consider 
the reference time, t = 0, for the fault current calculation. It 
follows that the same relationship exists for the derivatives of 
the currents: (k) (k) (k) (k)

1 2 fi (0) i (0) ... i (0) i (0)+ + + =n  for any kth 
derivative of the currents. We have the pre-fault branch currents 
from phasor calculations, each being ( )k km mI cos tω + θ , 

equivalent to a phasor representation of 
k km mI ∠θ . All these 

currents can be evaluated at the time of the fault occurrence, 

which is o
–t θ

=
ω

 or o
–t π θ

=
ω

, where θ is the phase angle of 

the steady state fault current. It should be noted that phasor 
calculations for pre-fault currents and steady state fault current 
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have the same time reference, and the time of fault occurrence, 
to, is a time in the pre-fault reference frame. For the fault 
current’s ODE, the time reference is from the moment that the 
fault occurs, as the ODE describes the system after the fault and 
is not valid prior to the fault. So, t = 0 is the time reference for 
the ODE of the fault current. Since all the branches as well as 
the fault branch are inductive, and due to current continuity 
principle in inductors, the current instantly after the fault, 
shown as t = 0+, is equal to the current instantly before the fault, 
at t = 0–. 

Unlike the branch currents, their derivates cannot be directly 
calculated from their pre-fault equations. The current continuity 
principle requires that the branch currents remain unchanged at 
the instant of the fault; however, their derivatives are 
proportional to the voltage across the inductor of that branch; 
and there is no continuity requirement for an inductor’s voltage. 
In fact, inductor voltages do change at the instant of the fault as 
the fault path is added to the system and all the voltages need to 
follow a new KVL equation. 

Appendix II provides a general procedure to calculate the 
derivatives of the branch currents at the time of fault and then, 
using the fault current and its (n–1) derivatives, to calculate the 
coefficients of the transient current. Some details are involved, 
and extra attention is required when dealing with the derivatives 
of the fault current at t = 0 as described in Appendix II. As the 
calculations involve a system of linear equations, matrix 
notation can provide a generalized method for computerized 
implementation of the solution. 

This was the last step in finding the complete fault current, 
comprising a transient and a steady state component. Let’s 
review a summary of the steps and procedures that have taken 
place so far to solve the ODE of the fault current. 

E. Summary of the ODE Solution Procedure 
We have now a general method to find the complete solution 

to the fault current’s nth order ODE of Fig. 3. We are interested 
in the transient part of the current to better understand the actual 
transient fault current that a circuit breaker must interrupt. Once 
the homogeneous ODE is set up per Appendix I, with all 
coefficients being real positive numbers, the solution method 
includes algebraic operations only. Hence, computer 
algorithms can be developed to set up the ODE and find the 
solution. The required data include only circuit components, R, 
L, and V. Initial conditions are calculated to provide the 
maximum fault current for a circuit breaker. The overall 
procedure can be summarized per below: 

1. The circuit model at the fault’s point is arranged per 
Fig. 3, with n parallel branches contributing to the fault. 

2. Steady state fault current is obtained by phasor 
calculations, represented as Imcos(ωt + θ). 

3. The characteristic equation of the fault current’s 
homogeneous ODE is obtained by the method 
described in Appendix I. The roots of this polynomial 
equation provide the general formulation of the 
transient current as 

( ) ( )k i it t t
k i i i iI e A e cos µ t B e sin µ tα λ λ + + ∑ ∑ , 

where αk is a real root and λi ± jµi is complex root as a 

complex conjugate pair. Ik, Ai, and Bi are unknown 
coefficients that need to be determined. 

4. The coefficients of the transient current are determined 
by the initial conditions of the circuit, which are the 
initial currents and their derivatives at t = 0 as a 
reference time when the fault occurs. This corresponds 
to a calculated to in the pre-fault reference time which 
will make the transient current at its extremum value at 
the instant of fault occurrence. Appendix II provides the 
method to find the coefficients of the transient current. 

5. The complete fault current is then the sum of the 
transient and steady state currents, or Itransient + Imcos(ωt 
+ θ). 

To see all these steps in action and how they produce a final 
complete fault current, two illustrative examples are provided 
in the next section with a third and a fourth order circuit. The 
transient currents from the accurate calculations are compared 
to those from the phasor reduction method, and then the impact 
on the fault current that a circuit breaker must interrupt is 
evaluated. 

V. ILLUSTRATIVE EXAMPLES 
Two examples are provided in this section for accurate short 

circuit calculations for a third and a fourth order system. In the 
first example, all roots of the characteristic equation for the 
fault current are real negative numbers, hence the transient 
component of the fault current consists of three exponentially 
decaying constants. In the second example, for a fourth order 
circuit, there is a pair of complex conjugate roots; this creates a 
decaying sinusoidal transient current that will be substantially 
different from the phasor estimation method. In both examples 
the calculated transient current is compared to the phasor-based 
dc current. Both examples have the same circuit configuration 
of Fig. 3. 

A. Example 1: A Third Order Circuit 
Consider the circuit in Fig. 3 with three parallel branches 

contributing to the fault. Circuit voltages and elements are 
provided below in per unit values. To be more in line with 
power system units, inductors are provided as reactance values, 
expressed in multiples of R; in fact, the multiplier is the X/R of 
each branch. Voltages are expressed in phasor notation. 

R1 = 0.0002   X1 = 65R1 
R2 = 0.005   X2 =   5R2 
R3 = 0.002   X3 = 25R3 
Rf = 0.0001   Xf =     Rf 
V1 = 0.98∠0°  V2 = 0.97∠15° 
V3 = 1.03 ∠–10° 

The parallel circuits represent a combination of strong and 
weak sources; circuit one can be a large nearby power plant, 
circuit two an electrically remote small generation source, and 
circuit three a grid equivalent with normal strength. The fault is 
mostly resistive with very low resistance, such as a fault on a 
transmission line very close to a substation. 
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MATLAB code was developed for the calculation of these 
examples. Per the steps described in Section IV.E, first the 
steady state pre-fault currents as well as the steady state fault 
current are obtained by phasor calculations. Steady state fault 
current is: isym = 130.57∠–83.22°. From the angle of the steady 
state fault current (in radians), the time for the maximum 

transient at the instant of the fault ( –θ
ω

) is to = 3.85ms. 

The characteristic equation is obtained from the determinant 
of matrix A, per the method described in Appendix I. It has three 
real negative roots: m1 = –75.52, m2 = –15.15, and  
m3 = –6.08. Therefore, the general transient component of the 
fault current is: 31 2 m tm t m t

transient 1 2 3i I e I e I e= + + , with the total 
current being: fi (t)  = itransient + isym. 

Coefficients of the transient current are determined from the 
initial currents of the circuit, including fi (0 ) 0+ =  and its two 
derivatives from the procedure described in Appendix II. This 
will result in 3

fi (0 ) 3.604 •10+′ =  and 7
fi (0 ) –1.878•10+′′ = . 

Coefficients of the transient current can now be calculated, 
which results in I1 = –37.81, I2 = –20.33, and I3 = –72.42. Now 
we have the complete fault current, calculated for the maximum 
transient component at the start of the fault. 

For better visualization, three graphs are provided, produced 
in MATLAB. Fig. 4 shows the calculated total fault current 
along with the calculated transient dc and Thévenin-based 
(phasor-based) dc component of the fault current. All values are 
in per unit of the amplitude of the steady state fault current (Im). 
As expected, calculated dc current starts from its extremum 
value of |Im| and the total fault current is zero at the time of fault 
occurrence. The graph also shows the dc current based on the 
simplified phasor reduction (Thévenin) method. This current 
starts from its extremum of |Im| per its definition in (3). The gap 
between the calculated and phasor-based dc currents increases 
with time until they both drop to zero. Notice that the actual 
calculated dc current has greater absolute value than the phasor-
based estimated dc current, including in third and fourth cycles, 
when the circuit breaker is expected to interrupt the total fault 
current. Fig. 5 shows the absolute difference between the two 
dc components in percentage. We are interested in 3–5 cycles 
after the fault for typical circuit breaker interrupting time; and 
we can see that the actual dc current is as much as 25+% greater 
than the phasor-based estimation. In the next section, we will 
see how this impacts the rms current that a breaker must 
interrupt. 

Finally, Fig. 6 shows the individual dc components of the 
calculated dc current and how they make the total dc current. 
All currents are in per unit value of Im. It shows how the three 
currents, each having a different decaying rate, combine to 
create the total dc current. Such total dc current cannot be 
accurately modeled with a single exponential decaying current. 

As expected, the actual dc component calculated from the 
individual dc currents will be different from the simplified 
phasor reduction method. Typically, the roots of the 
characteristic equation for second and third order circuits are  

expected to be negative real numbers; hence the transient 
component of the fault current, although not exactly following 
a single time-constant model, will be a smooth decaying 
current. This example included parallel branches with quite 
different strengths; that is, very different X/R values. For 
example, this combination may exist near large generating 
stations where, as a strong source, it feeds into a nearby 
substation which is electrically remote from another generating 
station, making it a weak source for the substation. The 
difference between the calculated and estimated dc components 
may be less striking when the sources contributing to the fault 
are almost similar in strength. In general, the proximity of large 
generating stations is a prime example of how the transient 
current could be substantially different from the estimated 
simplified current. In this example, a 25% increase in the dc 
component may in fact make the fault current larger than the 
circuit breaker’s interruption rating, as will be discussed in 
Section VI. 

 

Fig. 4. Total Fault and Transient Currents—Example 1 

 

Fig. 5. Difference Between the Accurate and Phasor-Based Transient 
Currents—Example 1 

 

Fig. 6. Components of the Transient Current—Example 1 
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B. Example 2: A Fourth Order Circuit 
Consider the circuit in Fig. 3 with four parallel circuits with 

the circuit elements described below in per unit values. Each 
branch reactance is expressed by X/R of the branch. 

R1 = 0.003   X1 = 15R1 
R2 = 0.004   X2 = 14R2 
R3 = 0.0025   X3 = 30R3 

R4 = 0.004   X4 = 15R4 
Rf = 0.0018   Xf = 0.5Rf 
V1 = 0.98∠0°  V2 = 0.97∠15°    
V3 = 1.03 ∠–10° V4 = 1.01∠25° 

The above system has typical R and X values of a power 
system; fault is mostly resistive. A similar MATLAB code was 
used to calculate the complete fault current with transient 
component obtained from solving the homogeneous ODE of 
the fault current. Steady state fault current is: isym =  
62.76∠–72.20°. From the angle of the steady state fault current 
(in radians), the time of maximum transient at the instant of 

fault ( –θ
ω

) is to = 3.34ms. 

The characteristic equation is a fourth order polynomial, 
obtained from the determinant of matrix A, as in Appendix I. 
The roots of the characteristic equation are: m1 = – 46.25, m2,3 
= –9.88 ± j40.85, and m4 = –7.92. Therefore, the transient 
component of the fault current has a general formulation of: 

1 4m t m tt t
transient 1 2i I e Ae cos(µt) Be sin(µt) I eλ λ = + + +  , where 

λ is the real and µ is the complex part of the complex conjugate 
roots. Total fault current is then: fi (t)  = itransient + isym. 

Four unknown coefficients of the transient current, I1, A, B, 
and I2 are determined from the initial currents of the circuit, 
including fi (0 ) 0+ =  and its three derivatives from the 
procedure described in Appendix II. This will result in I1 =  
–158.25, A = –3.52, B = 58.60, and I2 = 99.0. Now we have the 
complete fault current, which provides the maximum transient 
component at the start of the fault. 

Three graphs are provided for analysis of the results. Fig. 7 
shows the calculated total fault current, the calculated transient 
current, and the Thévenin (phasor-based) estimated dc 
component of the fault current. All values are in per unit of the 
amplitude of the steady state fault current (Im). Due to the 
decaying sinusoidal components in the calculated transient 
current, the phasor-based estimated dc current is fundamentally 
different, in nature and magnitude, from the actual transient 
current. While the phasor-based current is a simple decaying dc 
current, the calculated one is much more complex and takes a 
much longer time to diminish. The phasor-based current almost 
vanishes in three cycles after the fault, but the calculated 
transient current continues to grow to positive from its original 
negative value. No exponential dc current can simulate such a 
change from negative to positive, or vice versa. From the 
perspective of the circuit breaker interrupting rating, there is a 
major difference between the two currents. Between the third 
and fifth cycles after the fault, when breakers typically attempt 
to interrupt the current, there is practically no phasor-based dc 

current while the calculated transient current is almost as large 
as the symmetrical fault current. This could subject a circuit 
breaker to a current beyond its interrupting capability. 

Fig. 8 shows the absolute difference between the two 
transient currents, the actual calculated current and the phasor-
based estimated one. Between the third and fifth cycles, this 
difference is as high as above 44%, which could have major 
consequences for a circuit breaker. Fig. 9 shows the individual 
components of the calculated transient current in per unit of the 
symmetrical fault current. While there are two decaying dc 
components, there are also two sinusoidal terms, the sum of 
which is shown as one current, as they have the same frequency. 
The graph shows how the dynamics of the transient components 
make the final total transient current. 

 

Fig. 7. Total Fault and Transient Currents—Example 2 

 

Fig. 8. Difference Between the Accurate and Phasor-Based Transient 
Currents—Example 2 

 

Fig. 9. Components of the Transient Current—Example 2 

In general, for fourth and higher order circuits, where there 
are four or more parallel branches contributing to the fault, 
there is a high chance that the roots of the characteristic 
equation include complex conjugate pairs. Since complex 
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conjugate roots lead to decaying sinusoidal currents, as opposed 
to a simple decaying dc current, the estimated simplified 
phasor-based fault asymmetrical current could be substantially 
different from the actual fault current. The difference could 
potentially subject a circuit breaker to a much higher current at 
the time of interruption. 

There are two major elements, one in circuit breaker sizing 
practices, and the other in manufacturing norms, that may help 
mitigate, and conceal, the problem of potential underestimating 
of transient fault currents. It is customary to apply a minimum 
of 25% margin to the interrupting capability of medium and 
high voltage circuit breakers. Per the IEEE simplified circuit 
breaker sizing method, if the steady state symmetrical fault 
current is below 80% of the breaker’s interrupting capability, 
the breaker can be used at its full capacity without a concern 
about the system’s X/R value. This amounts to the circuit 
breaker’s rated short circuit current being 25% higher than the 
symmetrical fault current. On the other hand, high voltage 
circuit breakers are manufactured in only limited number of 
distinct interrupting capabilities. For the system voltages 
between 72.5 kV and 550 kV, the industry’s predominant 
available short circuit ratings for circuit breakers are 31.5KA, 
40 kA and 63 kA. The combined effect of these two practices 
is that there is often more than 25% margin in a circuit breaker 
interrupting capability, which could mask the impact of any 
overlooked transient fault current. However, the problem could 
resurface if the margin is below 25%, or in special scenarios 
such as in the proximity of power generation plants with 
multiple large generators, substations with 4 or more relatively 
strong incoming sources (Example 2), and substations with 
combined weak and strong sources (Example 1). The proposed 
method could be specially used in these cases to ensure 
sufficient capability of the circuit breakers. 

The impact of the difference between the actual transient 
current and the phasor-based estimated one can be quantified 
based on the total asymmetrical rms current that a circuit 
breaker must interrupt. This will help us get a better insight into 
the real impact on circuit breakers and how we may simulate 
that with a variable X/R, as the breaker rating structure is based 
on symmetrical fault current and system’s X/R. This is what we 
discuss in the next section. 

VI. THE CONCEPT OF A VARIABLE X/R 

A. Background 
As we saw in the examples of the previous section, an 

estimated phasor-based dc current, with only one time-constant 
from the Thévenin equivalent of the circuit at the fault point, 
doesn’t necessarily simulate the actual transient component of 
the fault current. This becomes particularly significant when the 
characteristic equation has complex conjugate roots, which 
creates decaying sinusoidal transient components. This makes 
the characteristics of the transient current quite different from a 
simple decaying dc current, as provided by the phasor-based 
method. 

Circuit breakers are rated based on the rms value of the 
symmetrical fault current. To follow the rms-based rating 
practice, we need to calculate the rms value of the total 
asymmetrical fault current. 

As a first step, let’s compare the two total rms fault currents, 
one based on the actual calculation and the other based on 
phasor simplification. As described in Section III.A, the rms 
value of the total fault current from its symmetrical and 
transient components is: 

 2 2
asym sym tr.I I I= +   (7) 

In the above equation, Iasym is the rms of the total fault 
current, Isym is the rms of the symmetrical (steady state) fault 
current, and Itr. is the amplitude of the transient current. Itr. is 
generally a combination of decaying dc and sinusoidal 
components. On the other hand, the rms value of the 
asymmetrical fault current obtained from the phasor method is 
provided by (3). Assuming a Thévenin X/R, we get: 

 th th
th

–2 t
X /R

asym symI I 1 2e
ω

= +   (8) 

thasymI  is the Thévenin-based rms of the total fault current, 

while Xth and Rth are the Thévenin equivalent quantities at the 
fault point. The transient current associated with 

thasymI  is a 

decaying dc current with only one time-constant, as we saw in 
Section III.A. 

Fig. 10 and Fig. 11 show the two total rms fault currents, in 
per unit of the symmetrical rms current, Isym, for Examples 1 
and 2 in the previous section. As expected, rms currents based 
on actual calculations are larger than those based on phasor 
reduction (Thévenin) method. For the third order circuit of 
Example 1 and at the fourth cycle, the actual rms fault current 
is about 13% higher than the phasor-based calculation. For the 
same comparison in Example 2, we see that the actual rms 
current is 34% higher than the phasor-based rms current at the 
fourth cycle, which could be beyond the circuit breaker’s 
interrupting capability. Both actual and phasor-based rms 
currents start at 3  per unit, as can be verified from the way 
they are calculated. 

 

Fig. 10. Asymmetrical RMS Fault Currents—Example 1 
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Fig. 11. Asymmetrical RMS Fault Currents—Example 2 

B. Defining a Variable X/R 
Since the ODE-based calculation provides us with the 

accurate total fault current, we may use the actual total current 
and define a variable X/R in such a way that the asymmetrical 
fault current at any time is given as if the fault had started with 
that X/R. Then, instead of a constant X/R from the phasor 
method, we can use this actual X/R at any specific breaker’s 
contact parting time for breaker sizing. This allows us to 
continue using the existing standards for circuit breaker sizing, 
as they are based on the concept of a single constant X/R; only 
we would need to use different values at different contact 
parting times. 

We can use (7) and assume that there is a time-dependent 
X/R that can be assigned to the total transient current. Calling 
the new varying quantity as 𝒳𝒳/ℛ, we can use (8) to express the 
rms of the total asymmetrical current as: 

 
–2 t

/
asym symI I 1 2e

ω

= + X R   (9) 

In the above equation, Iasym is the actual total asymmetrical 
rms current, obtained from (7), in which Itr. is the ODE-based 
total transient current. Hence, everything is known in (9) except 
𝒳𝒳/ℛ, which can be calculated as: 

 
( )2

–2 t/
ln 0.5 k –1

ω
 
 

X R =   (10) 

In this equation, asym

sym

I
k

I
= . This is a variable X/R that can 

be used to come up with an equivalent X/R at any specific time, 
including at breaker parting time. 

To get a positive 𝒳𝒳/ℛ, the argument of the natural logarithm 
must be between zero and one; that is, 0 < 0.5(k2 – 1) < 1. This 
yields sym asym symI I 3I< < . We know that Iasym is greater than 
Isym, so this part is automatically met. The above condition also 
requires that asym symI 3I< . We saw that the maximum of Iasym 
occurs at the start of the fault as this is how we designed the 
calculation to have the maximum transient current at the 
beginning of the fault; this provides an asymmetrical rms value, 
Iasym, which is 3  times the symmetrical rms current, Isym. 
When all the components of the transient current are decaying 
dc currents, the second condition is also automatically met as 
the transient current cannot grow to become larger than the 
initial value. For the case of a decaying sinusoidal, typically we 
don’t expect the total transient current to become greater than 

its initial value, and hence don’t expect the total rms current to 
become larger than 3  times the symmetrical rms current. 
However, in some extreme scenarios, the total transient current 
may grow larger than its initial value in the opposite direction 
due to slow-decaying sinusoidal components, which would 
make 𝒳𝒳/ℛ a negative number. Physically, this means that there 
is no X/R that can make the total current larger than its initial 
value, as we are modeling based on a single decaying dc 
current. In this situation, we may choose to limit the maximum 
𝒳𝒳/ℛ to a value equivalent to k just below 3 . 

We can now calculate 𝒳𝒳/ℛ for the two examples of the 
previous section. Fig. 12 and Fig. 13 show 𝒳𝒳/ℛ for each of the 
two examples. In Example 1, 𝒳𝒳/ℛ starts from about 14, which 
is the same as the phasor-based X/R, and increases to about 30 
at fourth cycle. So, for sizing a breaker with a contact parting 
time of 4 cycles we would need to use 30 instead of 14 for our 
X/R. 

 

Fig. 12. Variable X/R—Example 1 

 

Fig. 13. Variable X/R—Example 2 

For the plot of Example 2, the absolute value of the rms 
current increases, in the opposite direction, very close to its 
initial value at fault; hence, 𝒳𝒳/ℛ jumps to very large numbers 
between fourth and ninth cycles. Physically, since the transient 
current goes back to absolute values close to its original value, 
a very large inductive circuit is needed to keep the current 
almost unchanged. This means that a circuit breaker will 
basically have to interrupt an rms current very close to the 
current at the start of the fault, with no decaying having 
occurred and with the transient component almost equal to the 
symmetrical component. 

When 𝒳𝒳/ℛ becomes too large to practically use in a breaker 
with a specified symmetrical rating, it’s time to use a breaker 
with a higher symmetrical capability. For instance, the curves 
in C37.010 standard are limited to an X/R of 130. In the 
previous example, the transient component is close to its 
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original value at the start of the fault at the contact parting time, 
and this means that the breaker will have to interrupt an 
asymmetrical rms current of ( )1 2 1 3+ =  times the 

symmetrical fault current. So, if a new breaker with a 
symmetrical interrupting capability of 3  times the original 
capability is selected, it would have enough capability. 

In the case of very large calculated 𝒳𝒳/ℛ, for example when 
it is greater than 130, we can calculate a new symmetrical rating 
for a circuit breaker based on a desired X/R at the breaker’s 

contact parting time, tc. Let’s consider 17=
X
R  and come up 

with symmetrical rating of a circuit breaker, such that it will 
have the required asymmetrical interrupting capability obtained 
from (7) at the desired contact parting time. Equation (9), which 
is the same as (3), provides the required asymmetrical 
capability of a circuit breaker with a symmetrical rating of Isym, 

provided that X 17R ≤ . Therefore, the symmetrical rating of a 

new circuit breaker is: 

 cal

CB
c

asym
sym –2 t

17

I
I

1 2e
ω

=

+

  (11) 

CBsymI  is the calculated symmetrical rating of the circuit 

breaker based on the calculated total asymmetrical fault current, 

calasymI , at the desired contact parting time of tc, and assuming 

17=
X
R . In Example 2, where total asymmetrical fault current 

at fourth cycle is about 1.35 per unit of symmetrical fault 
current (from Fig. 11), the symmetrical rating of the circuit 
breaker from (11) is 95.1% of the calculated fault current at the 
4th cycle, which is 1.283 times the steady state fault current in 
rms value. So, if we choose a circuit breaker with a symmetrical 
interrupting capability of 95.1% of the total fault current, the 
breaker can conveniently provide the desired operation. For 
contact parting time of 3 and 4 cycles, the symmetrical rating 
of a circuit breaker can be generally calculated from (11) per 
below, based on a calculated total fault current: 

 CB cal

CB cal

sym asym c

sym asym c

I 0.951I , t 4 cycles

I 0.906I , t 3 cycles

= =

= =
  

Note that the breaker’s symmetrical rating calculated based 
on contact parting time of 3 cycles would be lower than when 
it is based on contact parting time of 4 cycles. This may seem 
counterintuitive. This is explained by considering that, for a 
circuit breaker to interrupt a current at 4th cycle, when the 
current has somewhat dropped from 3rd cycle, it must have a 
higher rating than when it is required to interrupt the same 
current at 3rd cycle. 

VII. CONCLUSION 
The characteristics of fault currents in ac systems were 

reviewed and analyzed by solving the associated differential 
equation. We began with a simple RL circuit and observed how 
the transient current is a decaying dc current, whose time-

constant is defined by X/R of the system. The higher the X/R, 
the longer it takes for the transient current to diminish, hence a 
circuit breaker will have to interrupt a larger current. 

The circuit breaker rating structure was reviewed, which is 
based on the steady state symmetrical fault current. A breaker 
rated at a certain symmetrical current is already capable of 
interrupting asymmetrical current if the system’s X/R is not 
greater than 17. However, if it is greater than 17, the standard 
method is to adjust the symmetrical fault current by some 
multipliers and then compare that with a breaker rating to make 
sure there is enough interrupting capability. 

In the standard sizing calculations of a circuit breaker it is 
assumed that the fault current follows the characteristic of a first 
order RL circuit: that it is fundamentally a decaying dc current 
and can be modeled by a single decaying exponential term with 
one time-constant. We saw that for second and higher order 
systems, where there are multiple parallel branches 
contributing to the fault, the transient component consists of 
more than one decaying term; and mathematically, the sum of 
two decaying dc currents cannot be expressed with an 
equivalent decaying term with only one time-constant, or one 
X/R. Therefore, using phasor-based Thévenin method to 
represent the system with only one X/R creates errors that could 
seriously interfere with circuit breaker sizing calculations. 
More importantly, we saw that, for higher order circuits, the 
transient current may not even be a sum of just simple decaying 
dc components; it may also consist of decaying sinusoidal 
terms. In this case, simulating the total transient current with 
one phasor-based X/R could create large errors in breaker 
sizing calculations and make a breaker undersized for the actual 
transient fault current. 

To obtain the complete transient current when there are 
parallel circuits at the fault, we need to solve the ODE of the 
fault current. The complete solution of the fault current is the 
sum of the phasor-based steady state current and the transient 
current. To obtain the transient current, all we need is the 
characteristic equation of the fault current’s ODE, when all the 
input voltages are ignored. Considering a defined circuit 
configuration as shown in Fig. 3, a general method was 
provided in Appendix I to calculate the coefficient of the 
characteristic equation for any nth order circuit. The roots of the 
characteristic equation provide the general formulation of the 
transient response. We then need to find the unknown 
coefficients of the general transient response. Appendix II 
provides details of how they can be calculated from the initial 
conditions of the system, which are currents and their 
derivatives. 

The procedure to set up the fault current’s ODE, solving for 
its general transient response, and finding the coefficient of the 
transient current are all algebraic operations that do not involve 
any direct method to solve a differential equation. The 
advantage of this method is that the complete procedure can be 
implemented by general purpose software, in algorithms that 
include only algebraic calculations. 

Two sample systems, a third and a fourth order, were 
analyzed by the proposed method; the actual calculated fault 
current was compared to the phasor-based current which 
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showed large differences in both cases, particularly when there 
are decaying sinusoidal terms in the transient current. 

Since circuit breakers are rated in rms current, the 
asymmetrical rms current was calculated in Section VI for both 
the actual and the phasor-based transient currents; this provides 
a measure of the real impact on a circuit breaker by the 
difference between the two transient currents. For the two 
examples, this resulted in rms currents that were 13% and 34% 
higher than the phasor-based currents at fourth cycle after the 
fault; this could exceed the interrupting capability of a circuit 
breaker. 

Finally, to properly simulate the actual transient current 
calculated with one X/R, a variable X/R was defined that is 
dynamically linked to the actual rms fault current, Iasym, and 
provides a variable quantity, 𝒳𝒳/ℛ. This varying 𝒳𝒳/ℛ would 
provide the same asymmetrical rms fault current at any specific 
time, the same way that a first order circuit would have 
provided with a constant X/R. To size a circuit breaker, one 
would need to use this varying 𝒳𝒳/ℛ at the breaker’s contact 
parting time, instead of a constant X/R. When such a calculated 
𝒳𝒳/ℛ is too large for practical consideration, a circuit breaker’s 
symmetrical rating can be calculated such that, based on an X/R 
of 17, it can conveniently interrupt the calculated total fault 
current at the desired contact parting time, as provided by (11). 

VIII. APPENDIX I: DERIVATION OF THE HOMOGENEOUS ODE 
A general procedure is presented in this appendix to build 

the homogeneous ODE of the circuit in Fig. 3 for fault current, 
fi . Although voltage sources and initial currents appear in the 

equations, they won’t have any impact on the formulation of 
the homogeneous ODE; hence their details are not of concern 
as will be seen in this appendix. 

Once the homogeneous ODE for first, second, and third 
order circuits are built, a pattern emerges for the general 
formulation of the nth order circuit, with n parallel branches, 
which provides the coefficients of the ODE. These coefficients 
are functions of the circuit’s R and L elements only. With the 
coefficients of the fault current’s ODE calculated, the 
characteristic equation can be solved for the general structure 
of the homogeneous response, which is the transient fault 
current. 

For circuits of second order and higher we will have to deal 
with a linear system of differential equations. This would 
involve taking additional derivatives to eliminate all branch 
currents and express everything based on fi  only. This will 
quickly become too complicated to solve. However, by using 
the Laplace transform, the system of differential equations can 
be converted to a system of linear algebraic equations. The 
Laplace equation of the fault current can then be derived as 
shown in the example below for a third order circuit. 

Consider the three parallel branches in Fig. 3 with the fault’s 
resistance and inductance. Since the voltages of all parallel 
branches are equal, we can use this to build a system of  

equations based on fault and branch currents. There are four 
unknown currents, but only three of them are independent, as 
the forth one can always be calculated from the other three, as 
i1 + i2 + i3 = fi  at all time. We choose one of the branch currents 
to be expressed by the other currents as we need fi  to be in the 
equations. An example of the time domain equation for the 
branch one and two voltages is: 

 1 2
1 1 1 2 2 2 1 2

di di
R i L – R i – L v – v

dt dt
+ =   

Applying the Laplace transform, we get the equation below. 
Note that the Laplace transform of a derivative is obtained from 
ℒ[f′(t)] = sFs – f(0), where f(0) is the initial value of the 
function. 
 1 1 1 1 2 2 2 2 1 2 1 1 2 2R I sL I – R I – sL I V – V L i (0) – L i (0)+ = +   

In the above equation, I1, I2, V1, and V2 are the Laplace-
domain equivalents of i1(t), i2(t), v1(t), and v2(t), respectively, 
while i1(0) and i2(0) are the initial values of i1(t) and i2(t); s is 

the derivative operator, d
dt

, in the Laplace domain. As will be 

seen in the next few paragraphs, the right side of this Laplace 
equation has no impact on formulation of the homogeneous 
ODE. So, for simplification it is shown as a function, ℱ(V1,V2). 
This is a Laplace-domain function of V1 and V2, which includes 
constants such as Lkik(0). The equation can be rearranged for 
the currents as: 

 ( ) ( ) ( )1 1 1 2 2 2 1 2R sL I – R sL I V , V+ + = F   

The same voltage equation can be formulated between the 
first branch and each of the rest of the branches, including the 
fault path. This creates n equations in total with a total of n 
unknown currents. One of the branch currents must be 
expressed in terms of all the other currents, making a total of n 
unknown currents, including the fault branch. For our example 
of the third order circuit, we may choose i3(t) as the dependent 
current and write the voltage equation between branches one 
and three as below, knowing that 3 f 1 2i (t) i (t) – i (t) – i (t)= . 

 ( ) ( )1
1 1 1 3 f 1 2 3 f 1 2 1 3

di dR i L – R i – i – i – L i – i – i v – vdt dt+ =   

Once all n voltage equations, corresponding to n branches 
and the fault branch, are similarly formulated and converted to 
the Laplace domain, a linear system of equations can be set up 
to calculate the fault current. This can then be converted back 
to the time domain for the homogeneous ODE of fi (t) , from 
which the characteristic equation is obtained. For our example 
of third order circuit, the Laplace transform equations are 
shown below: 

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 2 2 1

1 1 1 f f f 2

1 3 1 3 1 3 3 2 3 3 f 3

R sL I – R sL I

R sL I R sL I

R R s L L I R sL I – R sL I

 + + =
 + + + =


 + + +  + + + = 

F

F

F
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On the right side of the above equations are some functions 
of V1, V2, and V3 that may also include the initial currents. 
Expressing this system of linear equations by matrix, we get: 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 1 2 2 1 1

1 1 f f 2 2

1 3 1 3 3 3 3 3 f 3

R sL – R sL 0 I
R sL 0 R sL I

R R s L L R sL – R sL I

 + +    
     + + =     
     + + + + +       

F
F
F

 (12) 

If we call the matrix of the coefficients A, currents are 
obtained by multiplying both sides of the equation by the 
inverse of matrix A: 

 
1 1

–1
2 2

f 3

I
I A
I

  
   =   
     

F
F
F

  

From linear algebra, the inverse of a matrix is calculated by 
dividing the adjoint of matrix A by the determinant of A, or 

–1 adj(A)A
A

= . The adjoint of a matrix is a matrix of cofactors 

of the transpose of A. We don’t need to get into details of how 
adjoint of a matrix is calculated as it won’t impact what we are 
looking for, which is the homogeneous ODE of the fault 
current; we only need to know that adjoint of a matrix has the 
same dimensions as the original matrix, whose elements are 
calculated by certain sums and products of the original matrix 
elements. For example, the adjoint of our matrix A will have the 
same number of row and columns, with elements that are some 
combinations of the various elements of A. Rewriting the 
previous equation, we have: 

 
1 1

2 2

f 3

I
1I adj(A)
A

I

  
   =   
     

F
F
F

  

In the above equation, the product of adj(A) and the matrix 
consisting of ℱ1, ℱ2, and ℱ3 is a 3x1 matrix, whose elements 
are still some functions of V1, V2, and V3, but different from 
their original formulation in that they have been multiplied by 
various combinations of products and sums of circuit elements, 
R and L, and then added up together. This includes derivatives 
of the voltage sources due to multiplications by s and higher 
orders of s. In short, the functions ℱ1, ℱ2, and ℱ3 will change to 
some other functions of V1, V2, and V3 but still some 
combinations of voltage sources and their derivatives, 
including multiplications by circuit elements. We can call the 
new Laplace functions ℱ�1,  ℱ�2, and ℱ�3. In general, for an nth 
order circuit,  ℱ�  functions include voltage sources and their  
(n–1) derivatives. The matrix equation for currents can now be 
written as: 

 
1 1

2 2

f 3

I
1I
A

I

  
   =   
     

F
F
F

  

Fault current in the Laplace domain, fI , can now be obtained 

from the above equation as: fI =A ℱ�3. The homogeneous 
ODE is obtained by making the forcing function zero. 
Therefore, the homogeneous ODE of the fault current in the 
Laplace domain is: 

 fA I (s) 0=   (13) 

Matrix A is the matrix of the coefficients in (12) and |A| is 
the determinant of A. Since A is always some combination of 
products and sums of circuit elements, plus the operator s, |A| 
will consist of products and sums of circuit elements as well as 
s operator. It can be shown that for an nth order circuit, |A| will 
have s operator and its n powers, s, s2, …, sn. Since sn is 
equivalent to the nth derivative in time-domain, this means that 
the circuit in Fig. 3 with n parallel circuits will have an nth order 
ODE for the fault current. 

Equation (13) is valid for any number of parallel branches in 
Fig. 3, provided that the corresponding |A| is calculated. If |A| 
is rearranged in a descending order of power of s, from nth 
power to zeroth power of s, it will have a general formulation 
as: 

 ( )
( )n –1n

n 1n –1A k s k s ... k s kο= + + + +   (14) 

By setting (14) equal to zero, we have in fact set up the 
characteristic equation of the homogeneous ODE, as sn is 

equivalent to the nth derivative, 
n

n
d
dt

, in the time domain and k 

coefficients are simple constants. So, all we need to do is to set 
up the matrix of coefficients, A, and then calculate the 
determinant of A to get to the characteristic equation. 

For our example of a third order circuit, coefficients of (14) 
are per below, which are the coefficients of the third order 
polynomial characteristic equation: 

 

3 1 2 3 1 2 f 1 3 f 2 3 f

2 1 2 3 1 2 f 1 3 2 1 3 f

1 f 2 1 f 3 2 3 1 2 3 f

2 f 1 2 f 3 3 f 1 3 f 2

1 1 2 3 1 2 f 1 3 f 2 1 3

2 1 f 2 3 f 3 1 2 3 1 f

3 2 f f 1 2 f 1 3 f 2

k L L L L L L L L L L L L

k L L R L L R L L R L L R
L L R L L R L L R L L R
L L R L L R L L R L L R

k L R R L R R L R R L R R
L R R L R R L R R L R R
L R R L R R L R R L R

= + + +

= + + + +

+ + + +

+ + +

= + + + +

+ + + +

+ + + 3

0 1 2 3 1 2 f 1 3 f 2 3 f

R

k R R R R R R R R R R R R= + + +

  



17 

For the circuit arrangement of Fig. 3, the matrix of 
coefficients, A, has an easy pattern to identify for a general nth 
order circuit, which consists of n parallel branches. It is an nxn 
matrix with the following structure: 

• The first (n–2) rows: The first column is always 
(R1 + sL1). Then, for the kth row ((k ≤ (n –2)), there will 
be –(Rk+1 + sLk+1) on the (k + 1)th column. The rest are 
zero. 

• On row (n–1), which belongs to the fault path, the first 
column is similarly (R1 + sL1), and on column n there 
will be (Rf + sLf). The rest are zero. 

• Finally, on row n, which is for the nth parallel branch 
whose current is expressed versus all other currents in 
the circuit, there will be [(R1 + Rn) + s(L1 + Ln)] on the 
first column, Rn + sLn on columns 2 to (n–1), and  
–(Rn + sLn) on the last column, n. 

Hence, matrix A can be constructed with no need to write 
down any electrical equations, provided that the circuit is 
arranged per Fig. 3 and the current of the last parallel branch is 
expressed versus all the other currents in the circuit. 

Once matrix A is set up, its determinant provides the 
characteristic equation of the homogeneous ODE for the fault 
current. Software packages can be used to calculate the 
determinant of matrix A, which includes operator s per (14). 
The roots of the characteristic equations will then provide the 
general transient current whose unknown coefficients need to 
be calculated based on the initial conditions of the circuit, as 
described in Appendix II. 

IX. APPENDIX II: CALCULATING THE COEFFICIENTS OF THE 
TRANSIENT CURRENT 

The characteristic equation obtained in Appendix I provides 
the general response of the homogeneous equation, which is the 
general formulation of the transient fault current. We saw that, 
depending on the type of the roots of the characteristic equation, 
the transient current has a general formulation of 

( ) ( )k i it t t
k i i i iI e A e cos µ t B e sin µ tα λ λ + + ∑ ∑ , where αk is a 

real root and λi ± jµi is complex root as a complex conjugate 
pair. Ik, Ai, and Bi are unknown coefficients that need to be 
determined based on the initial conditions of the circuit at the 
time of fault. For an nth order circuit, there are n roots for the 
characteristic equations, and hence n coefficients to be 
determined, one per each root. This requires n equations to be 
solved for all the coefficients of the transient response. 

One obvious equation is fi (0) 0= , as the continuity principle 
in inductors doesn’t allow for an instantaneous change in 
current. The other (n–1) equations come from the (n–1) 
derivatives of fi  at t = 0. The time that the derivatives are going 
to be calculated will be shown as 0+ to highlight the fact that the 
derivatives are calculated instantly after the fault. So, the task 
is to calculate the (n–1) derivatives of fi  at t = 0+. 

In Fig. 3, at the instant of the switch being closed, we have 
the following KVL equation for a loop consisting of each 
parallel branch and the fault branch, for 1 ≤ k ≤ n: 

 k f
k k k f f f k

di (0 ) di (0 )
R i (0 ) L R i (0 ) L v (0 )

dt dt

+ +
+ + ++ + + =   

Since ik(0+) is known from the pre-fault phasor calculations, 
the above equation can be rearranged to have all the unknowns 
on the left side and the known quantities on the right side: 

 k f
k f f f k k k

di (0 ) di (0 )
L R i (0 ) L v (0 ) – R i (0 )

dt dt

+ +
+ + ++ + =   

Although fi (0 )+  is zero, we need to keep it as we will be 
taking derivatives of this equation. It is important to realize that 
although, due to the current continuity principle, ik(0+) is 

calculated from the pre-fault currents, its derivative, kdi (0 )
dt

+

, 

cannot be similarly calculated. Although branch currents don’t 
instantaneously change when the switch is closed, the rate of 
change of the currents will instantly change. This is because the 

fault path is now added to the circuit and kdi (0 )
dt

+

 must follow 

the above KVL equation. From a physical perspective, kdi (0 )
dt

+

 

determines the inductor voltages and there is no continuity 
requirement for the voltage of an inductor; in fact, the voltages 
across Lk and Lf do change at the instant of the fault. 

The above KVL equation provides n equations, 
corresponding to each parallel branch. We have total of (n+1) 

unknowns, including kdi (0 )
dt

+

 and fdi (0 )
dt

+

, so we need 

another equation to solve for the unknowns. The last equation 
comes from k fi (0 ) i (0 )+ +=∑ , which provides: 

k fdi (0 ) di (0 )
– 0

dt dt

+ + 
=  

 
∑ . 

We now have (n+1) linear equations for kdi (0 )
dt

+

 and 

fdi (0 )
dt

+

, per below, from which all the first derivatives of 

currents are calculated: 

k f
k f f f k k k

1 2 n f

di (0 ) di (0 )L R i (0 ) L v (0 ) – R i (0 )dt dt
di (0 ) di (0 ) di (0 ) di (0 )... – 0dt dt dt dt

+ +
+ + +

+ + + +


+ + =


 + + + =

 (15) 

This is a linear system of equations with constant 
coefficients that can be set up and solved by computer 
algorithms. 
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So far, we have calculated fi  and its first derivative, which 
is good enough if we have a second order circuit with two 
unknown coefficients in the transient current. Similar 
calculations can be performed for higher order circuits with a 
higher number of unknown coefficients in the transient current. 
We then need to take one derivative of (15) for each additional 
order. In general, for an nth order circuit, we need to take (n–1) 
derivatives of (15). This will provide fi  and its (n–1) 
derivatives that can be used to find the coefficients of the 
transient fault current. For example, for a third order circuit, we 
need to take one more derivative of (15) per below: 

2 2
k f f k k

k f f k2 2

2 2 2 2
1 2 n f

2 2 2 2

d i (0 ) di (0 ) d i (0 ) dv (0 ) i (0 )L R L – Rdt dt dtdt dt
d i (0 ) d i (0 ) d i (0 ) d i (0 )... – 0

dt dt dt dt

+ + + + +

+ + + +


+ + =


 + + + =

 

Solving this system of linear equations, with 1 ≤ k ≤ n, will 

provide 
2

k
2

d i (0 )
dt

+

 and 
2

f
2

d i (0 )
dt

+

. Note that in the above 

equations, kdi (0 )
dt

+

 and fdi (0 )
dt

+

 are known quantities 

obtained from the previous system of equations that was solved 

one step before; and kdv (0 )
dt

+

 is directly obtained from each 

voltage source function. 
Once all (n–1) derivatives of fi (0 )+  are calculated, we will 

have n equations, including fi (0 ) 0+ = , to solve for the unknown 
coefficients of the transient current. It is very important to keep 
in mind that when substituting fi (0 )+  and its derivatives to 
calculate the coefficients, they must be substituted in the 
complete fault current, fi (t)  = Itransient + Imcos(ωt + θ), not in 
the transient current. It is also important to recall that although 
t = 0 is the reference time for the fault, for any calculation on 
the pre-fault quantities such as ik(0), vk(0) and derivatives of the 

voltages, the fault occurs at t = to, where o
–t θ

=
ω

 or o
–t π θ

=
ω

 

as we saw in Section IV.D. 
All these calculations are repetitive algebraic operations that 

can be computerized for any circuit order. Once the coefficients 
of the transient current are calculated as described here, the 
complete maximum fault current is obtained by adding the 
steady state current, from phasor calculations, to the transient 
current, obtained from solving the homogeneous ODE of the 
fault current. 
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