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Abstract—The time frame capacity factor (TFCF) model is a 
novel method used to determine the reliability of a power system 
with integrated renewable energy sources. The only information 
that this model needs is the capacity factor of a unit over the 
course of a year (TFCF). The TFCF reliability model can be 
further developed to simplify a microgrid using overall output 
power and capacity factor data. In such an environment, the 
large power grid is simplified considerably, and unknown 
parameters are kept to a minimum. There are several factors 
that motivate utilities to model a whole microgrid with a single 
source. This paper discusses the advantages of the TFCF 
reliability model for utilities. 

Index Terms—Capacity factor, microgrids, reliability 
assessment, renewable energy. 

I. INTRODUCTION 
Renewable energy sources (RESs) have become a 

significant percentage of power generation in the U.S. 
However, they are variable and nondispatchable [1]. The 
operating schedules of such energy plants are largely dictated 
by ambient conditions. This is particularly true for wind and 
photovoltaic (PV) solar energy resources, which are the most 
rapidly expanding renewable resources. In the U.S., wind is 
expected to grow from 1.3 percent of the total supply in 2008 
to 20 percent by 2030. These resources cannot be dispatched 
in the same way as conventional power generating units [2].  

Wind power is volatile because of its low capacity factors, 
which are much lower than conventional units [1]. Wind 
power forecasting errors also present reliability estimation and 
planning problems [3]. Forecasting errors can occur more than 
25 percent of the time depending on the ambient forecast 
timespan and forecasting methodology [2]. Solar is the most 
profuse source of energy. The solar energy reaching the 
surface of the earth over a year is significantly higher than the 

current worldwide power generated by fossil fuel. The 
variability of solar energy resources is very much impacted by 
climate and sunlight availability, causing the output of these 
resources to be extremely intermittent. This intermittency is 
noticeable not only each day, but also over the course of a 
year. The capacity factors for PV energy are typically 10 to 
20 percent [1]. To overcome this problem, Monte Carlo 
simulation can be used as an easy-to-implement approach to 
simulating RES integration. Its use is detailed in [4], [5], [6], 
and [7]. The key problem with Monte Carlo simulation is that 
it needs a large amount of data sets that are mostly not 
available to the public. In [7], the solar irradiance is 
stochastically modeled using the clearness index, which is 
described as the quotient of the irradiance on a flat level and 
the extraterrestrial solar irradiance. Reference [6] applies a 
method that decomposes the hourly global irradiation on the 
horizontal earth’s surface into diffuse, beam, and reflected 
components. For the wind energy, the simulated wind speed 
[7] and Weibull distribution function [4] [5] are used to 
calculate the power output. 

The concept and formulation of the time frame capacity 
factor-based (TFCF-based) reliability model is presented in 
[8]. The capacity factor of RESs is used in a novel and 
composite transmission generation reliability model to 
measure the reliability of power systems based on the 
minimum load shedding. To improve the accuracy of the 
calculation, the overall time is subdivided into several time 
frames. Each time frame has its own TFCF. The model is best 
suited for isolated microgrids with RESs. The key advantages 
of the TFCF model are its simplicity, minimal running time, 
and data availability while covering low-probability scenarios.  

Reference [9] proposes a TFCF-based reliability model for 
a grid-connected microgrid. The whole microgrid is modeled 
as a single, compact source with a combined capacity factor. 
Thus, to evaluate the reliability of the bulk power grid, each 



 
 

microgrid can be modeled simply as a source that interacts 
with the main grid. This saves time in large-scale studies and 
minimizes the dependency on analyzing detailed information 
about the components of a microgrid.  

This paper discusses the advantages of the TFCF reliability 
model for utilities, which can have certain motivations for 
simplifying microgrids in reliability and planning studies. The 
advantages of this modeling make it a good fit for utilities 
looking to minimize uncertainties and get data from customers 
while calculating the reliability of the whole grid. 

II. MOTIVATIONS 
Microgrids are usually designed to work in both islanded 

and grid-connected modes. Thus, microgrids are connected to 
the bulk power system in a bus at the known points of 
common coupling (PCCs). From the utility standpoint, a 
microgrid can be as small as a home with an installed PV 
panel or as large as a private sector power plant (i.e., a 
geothermal unit) in the range of megawatts. Figure 1 shows an 
example of a power system with three interconnected 
microgrids (MG1, MG2, and MG3). Each can include RESs, 
storage units, lines, and loads. 
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Figure 1. Grid-connected microgrids 

Each microgrid is a small-scale power system and is 
composed of several elements such as RESs, internal loads, 
and storage units. MG1 is detailed in Figure 2 and consists of 
three buses, each with their own solar PV cell, storage unit, 
wind energy, and load. Lines connect the buses to each other. 
The batteries are charged with the unused capacity of the 
energy resources. To perform numerical studies, some 
arbitrary values are assumed. Detailed information about the 
components of MG1 is listed in [9]. In grid-connected mode, 
the utility feeder is connected to Bus 1. 
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Figure 2. Schematic diagram of microgrid MG1 [9] 

There are several issues that motivate utilities to choose a 
simplified microgrid model for reliability and planning 
studies. Some of these issues are discussed in the following 
subsections. 

A. Unknown Data 
Some data that a utility needs to consider for a microgrid 

when performing system studies are not accessible. The 
design specifications of wind turbines and solar PV panels are 
strictly concealed from the public, and historical data only 
exists in areas that have previously employed wind or PV 
generators [10]. 

Other parameters are not concealed, but sometimes 
unknown or inaccurate data make simulation and study results 
uncertain. This is the result of change over time, such as 
aging, maintenance, or the installation of new equipment with 
different specifications. Parameters such as inverter efficiency, 
cupper power loss, and voltage drop are generally in this 
category. 

The output generation of resources, on the other hand, is 
among the accessible data for each unit. Thus, the capacity 
factor, which is simply defined as a unit’s output divided by 
its maximum capacity, is readily accessible. The ease of 
access to the capacity factor largely contributes to its use in 
reliability evaluation. 

B. RES Intermittency 
Even though all of the design specifications of RESs are 

known, predicting the output power is still impossible. 
Fluctuation is always a part of RES power generation. Wind 
and solar energies in nature are known, nondispatchable 
intermittent resources. The generation of each unit depends on 
several stochastic parameters, such as ambient conditions, and 
also exhibits considerable change between maximum and 
minimum output.  

In other words, the utility must model each RES with an 
average capacity and a standard deviation. The larger the 
standard deviation, the higher the uncertainty in the 
calculation. 

However, in contrast to each individual unit, entire 
microgrid units exhibit a lower standard deviation because of 
the following factors: 

• Wind and solar units have almost opposite behavior. 
In the month that solar units generate maximum 
power, wind units are in minimum generation, and 
vice versa [11] [12].  

• Microgrids usually have internal storage to smooth the 
power outputs. Storage units with higher energy 
capacity are able to generate power for a longer 
duration, and high-power capacity storage units can 
cancel out higher power deviation [13]. 

C. Operation Uncertainty 
A utility cannot control the importation or exportation of 

power through a microgrid [14] [15]. Each microgrid behaves 
as an independent system [16]. A microgrid considers several 
parameters, such as hourly price and storage capacity, and 



 
 

decides to either import power from or export power to the 
network. This mostly depends on the RES generation. A 
microgrid can have several operational modes. Some of these 
modes are listed in [17]. 

D. Microgrid Control Modes 
Utilities need to know the current control mode and state 

of the network. When a microgrid runs with automatic 
controls, the controller is continuously running or initiating 
commands. The controller unit continuously monitors the 
network, collects data, and sends commands when required 
[17]. Some controls are operator-initiated. If prerequisites are 
satisfied, the controller unit performs the sequence of 
operation (breaker switching) [17]. It is not feasible for 
utilities to include control modes in their modeling because the 
modes are automatically managed by digital controllers. 

E. Network Complexity  
Microgrids include components that present highly 

nonlinear behavior that conventional power systems do not 
experience. Power electronic equipment, such as ac/dc and 
dc/ac converters, can be found in microgrids and require 
complicated modeling. For example, current limiters impact 
the output current of power electronic devices [18]. In such 
cases, utilities prefer to avoid such modeling, at least for 
reliability and planning studies. 

Moreover, replacing a microgrid with a single source 
significantly decreases the dimension of the grid by 
subtracting the number of microgrid components (e.g., RES 
units, lines, and loads). In that case, the single source data 
covers the contingency analysis of microgrid equipment. As a 
result, utilities can perform reliability studies and contingency 
analysis faster and more contingences can be studied. 

F. Internal Loads 
Each microgrid has several internal loads that are used for 

its own internal consumers. The subtraction of the generation 
and internal load shows the amount of power that a microgrid 
can sell back to the utility grid. 

Load factor (γL) is a normalized value between zero and 
one that represents the maximum consumed load over the 
rated value of all existing loads. Chronological studies certify 
that the loads change over the course of a year. For example, 
microgrid load factors are shown in Figure 3. Utilities do not 
have access to the load factor of individual internal loads 
inside microgrids. 
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Figure 3. Load factors for the microgrid shown in Figure 2 [9] 

G. Data Security 
If a utility wants to include detailed microgrid data, a solid, 

continuous, and secure communications infrastructure 
between the utility and each microgrid is required. These data 
include characteristics of the microgrid and are different from 
all data points sent from large microgrids to supervisory 
control and data acquisition (SCADA) systems. 

The TFCF reliability model minimizes the data exchange 
between microgrid operators and utilities. A continuous 
communications channel is not required because utilities only 
need two values from each microgrid—unit capacity (PGen) 
and TFCF. The maximum exported power over the last year 
and trends of output power are among the values utilities 
receive by default. 

III. OVERALL CALCULATION PROCEDURE 
The TFCF reliability model is designed for individual 

microgrids. This section details the calculations required to 
use the TFCF model. 

A. Model Initialization 
The microgrid is isolated from the entire power system at 

the PCC. The PCC is an infinite bus (a bus with a magnitude 
of 1 pu and phase angel reference of ∠0°) for the microgrid. A 
microgrid may be connected to several utility feeders because 
of reliability or operational constraints. In such cases, all PCCs 
are assumed to have the same voltage, which means all are 
electrically connected together.  

A fictitious large load (Lfict) is assumed to be connected at 
the infinite bus (PCC), as shown in Figure 4. The value of Lfict 
must be larger than the sum of all installed generation 
capacities. Also, this load is assigned as the least critical load 
in the microgrid, which means that in case of load curtailment, 
it will be shed before any real internal load.  

PGen, η PCC  

Figure 4. Microgrid connected to fictitious large load at PCC 

For the microgrid shown in Figure 2, the PCC is Bus 1, so 
it is assumed as the infinite bus. Considering all internal loads, 
the large fictitious load may be considered in the range of 
several hundred kilowatts (e.g., Lfict = 1,000 kW). 

B. Expected Energy Not Served 
Several reliability indices exist [15], but among them, the 

expected energy not served (EENS) index is the one that 
considers both duration and the amount of unsupplied energy 
simultaneously. These data may be enough for the TFCF 
reliability model because the model requires only the amount 
of energy and time frame. In contrast, indices that only contain 
the duration of loss (such as loss of load probability [LOLP] 
and loss of load expectation [LOLE]) do not work for the 
model. 



 
 

In the TFCF reliability model, all situations are modeled as 
a scenario, and the probability of that scenario is found based 
on the availability of each resource. The EENS is calculated 
for each scenario. The TFCF reliability model is compatible 
with the composite transmission and generation reliability 
approach [8], so contingencies of generation unit and 
transmission line outage can also be included in the model.  

The EENS is an energy-oriented index that details the 
cumulative amount of energy not provided to customers [17]. 
EENS(TFj) is the EENS index in the jth time frame (TF), and it 
is calculated as shown in (1). 

 

sN

j s,i w,i b,i i
i 1

TF

EENS(TF ) Av • Av • Av • LC

j 1,...N




 

   (1) 

In (1), Ns is the number of scenarios considering the 
availability of RESs and storage units. The parameter j is an 
integer number between 1 and 12 indicating the number of the 
corresponding month (e.g., 1 for January, 2 for February, and 
so on). Parameters Avs,i, Avw,i, and Avb,i are, respectively, the 
availability of solar, wind, and storage units in scenario i. The 
average EENS is the weighted sum of the EENS values for all 
time frames, as shown in (2). 
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EENS • EENS(TF )

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In (2), ωj is the weighting factor of each time frame, and its 
value is based on the duration of that time frame. If a year is 
divided into equal time frames, the weighting factors for all 
time frames will be equal, as expressed in (3). 

 j
TF

1
N

    (3) 

Thus, (2) is simplified as shown in (4). 
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LCMin,j and LCMax,j are found as shown in (5) and (6). 

 
MaxMin, j L L, j fict GenLC P • L P      (5) 

 Max, j L L, j fictLC P • L     (6) 

γL,j is the load factor for TFj, Lfict is the large fictitious 
load, and PGen,max is the maximum generated power in the 
microgrid that can be transferred to internal and fictitious load 
considering network constraints (e.g., the capacity of 
transmission lines, voltage drop, and reactive power limits) 
[8].  

LCMax is the sum of the internal loads (PL) and the 
fictitious load (Lfict). When all sources are off, the internal load 
must be fed through the utility. 

When the TFCF-based reliability model is run [8], for each 
time frame, EENS(TFj), LCMin,j, and LCMax,j are calculated for 
all months as shown in Figure 5. 
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Figure 5. EENS and load curtailments for microgrid shown in Figure 2 [9] 

C. Equivalent Source Specification 
When EENS(TFj) is determined in (2), the equivalent 

source in each time frame is found (see (7), (8), and  
(9)). A single source unit with the capacity factor η has an 
EENS value equal to (7). 

 j j Min, j j Max, jEENS(TF ) • LC (1 ) • LC      (7) 

If the EENS(TFj) presented in (7) is equal to the general 
equation in (1), then ηj represents the overall TFCF [8]. In 
other words, the weighted sum of a multiple-state system, 
formulated in the right side of the equal sign in (8), is equal to 
the weighted sum of the two-state system, formulated in the 
left side of the equal sign in (8). 

sN

Min Max s,i w,i b,i i
i 1

• LC (1 ) • LC Av • Av • Av • LC


      (8) 

The generation capacity for each time frame is calculated 
in (9). 

 
MaxGen, j Gen L L, jP P P •     (9) 

PGen,j is not necessarily the difference of all installed 
generations and all internal loads in the microgrid because 
other factors, such as transmission line capacity limits and 
storage capacities, affect this value. 

From (5), (6), and (7), ηj is calculated in (10). 

 Max, j j
j

Max, j Min, j

LC EENS(TF )
LC LC


 


  (10) 

According to (5) and (6), Lfict is canceled out from the 
LCMax,j – LCMin,j result in (10). Thus, PGen,j and ηj are 
independent of the arbitrarily selected, fictitious large load. 

The results presented in Figure 5 are further processed by 
(9), and for each time frame, the value of PGen,j is found as 
shown in Figure 6. 
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Figure 6.  Equivalent output power for the microgrid shown in Figure 2 
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As shown in Figure 6, for all time frame values, PGen,j may 
vary because of network constraints, seasonal load changes, 
and the different capacity factors of RESs that lead to different 
net generations exported to the utility. The values found in 
different time frames must be unified in the sense of the same 
output power, and the TFCF must be updated accordingly. 
Thus, PGen is calculated in (11). 

 Gen Gen, j) TFP Max(P j 1,...N     (11) 

The capacity factor for each time frame is updated in (12). 

 Gen, j
j,New j TF

Gen

P
• j 1,...N

P
       (12) 

Equations (11) and (12) state that for all time frames, a 
common output power (PGen) is selected and the capacity 
factor is updated to keep the output power matching the output 
power calculated in (5). 

Figure 7 certifies that the average TFCF has a narrower 
range, and also that maximum and minimum capacity factors 
are in March and July, respectively, which does not match 
those of wind and solar units individually. 
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Figure 7. TFCF of wind and solar units vs. the whole microgrid  

Because of the opposite behavior of wind and solar 
generation and the existence of storage units, the overall 
capacity factor has a narrower range of change. Despite the 
drastic change RESs exhibit during a year, utilities can expect 
more accurate numbers with lower deviation and uncertainty 
for a microgrid.  

IV. CONCLUSION 
A utility neither needs to know nor has access to detailed 

information regarding all of the components of a microgrid 
because the microgrid is operated by an autonomous control 
entity. Each microgrid has different operational modes and 
control strategies that are beyond the utility’s control. There 
are several large loads that turn on or off when the local 
energy management system decides. Likewise, a utility cannot 
control when power is imported or exported through the 
microgrid. What a utility is interested in knowing for each 
microgrid is the TFCF over a period of time (i.e., one year). 
This is a combined TFCF taking into account all RESs. In 
such an environment, the large power grid is simplified 
considerably, and unknown parameters are kept to a 
minimum. The results in this paper indicate that microgrids 
have a more predictable capacity factor because of the 
narrower range shown in Figure 7. 
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