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Abstract—Operational technology software-defined 
networking (OT SDN) uses open standard SDN technology in 
specific ways to deliver unparalleled benefits for OT networks, 
such as security, determinism, traffic control, and failure 
recovery. OT SDN does this by using an application-focused, 
proactive, and predictable design based on a deny-by-default 
cybersecurity architecture. 

This paper briefly explores the philosophy behind OT SDN. It 
discusses what the benefits listed previously mean for OT 
networks and what OT SDN brings to OT networks. Other papers 
have gone into depth regarding the benefits of SDN to OT, but not 
with a focus on design and deployment. This paper fills that gap 
by describing an approach to designing and deploying an OT SDN 
network to incorporate these benefits. The paper discusses design 
processes (such as requirement gathering, topology design, and 
path planning) and engineering considerations (such as 
automation, validation, and testing). 

I. INTRODUCTION 
In the last decade, software-defined networking (SDN) has 

attracted an increasing interest. In the last five years, this 
interest has extended into operational technology (OT) 
networking, as shown by the growing body of literature 
examining the benefits of SDN to OT in general [1] [2] and to 
specific protocols [3], architectures [4], and aspects such as 
smart grids [5] [6] and IEC 61850 [7] [8]. 

Ethernet networks are now more common in OT networks 
such as in substations that have adopted IEC 61850 [9] and 
Transmission Control Protocol/Internet Protocol (TCP/IP) 
technologies [10] in end devices. These networks often use 
network equipment that follows IEEE 802.1 standards [11]; 
however, this type of traditional network often does not provide 
the necessary flexibility or security [2].  

The introduction of SDN into OT networks provides many 
benefits, but these benefits are not automatic. As with any 
technology, design decisions can affect the benefits realized by 
the technology, and there is not yet a sufficient body of 
literature discussing specific OT SDN design methodologies. 
There is some discussion of information technology (IT) SDN 
networks [12] [13], but this does not translate very well to OT 
networks. There are many ways to deploy OT SDN, but the best 
solution for a particular system depends on the unique 
requirements of that system; the design process, therefore, 
should be tailored to the particular system to maximize the 
benefits.  

This paper examines OT SDN design and engineering 
processes and uses specific decisions that focus on building an 
application-focused, proactive, deny-by-default network. This 
paper does not attempt to replace any current design processes 
or provide an in-depth example, but it is intended to provide 

insights into the process of SDN network deployment, based on 
the experience of the author. For example, the focus on 
automation is a result of the author’s experience realizing the 
value of using automation to create tested, predictable 
networks. 

This paper first provides a summary of SDN, focusing on the 
benefits it can bring to OT, and discusses how it can help meet 
the requirements of OT networks. Next, this paper discusses 
some of the significant decisions involved in building an OT 
SDN network and how a particular design influences the result. 
Finally, this paper briefly discusses some OT SDN deployment 
considerations. 

II. SDN OVERVIEW 
SDN is a network architecture that separates the control 

layer from the data layer. The data layer consists of SDN 
switches that forward packetized application data (flows). The 
control layer consists of one or more SDN controllers that 
instruct the data layer on how to forward those flows. They 
communicate through a southbound interface. Applications, 
such as operations, administration, and management (OAM) 
tools [14], drive control layer decisions (and through the control 
layer, the data layer) through a northbound interface. Fig. 1 
gives a graphical depiction of SDN architecture. 

 

Fig. 1. A two-layer SDN architecture 

A. A Network-Centric View 
By centralizing the control layer, SDN provides a holistic 

view of the network. By making decisions through a network-
centric view, operations such as path planning can be optimized 
across the network. Beyond the network-centric view, SDN 
controllers and switches tend to be implementation-specific, 
with many competing and overlapping implementation 
considerations, such as the southbound interface [15]. Some of 
these considerations are further discussed in this paper. 
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B. The Southbound Interface (OpenFlow) 
The focus of SDN and OT SDN continues to be on the open 

standard protocol, OpenFlow [16], which is the southbound 
protocol maintained by the Open Network Foundation (ONF). 
OpenFlow has become the de facto standard for southbound 
communications. OpenFlow uses a match-action scheme to 
control the data layer: as packets enter the switch they are 
matched against a set of rules (i.e., match fields), and based on 
which rule matches the packet, the packet is either dropped or 
egressed from the switch, modified or unmodified (i.e., 
actions). A match-action pair is called a flow entry, and it is the 
basic unit of OpenFlow control. 

Compared to traditional networking, OpenFlow provides 
much more advanced packet control capabilities that allow for 
control based on individual packet characteristics. Unlike 
traditional switches, OpenFlow switches support matching on 
and manipulating of not only Layer 2 (Ethernet) fields, but 
other fields such as Layer 3 (IP), Layer 4 (User Datagram 
Protocol [UDP]/TCP), and Address Resolution Protocol (ARP) 
fields. Therefore, an OpenFlow switch operates on multiple 
layers, not just on Layer 2. 

An OpenFlow switch may or may not contain traditional 
switch logic. An OpenFlow switch programmed only through 
OpenFlow rule sets is called an OpenFlow-only switch, and an 
OpenFlow switch with separate non-OpenFlow logic to drive 
traditional control layer protocols (e.g., broadcasting ARP 
outside of OpenFlow rules or running Spanning Tree Protocol 
[STP]) is called a hybrid switch [16]. This paper only considers 
OpenFlow-only switches. 

C. The Northbound Interface 
The northbound interface is outside the OpenFlow standard 

and is not yet standardized [7]. It is the connection between 
OAM policies and tools and the control layer. The northbound 
interface of a controller commonly provides a Representational 
State Transfer (REST)-based application program interface 
(API) that, at a minimum, allows for monitoring and controlling 
packet forwarding policies [17]. Network control automation is 
possible through this API, either through high-level policy calls 
(e.g., allowing a particular protocol to pass through the network 
from one device to another) or through low-level calls that 
directly mimic OpenFlow functionality.  

D. Comparison of SDN to Traditional Networking 
Traditional networking devices operate according to 

standards (e.g., IEEE 802.1 for switches and Internet 
Engineering Task Force (IETF) standards such as [18] for IP 
routers). In SDN, Ethernet devices still follow Ethernet 
standards (e.g., IEEE 802.3 [19]) so the data layers are 
interoperable, it is control layer management that is different. 
In SDN, the control layer is centralized, and in a traditional 
network, it is distributed. 

III. OT SDN OVERVIEW 
OT SDN adapts SDN architecture to OT networks to 

improve performance and to better meet OT requirements. A 
growing body of literature explores OT network performance 

requirements and how OT SDN can help meet them [1] [7] [8] 
[20] [21]. This section focuses on requirements that are most 
relevant to design decisions and how OT SDN can better meet 
these requirements. This discussion drives the design decisions 
discussed in the next section. 

A. Proactive Versus Reactive Approaches 
OT network literature presents a variety of design 

considerations. For example, it compares proactive mode with 
reactive mode in programming the data layer [7] [22]. In a 
reactive approach, the control layer operates in reaction to data 
layer information such as new traffic flows. Topology, not 
design, influences how the control layer controls the data layer. 

For example, a packet entering a switch may not match any 
packet-specific flow rule, so the switch sends the packet to the 
controller. The controller may then determine what action to 
take for the flow the packet represents, based on a network-
centric view, and accordingly program the switch so that the 
flow reaches its destination. Fig. 2 shows this process. 

 

Fig. 2. A reactive model 

The time between when the packet enters the switch and 
when the data layer is programmed to forward the flow is called 
the flow setup time. The flow setup time depends on several 
factors such as the distance from the flow controller and the 
number of new traffic flows entering the controller. The 
controller may also instruct the switch to delete the rules for the 
flow after a period of inactivity. If the flow appears again, the 
same process repeats. 

Reactive modes have non-zero OpenFlow rule setup times, 
added system latency, and increased complexity. Reactive 
approaches are often applied to networks that have many flows 
that may not fit into the OpenFlow flow tables of a switch or 
that contain devices that are constantly connected to and 
removed from the network. In contrast, OT flows are more 
likely to be persistent and lower in number in comparison to IT 
networks, so a reactive system is less suitable when managing 
flows during operation in an OT network. The SDN controller 
must be available to prevent persistent out-of-service 
conditions in a reactive mode. 

In a proactive approach, on the other hand, the network is 
pre-engineered to meet the requirements of the applications that 
will use it. With a proactive approach, the network does not 
react to traffic by sending it to the control layer for a decision. 
This minimizes dynamic processes and reduces flow setup time 
to zero for configured applications. The placement and number 
of the SDN controller are also less of a concern than in a 
reactive approach because metrics such as real-time flow setup 
are not critical. 

A proactive approach, therefore, requires a predetermined 
network design that the controller or a northbound application 
can use to determine which devices are able to communicate 
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with which other devices and which protocols each device can 
use. Fig. 3 shows one example of this process. Notice that the 
proactive model doesn’t need flow information from the data 
layer in order to make control layer decisions. Instead, control 
layer decisions come from design. Although the switches may 
be sending diagnostics to the controller, this is not required for 
flows to operate. 

 

Fig. 3. A proactive model 

Both proactive and reactive modes can run simultaneously, 
or a reactive process can be used by itself to initially learn the 
network. A reactive mode can manage infrequent flows such as 
engineering access, but these requirements can also be 
proactively engineered to remove any need for a reactive 
process in a persistent network. This paper focuses exclusively 
on a proactive design.  

B. Application Focused 
Network design includes a list of what devices are 

communicating and with what protocols, focusing on the device 
applications rather than just device-to-device communication. 

OpenFlow can match many of the common packet fields, 
including ingress port and many Layer 2 through Layer 4 packet 
fields (e.g., Ethernet, IP, and UDP/TCP headers). This allows 
filtering and control of not only Ethernet header fields used 
traditionally in Layer 2 switches, but also IP and TCP/UDP 
headers used by routers and firewalls. For OT networks, 
OpenFlow provides the flexibility to tailor rules for a variety of 
purposes, such as: 

• Using Layer 2 fields to control Ethernet protocols such 
as Generic Object-Oriented Substation Event 
(GOOSE) or to limit communications to between 
specific MAC addresses. 

• Using Layer 3 IP address fields to limit 
communications to between two specific IP addresses. 

• Using Layer 4 fields to control protocols at the TCP 
layer such as Multimedia Messaging Services (MMS). 

• Using a combination of the previous purposes in the 
same rule to implement a stateless, distributed, 
multilayer, packet-filtering firewall [23]. 

The benefits of using traffic characterization to control 
latency during heavy link load are well-studied [24]. By using 
a proactive design and the per-flow matching capabilities of 
OpenFlow, applications can be individually classified and 
prioritized, even if there are no markings in the packets 
themselves. Each application can be assigned to a particular 
Class of Service (CoS) to prioritize traffic so that more critical 
applications are appropriately prioritized.  

Removing STP provides additional benefits for some 
topologies because ports are not blocked. Redundant paths that 
would be blocked in an STP-enabled network are not blocked 

in an OpenFlow-only network and can be used for physical 
segregation of applications. 

An OpenFlow switch allows control of flooding that is more 
flexible than a traditional IEEE 802.1 switch. For example, 
ARP is a common control layer protocol that is often broadcast. 
In a proactive design, the location of each device and IP address 
is known; therefore, it is not necessary to broadcast ARP to all 
locations. Instead, the ARP flow can be treated as a unicast flow 
from source to destination by using ARP match fields. 

The same flexible behavior can also apply to multicast 
protocols such as IEC 61850 GOOSE. In traditional 
networking, virtual local-area network (VLAN) or media 
access control (MAC) filtering is used to segregate multicast 
traffic to prevent it from reaching more destinations than 
subscribed to the traffic. By using match fields instead of the 
user having to configure separate switch features (e.g., 
VLANs), the path planning itself restricts traffic destinations, 
which makes path planning and filtering consistent. 

Unicast traffic may also be multicasted such as to the 
original destination and an intrusion detection system (IDS). 

C. Persistent and Predictable 
One of the major differences between OT and IT networks 

is that OT networks are persistent with relatively little change 
over time. This allows for persistent programming on switches 
as well as planned and scheduled changes. 

Because we are only considering a proactive approach with 
OpenFlow switches that are not running dynamic network 
protocols, we can rely on OpenFlow logic instead of STP to 
determine primary and redundant path planning. When a 
network is pre-engineered, there is no need to use dynamic 
protocols to achieve failover because failover paths are already 
programmed. OpenFlow rules can be preprogrammed so 
applications use primary and backup paths, and because the 
state of the network configuration is persistent, the path of the 
flow in the network is predictable, even during a network fault. 

A proactively engineered network also provides scalability. 
As switches or OpenFlow programming is added, modified, or 
removed, unaffected programming continues to operate. In 
addition, dynamic protocols are not present to cause disruptions 
to operating flows such as when new switches are added. 

D. Cybersecure, Deny-by-Default 
Cybersecurity is an important topic in all networks, not just 

OT networks. Many papers have explored the security benefits 
of SDN [25] [26] and of OT SDN in particular [20] [27] [28]. 

A proper network design defines policy so that the system 
takes appropriate actions in appropriate situations. A proactive 
design enhances cybersecurity by programming the network by 
design rather than relying on dynamic learning as with 
traditional networking.  

An OpenFlow-only network operates based on a deny-by-
default approach because rules must be programmed to forward 
traffic. Without a rule that matches and forwards traffic, the 
traffic is dropped. Therefore, an OpenFlow-only network 
operates based on whitelisting traffic, whereas traditional 
networks operate based on blacklisting traffic with additional 
optional features to provide whitelisting, such as firewalls. 
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Whitelisting not only prevents “bad” traffic but also prevents 
allowed traffic that enters the wrong port (which could be 
malicious) from accessing services. A proactive design uses 
prevention rather than remediation; that is, a proactive design 
attempts to prevent problems from occurring instead of 
responding when they do. A proactive design requires 
knowledge of all the communications on the network in enough 
detail to apply the necessary rules because communications that 
are not whitelisted are discarded in a deny-by-default 
architecture. 

By using persistent, proactively engineered flow entries, the 
data layer is hardened against unintentional or malicious attacks 
from end devices. An OpenFlow-only switch does not use 
source MAC addresses to dynamically learn the location of an 
end device to control data layer behavior, which prevents ARP 
poisoning, and it does not use STP for path planning or loop 
mitigation, which prevents Bridge Protocol Data Unit (BPDU) 
spoofing. Some attacks based on IEEE 802.1Q VLAN [29] do 
not apply to OpenFlow-only switches because they do not 
operate on tags independent of the flow rules. 

The flow control offered by OpenFlow allows missed traffic 
to be isolated and redirected to an IDS or to another device for 
deep packet inspection (DPI) [30] that does not need to be in-
line with the traffic.  

E. Available 
Availability is the percentage of time that a service is 

available, and the minimizing of application data loss through 
path redundancy is a major part of OT communications 
availability management. If there is a network issue such as a 
link failure, a backup path must be used so the applications 
using that link still function. 

In a proactive design, failover paths are built at the same 
time as the primary path, so no communications with the 
controller are required in order to achieve redundancy during a 
network event. Proactive designs that use fast failover groups 
can recover much faster than traditional [8] or reactive methods 
[31] while minimizing traffic loss, and they can reach recovery 
speeds of less than 100 μs in some circumstances [8]. To meet 
lossless protocol requirements for some IEC 61850 applications 
[32], mechanisms such as Parallel Redundancy Protocol (PRP) 
[33] can be used in an OT SDN network.  

If active control layer participation is not required for the 
network to function, the controller can be removed. This 
improves long-term availability by removing a possible point 
of failure. 

F. Performance 
Besides reliability performance, OpenFlow packet matching 

provides additional benefits including enhanced quality of 
service (QoS) capabilities through physical segregation and 
reducing or eliminating multicast/broadcast domains. 
Removing broadcast traffic flooding and dynamic control layer 
traffic can reduce latency and jitter, in addition to providing 
cybersecurity benefits. 

IV. DESIGN CONSIDERATIONS 
A good network design is tailored to the requirements of the 

system to maximize the desired benefits. Proactive network 
design directly defines allowed traffic and may also explicitly 
define the traffic that is not allowed. All undefined traffic is 
considered not allowed. 

The design should contain not only what is being 
communicated and how but also traffic policy such as QoS and 
physical wiring. In a proactive, deny-by-default architecture, 
the network engineer uses this information to build the network. 
This section discusses design decisions to capture the benefits 
described in the previous section, starting with what must be 
gathered and then what OpenFlow considerations must be 
made. 

A. Application Gathering 
Before we can create a network engineered for device 

applications, we must first identify the applications and the 
protocols they use. On a simple level, each device is a set of 
“ins” and “outs.” For example, a relay may be an MMS server 
that responds to MMS clients for supervisory control and data 
acquisition (SCADA), but it may also be a Network Time 
Protocol (NTP) client that requests time from an NTP server. If 
this information is not already available, the following 
questions regarding each device can help gather applications 
(example protocols are in parentheses): 

• Does it require time services? (Precision Time 
Protocol [PTP], Simple Network Time Protocol 
[SNTP]) 

• Does it participate in protection? (GOOSE) 
• Does it participate in SCADA? (GOOSE, MMS, 

Distributed Network Protocol [DNP3]) 
• Does it require engineering access? (File Transfer 

Protocol [FTP], Telnet) 
Each “in” and “out” has a source and destination(s). 

Supporting control layer protocols such as ARP must also be 
considered if IPv4 unicast traffic is present. Another part of the 
design is gathering network device “ins” and “outs” such as 
management and monitoring protocols to and from the 
switches. 

These data may also be obtained from other sources such as 
Wireshark captures; however, building the network from these 
sources is not recommended because the sources may not be 
derived from design and may contain unwanted traffic or not 
contain all the required traffic. 

Documentation can take multiple forms such as spreadsheets 
and/or drawings: for example, data flow diagrams (DFD). 
Sources of data may also include derived sources such as 
IEC 61850 configuration files. 

These inputs provide the information to develop OpenFlow 
programming. Documents can be used to directly program a 
network through consumption by a northbound application that 
uses the northbound interface to push a configuration to a 
controller. 
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B. Designing to the Applications (Policy) 
After gathering device applications, we can create network 

policy to meet the requirements of those applications. 

1) Path Planning, Topology Design, and QoS 
For path planning, we select a primary path and, if designed, 

one or more backup paths based on metrics such as distance, 
port speed, and link utilization. If more than one application is 
running on a link, we may use QoS to prioritize applications. 
Each application should be classified by grouping together 
applications with similar requirements. Each class is then 
assigned a CoS value. OpenFlow provides an action for direct 
assignment of a CoS value to a packet, so packet markings are 
not necessary for prioritization because priority can be 
controlled proactively based on design. 

Using proactive design with OpenFlow-only switches 
changes the benefits for some topology designs. For example, a 
ring may be expanded to two rings so that there are two links to 
each adjacent switch. Instead of relying only on CoS to control 
priority, higher-priority/lower-bandwidth traffic can use the 
one ring, while all other traffic can use the other ring, as Fig. 4 
shows.  

 

Fig. 4. Example of physical segregation in a ring 

If one link is down, traffic from one path can be temporarily 
forwarded onto the other ring for just that one link. CoS then 
controls prioritization between the two classes of traffic on that 
link. This is possible because persistent OpenFlow rules 
determine the path. 

For switches in close proximity, a mesh can be used, as 
Fig. 5 shows. If SCADA clients are isolated to one switch and 
high- and low-voltage protection devices are isolated to the 
others, each link could support specific applications that, during 
normal operations, do not interfere with each other. If a link 
fails, traffic is sent across one of the other three links to a 
backup switch and then forwarded to the destination switch. 

These two topologies are examples of topologies that are 
more advantageous in an OT SDN network compared to a 
traditional network. Traditional topologies can also benefit 
from a proactive design, for example, through unicasting ARP 
messages and by applying flow-based CoS. 

The connection from the end device to the switch can also 
participate in a redundancy scheme such as failover mode or 
PRP across two ports. In the former case, messages must be 
delivered to and from each port to provide immediate failover 
at the network level. In the latter case, the traffic from each 
local-area network (LAN) is forwarded to and from the port on 
the same LAN. Either redundancy protocol may be used in OT 
SDN to provide first- and last-hop redundancy. 

 

Fig. 5. Example of physical segregation in a mesh 

2) SDN Controller 
Another difference between traditional and SDN networks 

is the presence of the SDN controller. In a proactive design, the 
controller is optional during operation and is only required for 
change control or monitoring. Other monitoring techniques 
such as SNMP or Syslog may be used so the controller can be 
removed from the network to reduce the attack surface and 
prevent the controller from being a single point of failure or 
used as an attack vector into the network [25]. Even if the 
controller is present, however, if it only operates in monitoring 
mode (i.e., it does not attempt to change the network 
programming), attacks such as topology poisoning [34] are not 
effective in modifying current data layer programming.  

The data layer should only be managed from the controller 
to maintain a consistent, network-centric view, so if the 
controller is removed, the network continues to operate 
according to its programming, regardless of dynamic changes. 

The controller is the brains of the network and therefore 
must be cyber protected. To provide a confidential, 
authenticated, and secure channel, only encrypted 
communications should be allowed in the southbound and 
northbound interfaces and only using best practices, such as 
using strong ciphers. Allowing control layer communications 
that are not secure makes the control layer (and through the 
control layer, the data layer) vulnerable to attack. 

3) Match Field and Action Selection 
Match fields form the ingress control for OpenFlow 

programming. Match fields are required for differentiation of 
traffic, but they may also be used for filtering. 
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To match the packets of a device application, we resolve it 
into its possible match fields, which allows us to do the 
following: 

• Distinguish the packets of one application from 
another. 

• Control where the packets of an application egress 
We can resolve an application such as time synchronization 

into its possible match fields by identifying the protocol used 
(e.g., NTP), then the transport mapping (unicast or multicast) 
of the protocol used, and then the message types (request and 
response) of the packets that are sent between the devices. The 
packet fields and their values in the message types determine 
the possible match fields and their values. Fig. 6 shows this 
process. 

 

Fig. 6. Deriving match fields from applications  

Matching on an ingress port limits the traffic attack surface 
to a single port (e.g., the port to which the device is attached in 
design). Restricting ingress port traffic to specific physical 
ports limits port access to only the services available to that 
port. It is recommended to use the ingress port in flow entries 
(as in Table I, Table II, and Table III) because the more you can 
control traffic at the edge of the network, the more you can 
control traffic on the entire network. 

Including TCP or UDP ports such as NTP (UDP Port 123) 
further limits the services available to a device on the specified 
port. Dynamic processes such as selection of the TCP source 
port on the client are often determined at run time without user 
control, so that these logical ports cannot be matched; however, 
the destination port from client to server is often defined by 
standards or by settings. 

Ignoring other rules on the switch, the match fields in Table I 
restrict communications on Port 1 to traffic from IP address 
172.16.100.50 (NTP Client) to IP address 172.16.100.150 

(NTP Server) for UDP destination Port 123 (NTP), which 
matches the NTP request. This rule does not restrict MAC 
addresses or the UDP source port.  

MAC addresses may further restrict matching to a set of 
devices but would require flow entry changes for replacing 
devices. OpenFlow also supports matching on a range of 
values, so it is possible to match the vendor portion of a MAC 
address instead of the exact device MAC address to provide 
further matching restrictions. 

ARP must also be added between two devices to satisfy host 
control layer requirements for unicast IPv4 traffic. Table II 
shows an example of match fields for an ARP flow entry. 
Restricting an ARP flow to only between the relevant two 
devices that must communicate reduces network utilization and 
increases security. 

Multicast Layer 2 traffic such as IEC 61850 GOOSE is often 
tagged with a VLAN for traffic segregation. Table III shows 
one example.  

A possible issue with proactive engineering is the amount of 
state information (e.g., in OpenFlow, the number of rules in 
each switch) required in the switches along with the limited 
number of stored match-action rules, but there are strategies 
that can handle this issue such as flow aggregation. Match fields 
can be strict (e.g., only applied to a specific flow) or broad (e.g., 
applied to trunk flows between switches or services between 
devices), depending on network policy. If strict matching is 
used at the edges of the network to control ingress and egress 
to devices, the core of the network can use broader rules to 
reduce the state requirements where many more flows pass 
through. 

Actions form the egress control for OpenFlow 
programming. As discussed previously, failover groups provide 
a quick method of providing proactive failover calculations to 
the network. One major difference between traditional path-
determining processes (e.g., STP) and OpenFlow controller 
processes is that in OpenFlow, path planning can be determined 
per flow. Because rules are made on a flow-by-flow basis, one 
set of flows can have redundancy or a different redundancy path 
than another set of flows, or a set of flows can be designed 
without redundancy at all.  

TABLE I 
MATCH FIELDS FOR AN EXAMPLE IP (NTP) FLOW ENTRY 

Match Field Type Ingress 
Port 

EthType IPv4 Source 
Address 

IPv4 Destination 
Address 

IP Protocol UDP Destination 
Port 

Match Field Value 1 0x800 (IPv4) 172.16.100.50 172.16.100.150 17 (UDP) 123 (NTP) 

TABLE II 
MATCH FIELDS FOR AN EXAMPLE ARP FLOW ENTRY 

Match Field Type Ingress Port EthType ARP SPA ARP TPA 

Match Field Value 1 0x806 (ARP) 172.16.100.50 172.16.100.150 

TABLE III 
MATCH FIELDS FOR AN EXAMPLE IEC 61850 GOOSE FLOW ENTRY 

Match Field Type Ingress Port Ethernet Destination Address VID EthType 

Match Field Value 1 01:0C:CD:01:00:01 901 0x88b8 (GOOSE) 
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Automation within the SDN controller or through 

applications on the northbound interface can generate the flow 
entries on behalf of a design but should be consistent with 
policy. 

4) Network Monitoring 
Monitoring can be divided into three parts: monitoring end 

devices, monitoring network devices, and monitoring network 
traffic. Directly monitoring devices is not only possible through 
SCADA, but also through common network diagnostics such 
as port states. Monitoring network devices can be performed 
through OpenFlow and its supported diagnostics if the SDN 
controller is online, or it can be performed through other 
common monitoring tools. Traffic monitoring can be performed 
through IDS or DPI equipment attached to the network.  

C. Incorporating Automation 
Automation allows for the creation of settings that, based on 

experience and testing, provide a predictable output with 
consistent inputs, which removes error-prone manual 
processes. SDN provides a more advanced set of automation 
capabilities than traditional networking through APIs that allow 
applications to control the control layer and, through the control 
layer, the data layer.  

Automation may be made available by sending design 
information to the SDN controller (or a northbound application 
that communicates with the SDN controller), and then the SDN 
controller (or a northbound application that communicates with 
the SDN controller) creates the OpenFlow programming. 

D. Validating the Design 
The software aspect of SDN provides many capabilities for 

proactive design testing without the presence of physical 
devices. One popular testing and prototyping platform is 
Mininet [35]. A Mininet simulation can be set up to test whether 
flows operate as expected based on the programming and can 
include any failover testing. This is important in a deny-by-
default architecture because the testing can validate that the 
programming operates correctly as a system. There are many 
other debugging, verification, and simulation tools available for 
SDN [36]. 

Using a simulation tool such as Mininet, testing can be 
performed before any physical devices are present and can be 
used to ask “what if” questions about the design. Care should 
be taken to consider the differences between Mininet and 
physical switches such as the number of flow entries per switch. 
The tested configuration may then be applied to set up the 
physical network at deployment. 

Using simulation, some OAM activities can be performed 
before deployment, such as path verification, fault location, 
continuity check, connectivity verification, and resource checks 
(data layer verification). If the network to be deployed matches 
the simulation, issues can be corrected before they occur in the 
field, replacing traditional continuity check tools such as IP 
Ping and IP Traceroute [37], which may not work if these 
protocols are not whitelisted between the two points tested.  

Validation focuses on problems in the data layer rather than 
just control layer configuration by validating the network at the 
data layer and verifying the output of the control layer rather 
than the inputs. 

E. SDN Equipment Selection 
The capabilities of an SDN network are intimately related to 

the capabilities of the equipment. This section summarizes the 
criteria for selecting OT SDN switches in the context of the 
requirements previously discussed. Criteria such as mean time 
between failures (MTBF) fall outside these requirements but 
should still be considered. 

For SDN switches, hop speed and failover speed can vary 
depending on how much processing is performed in firmware 
versus hardware. As previously discussed, the variability in 
switch failover speed depends on factors such as hardware 
acceleration, media type, detection speeds, and underlying 
methods of link-loss detection. 

Control layer traffic should use cybersecure 
communications. The SDN controller should support a 
proactive design capable of selecting match fields that promote 
a strict deny-by-default architecture. 

An additional equipment feature to consider is the amount 
of automation available either directly in the controller or in the 
northbound applications. In some cases, the controller can 
generate the OpenFlow entries for proactive primary and 
redundancy path planning for device applications, and the 
controller can meet OT SDN requirements such as providing 
for OT redundancy schemes and protocols based on user-
defined policy. 

F. Network Documentation 
In an OpenFlow-only switch operating in a completely 

proactive SDN network, the OpenFlow programming is the 
information necessary to examine the path of a packet. This 
includes flow entries, group entries, and port settings (if some 
ports are disabled). This programming information can be used 
to generate compliance information such as which devices have 
access to which devices and which protocols each device can 
use. 

V. DEPLOYMENT CONSIDERATIONS 
Deployment of traditional and OT SDN networks are very 

similar. End devices and network devices are configured, tested 
(e.g., factory acceptance test), and then put into service. This 
section focuses on a few considerations specific to the 
deployment of OT SDN.  

A. Network Programming 
As in traditional networking devices, SDN switches can be 

programmed before placement onto the network. Depending on 
the match fields, some information such as MAC addresses may 
not be available until deployment, which would require 
configuration during deployment if they are required by policy 
to be used in flow programming. If the design is altered during 
deployment and new devices and applications are added, these 
changes can be simulated and tested first. 
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B. Deployment Testing 
Testing ensures that for each contingency, the correct action 

is taken. Because a proactively designed network operates in a 
persistent, predictable manner based on flow programming and 
not based on dynamic processes, each test of a contingency 
produces consistent results. One contingency is a failure in the 
primary path of a flow. The primary path is completely 
determined by the programming, so the number of failure 
contingencies is limited to those links and switches on the 
programmed primary path. 

Traditional networking devices operate based on dynamic 
learning protocols, such as dynamic MAC learning, so they do 
not need to be programmed based on the design to function. 
Deviations from an original design (such as incorrect device 
configurations or device placement) can therefore function or 
appear to function in the right circumstances (but not in others, 
such as during a failover event). Deviations from the design in 
an OT SDN system are easier to catch because communications 
may not be successful. 

VI. CONCLUSION AND FUTURE WORK 
This paper examines specific design choices and the benefits 

they provide when applying SDN to OT systems. First, it 
reviews several requirements of OT networks and shows the 
benefits of SDN in meeting those requirements. It also explores 
application-centric, proactive policy-focused design, the 
benefit of validation through simulation, and how they help 
meet the requirements of OT SDN networks. Finally, it briefly 
discusses deploying an SDN network. 

Future work includes a comparison of what SDN controllers 
and northbound applications are available and how they fit with 
the requirements for OT SDN. Another suggestion for future 
work is case studies of proactive OT SDN networks in 
operation and corresponding design choices. Additional 
research could also include investigating the relationship 
between proactive engineering and maintenance requirements. 
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