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Abstract—Oversampling analog-to-digital converters often 

employ sinc-shaped filters for noise shaping and decimation. 
These digital filters exhibit a limited slew rate and other 
deterministic characteristics. By knowing these characteristics, 
consecutive samples of an analog-to-digital converter can be 
analyzed to verify fundamental data integrity. If excursions are 
observed, it is likely that some corruption of the digitized data 
has occurred and appropriate action can be taken. This paper 
develops a patent-pending error-checking method for analog-to-
digital converters and analyzes the transfer function for an Mth-
order sinc-shaped filter with an oversample ratio of N. It also 
solves the impulse and step responses of an arbitrary sinc filter 
and discusses several properties of the impulse and step 
responses via theorems with corresponding proofs. It proves that, 
for a sinc filter reporting values every Nth term referred to the 
input rate, there is a maximum change in value between any two 
consecutive output samples. The paper calculates the maximum 
change in value for a sinc filter of an arbitrary order and 
decimation rate. Finally, additional characteristics of limited slew 
rates are discussed, and a three-limit error-checking scheme is 
developed for the specific case of a third-order modulator with an 
oversample ratio of 64. Test results using a commercially 
available analog-to-digital converter are presented, which 
indicate that the error-checking scheme is useful for detecting 
catastrophic data converter failures. 

Index Terms—Analog-to-digital conversion, digital filters, fault 
detection, sigma-delta modulation. 

I. INTRODUCTION 
S digital technology continues to permeate our modern 
world, ever more important decisions are made by 

intelligent electronic devices (IEDs). IEDs often employ 
analog-to-digital converters (ADCs) as their primary, if not 
sole, window into the analog world and often place utmost 
trust on ADC conversion results. ADC conversion failures in 
mission-critical applications are a dominant concern in 
contemporary electronic design. 

ADC integrity has traditionally been verified by several 
methods, including multiplexing a known voltage (e.g., 
ground or a reference voltage) [1], injecting a test tone [2], or 
implementing voting methods with redundant cross-checking 
ADCs [3]. IEDs that require significant accuracy and precision 
may use oversampling ADCs with a delta-sigma (∆Σ) 

 
 

topology. These ADCs employ digital filters for noise shaping 
and decimation [4]. Sinc-shaped filters are a popular choice 
for ∆Σ applications. However, these digital filters often 
introduce appreciable latency, and this latency is often seen as 
a primary disadvantage of ∆Σ ADCs [5]. 

Because of these digital filters, traditional error-checking 
methods (e.g., sampling the ground voltage) are often not 
possible for ∆Σ ADCs without adding significant complexity 
and latency to the data acquisition system. This paper 
develops a patent-pending error-checking method that 
capitalizes on the limited slew rate properties of the internal 
sinc-shaped filters, also known as simply sinc filters or 
cascaded integrator-comb (CIC) filters [6] [7]. When 
subjected to a step input (u[n]), sinc filters exhibit a nonzero 
finite rise time (dV/dn), as shown in Fig. 1. This rise time 
represents the fastest possible slew rate of the filter. By 
comparing the difference between every pair of consecutive 
samples being reported by the ∆Σ converter, a system can 
have some confidence that severe digital corruption has not 
occurred. 

H(z)u[n] dVMaximum
dn

 
Fig. 1. The step response of a sinc filter with transfer function H(z) has a 
finite, nonzero rise time or a maximum dV/dn if the output is given in volts. 

For example, a commercially available ∆Σ ADC suffered a 
severe overvoltage event on its inputs. The ADC immediately 
began producing the data shown in Fig. 2. These data, 
according to the method presented in this paper, can be 
detected as characteristic of a faulty ADC because several sets 
of data points exceed the fastest slew rate possible from the 
ADC’s internal sinc filter. A system with no knowledge of the 
ADC’s internal characteristics can react to faulty data with a 
potentially catastrophic action (e.g., tripping a breaker). If, 
however, the system recognizes that the data do not conform 
to the mathematical characteristics of a properly working ∆Σ 
ADC, the data can be disregarded or other appropriate action 
taken. 
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Fig. 2. Digital output referenced to the full scale of a commercially available 
∆Σ after an overvoltage stress condition (%FS is the percent of full-scale ADC 
range). In a properly working ∆Σ ADC, the difference between consecutive 
samples is limited by the mathematical properties of the internal sinc filter. 
Several samples in this data set exceed these limitations, indicating a faulty 
ADC. 

In the development of the error-checking method, this paper 
analyzes the transfer function for an Mth-order sinc filter with 
an oversample ratio of N and solves the impulse and step 
responses of an arbitrary sinc filter. Several properties of the 
impulse and step responses are discussed via theorems with 
corresponding proofs. 

The paper proves that for a sinc filter reporting values every 
Nth term referred to the input rate, there is a maximum change 
in value between any two consecutive output samples. The 
maximum change in value for a sinc filter of arbitrary order 
and decimation rate is calculated. 

Finally, the paper discusses additional characteristics of 
limited slew rates and develops a three-limit error-checking 
scheme for the specific case of a third-order modulator with an 
oversample ratio of 64. Test results using a commercially 
available ADC are presented, which indicate that the 
calculations conform closely to physical reality. 

II. ALGEBRAIC EXPANSION OF SINC FILTER  
TRANSFER FUNCTION 

Begin with the z-domain transfer function of an Mth-order 
sinc filter with an oversample ratio of N, as shown in (1): 

  
MN

1
1 zH z
1 z





     
  (1) 

The expression for a first-order sinc filter resembles the 
closed-form solution to a finite geometric series [8], as shown 
in (2). 
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Thus, the Mth-order sinc filter can be written as (3). 

     MN 11 2H z 1 z z ... z         (3) 

Expand this into the form shown in (4), where each Ca, a ∈ 
[0, M(N – 1)] is a coefficient resulting from the expansion. 
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This is a special case of the classic multinomial expansion 
problem. The general solution for multinomial expansion is 
given by the multinomial theorem [8], the computation of 
which usually requires recursive summations in which each 
coefficient depends on the preceding ones.1 A nonrecursive, 
closed-form solution for each coefficient was first solved by 
de Moivre in 1711 [11]. In keeping with the notation of the 
binomial theorem, the expansion is notated as shown in (5). 

  L2 q

0 q

L
1 x x ... x x



           a

a a
  (5) 

Note that 
1

L L              a a
 (the usual binomial coefficient) and 

q

L
0

      a
 for all a > qL. The multinomial coefficients2 are shown 

in (6). 
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  (6) 

Writing (6) in terms of the sinc filter yields the coefficients 
of (4), as shown in (7). 
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  (7) 

Summarizing and writing the completely expanded general 
sinc filter transfer function3 results in (8). 
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  (8) 

 
1 See the so-called Villareal Method for an explicit recursive formula in [9] 

as well as the method developed by Leonhard Euler in [10]. 
2 Arrays of multinomial coefficients are often referred to in the literature as 

Pascal’s pyramids or generalized Pascal triangles. Here 
q

L
a
     

 is referred to 

simply as a multinomial coefficient. 
3 Eugene Hogenauer, who is credited with inventing the CIC filter, arrives 

at the same transfer function expansion using similar techniques in [12]. 
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III. PROPERTIES OF SINC FILTER TRANSFER FUNCTION 
This section provides several theorems and corresponding 

proofs based on the prior discussion. These properties are 
useful for understanding the nature of the sinc filter and are 
necessary to derive the maximum dV/dt relationship described 
in Section I. 

A. Theorem 3.1 
Let h[n] = Ƶ−1 {H(z)} be the impulse response of an 

Mth-order sinc filter with an oversampling ratio of N and the 
transfer function shown in (9). 

  
MN

1
1 zH z
1 z





     
  (9) 

The value of h[n] for any sample n ∈ ℕ is precisely equal to 
a corresponding multinomial coefficient (ℕ is the set of 
natural numbers, i.e., positive integers). Theorem 3.1 is shown 
in (10). 
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B. Theorem 3.1 Proof 
Let Ƶ−1 be the inverse z-transform operator, as shown in 

(11). 
    1 : H z h n Z   (11) 
The impulse response h[n] of a discrete-time system is 

defined as the inverse z-transform of the system’s transfer 
function H(z). Begin with H(z), as shown in (12). 
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Then take the inverse z-transform: 
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C. Theorem 3.2 
Let h[n] = Ƶ−1 {H(z)} be the impulse response of an 

Mth-order sinc filter with an oversampling ratio of N and 
transfer function (9). The impulse response h[n] exhibits 
time-reflective symmetry about (14). 
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n
2


   (14) 

This time-reflective symmetry property of the impulse 
response can be stated as (15). 
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Given Theorem 3.1, (15) can be rewritten as  
(16) (Theorem 3.2). 
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D. Theorem 3.2 Proof 
The property shown in (17) is already well-established [11]. 
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Therefore, the proof of Theorem 3.2 is as shown in (18). 
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E. Theorem 3.3 
Let h[n] = Ƶ−1 {H(z)} be the impulse response of an 

Mth-order sinc filter with an oversampling ratio of N and 
transfer function (9). The impulse response h[n] ≥ 0 ∀ n ∈ ℕ 
(Theorem 3.3). 

F. Theorem 3.3 Proof 
Visiting the geometric series form of H(z) in (3) and 

applying the Multinomial Theorem [8] results in (19): 
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where (20) is a multinomial coefficient. 
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Inspection of (20) shows that the multinomial coefficients 
are always nonnegative for n,ki ∈ ℕ ∀ i ∈ ℕ. Based on 
Theorem 3.1, this results in (21). 

  h n 0 n     (21) 

G. Definition 
Call a polynomial A(x) = a0 + a1x + a2x2 + ··· + anxn 

unimodal if there is some t such that for i < j ≤ t, ai ≤ aj, and 
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for t ≤ i < j, ai ≥ aj. In other words, the coefficients rise 
monotonically to a maximum and then decrease 
monotonically. Call the polynomial A(x) symmetric if for all 
i, ai = an − i. 

H. Lemma 3.4 
If A(x) and B(x) are two symmetric unimodal polynomials, 

then A(x)B(x) is a symmetric unimodal polynomial.4 

I. Lemma 3.4 Proof 
Begin with (22) and (23). 
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Then rewrite the polynomials from (22) in the form shown 
in (24). 
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This results in (25). 
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Note that each term of this sum is a symmetric, unimodal 
polynomial centered around x(m + n)/2. Therefore, the sum 
A(x)B(x) itself is a symmetric, unimodal polynomial centered 
around x(m + n)/2, as desired.   

J. Theorem 3.5 
Let h[n] = Ƶ−1 {H(z)} be the impulse response of an 

Mth-order sinc filter with an oversampling ratio of N and 
transfer function (9). The impulse response h[n] 
monotonically rises to a global maximum centered at  
M(N – 1)/2, as shown in (26) (Theorem 3.5) 

     M N 1
Max h n h
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K. Theorem 3.5 Proof 
Referring to (3), (1 + z−1 + z−2 + ··· + z−(N − 1)) is a unimodal, 

symmetric polynomial. Applying Lemma 3.4 M − 1 times 
shows that H(z) is also a unimodal, symmetric polynomial. 
Furthermore, the symmetry is located around M(N − 1)/2, as 
expected by Theorem 3.2.   

 
4 Lemma 3.4 is a well-known result in combinatorics and is stated and 

proved in [13]. 

L. Theorem 3.6 
Begin with (27) as the step response5 of an Mth-order sinc 

filter with an oversampling ratio of N and transfer function  
(9). 
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Equation (28) therefore holds (Theorem 3.6). 
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M. Theorem 3.6 Proof 
Begin with (29). 
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Rewrite the equation as a convolution in discrete time, as 
shown in (30). 

      h n * u n * n  a   (30) 
Express the convolution as a sum [14], as shown in (31). 
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Substitute Theorem 3.1 into (31), as shown in (32). 

 

 

 

 

k 0 N 1

n

k 0 N 1

n

j 0 N 1

M
* n

n k

M
* n

n k

M
* n

j



 

 

 

              

              

                







a

a

a

  (32) 

Apply the convolution with impulses [15], as shown in (33). 

 
n n

j 0 j 0N 1 N 1

M M
j j



  

                 
a

a
   (33) 

N. Theorem 3.7 
Begin with (34) as the step response of an Mth-order sinc 

filter with an oversampling ratio of N and transfer function  
(9). 

    1
1

1H n H z
1 z




        
Z   (34) 

Equation (35) holds (Theorem 3.7). 
   M

n
lim H n N


   (35) 

Furthermore, the step response H[n] settles when the time 
value is n = M(N − 1). 
 

5 Note that traditionally a unit step function in the z-domain is simply  
1/(1 – z–1). However, because the input to a sinc filter is at a higher sample 
rate than the output after decimation, the “step response” of the sinc filter 
changes depending on where the transient input occurs in a “conversion 
cycle” (N samples). Therefore, a delay of a samples (z−a in the z-domain) is 
included for purposes shown later in this document. 
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O. Theorem 3.7 Proof 
Based on Theorem 3.6, (36) is the sum of all multinomial 

coefficients. 

  
n

n n j 0 N 1

M
lim H n lim

j 
 

         (36) 

Note that 
N 1

M
0

n 

      
 for n > M(N – 1). 

Applying the results from Theorem 3.6 results in (37). 

 
 

 

 

M N 1
j

j 0 N 1
M1 N 1

M
H z z

j

1 z ... z




 

  

      

   


  (37) 

Substituting z−a = 1 for all a immediately demonstrates (38). 

 
 M N 1

M

j 0 N 1

M
N

j



 

         (38) 

Also, note (39). 

  
N 1

M
0 j M N 1

j 

         
  (39) 

The step response settles to H[n] = NM at n = M(N − 1)  . 

P. Normalized Step Response Definition 
Using the result of Theorem 3.7, define the normalized step 

response of a sinc filter, as shown in (40). 

  
n

H M
j 0 N 1

M1H n,
jN  

       a
a

  (40) 

That is, the step response settles to 1 and the intermediate 
values can be viewed as percentages of the final value (%FS). 
From here on, all step responses are assumed to be normalized 
unless otherwise noted. Additionally, no special notation is 
used to indicate normalization: H||H||[n,a] ≡ H[n,a]. 

IV. DECIMATED SINC FILTER WITH DECIMATION RATIO N 
Sinc filters are primarily used for decimation in 

oversampling ADCs. Usually, the output of the sinc filter is 
not reported at the modulator rate but rather is reported every 
N samples. A physical implementation of a first-order sinc 
filter is simply a counter that implements an accumulate-and-
dump scheme [6], [16], [17]. Thus, a sinc filter and decimator 
may be one and the same and perform filtering and decimation 
simultaneously. Fig. 3 shows the step response of a third-order 
sinc filter decimated every 64 samples at the modulator rate 
(M = 3, N = 64). 

Henceforth, “decimated sinc filter” will mean simply a sinc 
filter whose output is taken every N samples, where N is the 
oversample ratio. Thus, the step response of a decimated sinc 
filter, per (40), is as shown in (41). 

    
Nn

dec M
j 0 N 1

M1H n, H nN,
jN  

        a a
a

  (41) 

 
n

j 0 N 1

M
H n

j 

      

Decimated Output:
H[64 * n],
n = 0, 1, 2, ...
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Fig. 3. Step response of a third-order sinc filter decimated every 64 samples 
(M = 3, N = 64). The curve is the output of the sinc filter at the modulator 
rate: (28) with a = 0. The individual points are the values of H[n] evaluated 
every 64th n. 

V. MAXIMUM CHANGE IN VALUE BETWEEN TWO 
CONSECUTIVE DECIMATED SINC FILTER OUTPUT SAMPLES 
In linear time-invariant (LTI) systems, the impulse response 

is the derivative of the step response and, hence, the maximum 
value of the impulse response indicates the location of the 
maximum rate of change for the step response. Theorem 3.5 
shows that this maximum rate of change must therefore occur 
at (14). The difference between two consecutive values of the 
decimated step response6 is as shown in (42). 

 

     
 

 

dec dec

N x 1 Nx

M M
j 0 j 0N 1 N 1

Nx

M
j x N 1 N 1

H x 1 H x 1 H x

M M1 1
j jN N

M1
jN

for x



  

  

    

               

      



 





  (42) 

An example of the impulse response and step response for a 
third-order sinc filter with an oversample ratio of N = 128 is 
shown in Fig. 4. 

 M N 1
n

2



 

n

j 0 N 1

M
H n

j 

      

 
N 1

M
h n

n 

      

Decimated Sample Number

Im
pu

ls
e 

an
d 
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te

p 
R
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e

1 432
 

Fig. 4. Impulse response h[n] and step response H[n] for an example sinc 
filter (N = 128, M = 3). The time value corresponding to n = M(N – 1)/2 
indicates the location of the maximum rate of change of the step response. 
(not drawn to scale.) 

 
6 Here, the step response “shift” factor a is neglected because it is a constant 

shift that does not affect the maximum change between consecutive samples. 
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TABLE I 
MAXIMUM CHANGE IN VALUE BETWEEN TWO CONSECUTIVE SAMPLES OF DECIMATED SINC FILTER OUTPUT  

NORMALIZED TO FULL SCALE FOR VARIOUS M AND N CALCULATED FROM (43) 

M  
N 

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 0.875 0.813 0.781 0.766 0.758 0.754 0.752 0.751 0.750 0.750 0.750 

3 1 0.750 0.688 0.672 0.668 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 

4 1 0.875 0.727 0.661 0.629 0.614 0.606 0.603 0.601 0.600 0.599 0.599 0.599 

5 1 0.625 0.566 0.554 0.551 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

6 1 0.781 0.631 0.568 0.534 0.525 0.518 0.514 0.513 0.512 0.511 0.511 0.511 

7 1 0.547 0.494 0.483 0.480 0.480 0.479 0.479 0.479 0.479 0.479 0.479 0.479 

8 1 0.711 0.565 0.506 0.479 0.466 0.459 0.456 0.454 0.454 0.453 0.453 0.453 

9 1 0.492 0.444 0.434 0.431 0.431 0.430 0.430 0.430 0.430 0.430 0.430 0.430 

10 1 0.656 0.516 0.460 0.435 0.423 0.417 0.414 0.412 0.412 0.411 0.411 0.411 

 
It is trivial to show by symmetry and the unimodal / global 

maximum properties of the impulse response (Theorems 3.2 
and 3.5) that the summation index for the maximum change in 
two consecutive decimated values must include M(N – 1)/2. 
For an oversample ratio N, then, the summation in (42) must 
range N/2 below the global maximum to N/2 above the global 
maximum. Note that M(N – 1)/2 may be non-integer when N 
is even. In this case, M(N – 1)/2 ± N/2 may also be 
non-integer. Thus, the upper limit of the summation must be 
rounded down and the lower limit rounded up, as shown in 
(43), the final expression for maximum change in consecutive 
samples. 

   
 

 M N 1 N
2 2

dec Mn M N 1 N 1Nj
2 2

M1max H n
jN

     

        

       


  (43) 

Table I provides values generated from (43) for a common 
range of M and N. 

Furthermore, the value of a (the time-shift of the input step 
function) that generates this maximum dV/dt can be 
calculated. Simply taking the lower index of the summation in 
(43) and determining the number of modulator samples it is 
away from a multiple of N shows how much to shift the input 
step function to achieve the maximum dV/dt: 

  
max dV/dt

M N 1 NN mod N
2 2

            
a   (44) 

VI. EXAMPLE OF SLEW RATE CALCULATION FOR A 
COMMERCIALLY AVAILABLE ∆Σ ADC 

This section examines a specific third-order sinc filter 
contained in a commercially available ∆Σ ADC. The transfer 
function provided for the commercially available ADC is 
shown in (45), where N is the oversampling ratio. 

  
3N

1
1 zH z
1 z





     
  (45) 

With a fixed modulator clock of 1.024 MHz and an 
oversampling ratio of N = 64, the maximum change between 
two samples calculated by (43) is 66.675 %FS. 

Fig. 5 graphs (43) versus the output data rate of the ADC 
(that is, versus N), which shows how the maximum change 
between two consecutive samples changes depending on the 
oversample ratio. 
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Fig. 5. Maximum change between two consecutive samples for 
commercially available ∆Σ ADC at various sample rates (dictating the 
oversample ratio N). 

Using (44) to calculate for the 16 kHz case (N = 64) shows 
that the time shift on the input step function that causes the 
maximum dV/dt is as shown in (46). 

 

 

 

max dV/dt
M N 1 NN mod N

2 2

3 64 1 6464 mod64
2 2

2

            
            



a

  (46) 



 7 

The decimated step response values, calculated using (41), 
are given in Table II. 

TABLE II 
VALUES OF ∆Σ ADC STEP RESPONSE THAT INCLUDE MAXIMUM DV/DT 

GENERATED FROM (41) FOR N = 64, M = 3, AND a = 2 

Sample Number Step Response  
Value Change in Value dV/dt 

0 0 0 

1 1365
8192

 1365 0.16663
8192

  

2 6827
8192

 2731 0.66675
4096

  

3 1 1365 0.16663
8192

  

VII. OTHER SINC FILTER CHARACTERISTICS FOR A SPECIFIC 
FILTER CONFIGURATION 

Whereas the previously developed method compares 
individual discrete-time derivatives to a maximum threshold, 
sinc filters exhibit other characteristics involving 
combinations of discrete-time derivatives that can be reliably 
used for fault detection. This section continues to use the 
commercially available ∆Σ ADC containing a third-order sinc 
filter with an oversample rate of 64 with a full-scale range of 
Vref = ±2.4 V. 

A. Fault Detection With Combination of Two Derivatives 
Examining the step response of the ADC’s transfer function 

(45) shows that the geometric mean of two consecutive 
derivatives moving in the same direction is limited by some 
number x, as defined in (47). 

 
2 2

t n t n 1

dV dV x
dt dt  

                
  (47) 

This must be the case because two consecutive derivatives 
in the same direction cannot both be too large and overshoot 
an ADC’s full-scale range. Begin by setting the time-shift 
parameter a = 0 to give the step response shown in Fig. 6. 

Table III shows the values from Fig. 6 along with the 
magnitude of the vector defined by two consecutive dV/dt 
values. As shown in Table III, the maximum value of the 
magnitude of the vector defined by two consecutive dV/dt 
values that have the same sign has a limit. By empirically 
exhaustive methods (i.e., generating a list of step responses for 
all possible time shifts a ∈ [0,64]) it can be determined that 
a = 0 produces the maximum magnitude value. Thus, the limit 

can be defined as shown in (48) (for the specific case of 
N = 64, M = 3). 

 
2 2

ref
t n t n 1

dV dV 0.6904 • V
dt dt  

                
  (48) 

Note that this limit is predicated on the assumption that 

t n

dV
dt 

 and 
t n 1

dV
dt  

 are both positive or both negative. A 

different expression, not calculated here, can be derived for 
cases where the two consecutive derivatives are of differing 
signs. 
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Fig. 6. Step response of commercially available ∆Σ ADC (N = 64, M = 3) 
running in 16 kHz mode with the time-shift factor a = 0. 

A function generator was used to apply several different 
types of signals to the input of the commercially available ∆Σ 
ADC previously described: nearly full-scale square waves 
sweeping from 10 Hz to 8 kHz, sine waves sweeping from 
10 Hz to 8 kHz, full-scale white noise, sawtooth waves, and so 
on. Approximately 1.6 million data points from the ADC 
output were recorded. Calculating the dV/dt for each set of 
samples and plotting the current dV/dt versus the previous one 
results in Fig. 7. 

The maximum dV/dt limit boundary of (43) and the 
magnitude test of (48) are plotted as the thick black lines. All 
data points remain within the calculated limits. Note that the 
actual data contours in Quadrants I and III of Fig. 7 seem to 
indicate an actual limit somewhat closer to the origin than the 
limits calculated. It is speculated that this is due to the nonzero 
rise time of the function generator as well as the presence of a 
small resistor-capacitor (RC) filter at the input to the ADC 
being tested. These prevented the ADC from seeing a perfect 
step input. 

TABLE III 
VALUES OF STEP RESPONSE SHOWN IN FIG. 6 AND THE CORRESPONDING DV/DT VALUES 

n h[n]    
t=n

dV = h n – h n – 1
dt

 
               

2 2

t=n t=n –1

dV dV+
dt dt

 

0 0 0 NA  

1 3.8147E–06 3.8147E–06 3.8147E–06 

2 0.182731628 0.182727814 0.182727814 

3 0.848514557 0.665782928 0.690403043 

4 1 0.151485443 0.6827992 
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Fig. 7. Plot of the current difference between samples and the previous 
difference between samples for 1.6 million data points from a commercially 
available ∆Σ ADC. The plotted boundaries are a combination of the maximum 
dV/dt [= 66.675 %FS from (43)] and the maximum magnitude test from (48). 

B. Fault Detection With a Combination of Three Derivatives 
For a third-order sinc filter with an oversample ratio of 64, 

the geometric mean of any two derivatives of the same sign is 
limited. By examining how the step response of this sinc filter 
changes as the time shift of the input transient a varies from 
0 to 64 (as shown in Fig. 8), a further limitation can be 
recognized. 
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Fig. 8. Step response of commercially available ∆Σ ADC running in 16 kHz 
mode (oversample rate of 64). The parameter a (which is simply the time shift 
of the input step function) is varied from 0 to 64 to show how the decimated 
step response changes depending on when the input step transient occurs. 

Assuming the sinc filter is completely “settled” (i.e., the 
filter’s output is not changing), the derivative between n = 1 
and n = 2 is inversely proportional to the previous derivative 

between n = 0 and n = 1. That is, when 
t n 1

dV
dt  

 is small, 
t n

dV
dt 

 

cannot be as large as the maximum slew rate limitation 

calculated in (43). However, when 
t n 1

dV
dt  

is large enough, 

t n

dV
dt 

 can be up to the filter’s maximum limit. 

When developing the error-checking technique, a derivative 
cannot simply be compared with the previous one because 
there is no indication of whether the filter is settled as 

predicated in Fig. 8. Thus, the sample prior to 
t n 1

dV
dt  

 must be 

included. In the example of Fig. 8, this value is zero, resulting 
in (49). 

 
2 2

t n 1 t n 2 t n 1

dV dV dV
dt dt dt     

                
  (49) 

Note that 
t n 1

dV
dt  

 can take many different values, depending 

on the time shift of the input step function set by a. Note also 
that this value defines a limit on the current dV/dt. However, 
for implementation purposes, look at the magnitude of the last 
two samples to ensure that this represents a settled value. 
Based on (42), this results in (50). 

 
N

M
t 1 j 0 N 1

MdV 1
jdt N  

        a
  (50) 

Plotting this value against the next derivative gives the 
curve shown in Fig. 9. 

 
 

2N

M
t 2 j N N 1

MdV 1
jdt N

for 0,64
  

       



 a

a

  (51) 

Also plotted in Fig. 9 are the same data as shown in Fig. 7 
with the magnitude of the previous two derivatives plotted on 
the horizontal axis and the magnitude of the current derivative 
on the vertical axis. Note that not one of the 1.6 million data 
points collected crosses the limit line. 

By comparing the combination of three derivatives to the 
calculated limits, an error can be detected if the difference 
between two samples exceeds the limit line. Note that when 
the geometric mean of two previous derivatives is small, the 
maximum limit of the current derivative is also smaller than 
the maximum limit calculated by (43). This may produce 
tighter limits, allowing more subtle errors to be detected.
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Fig. 9. Plot of 1.6 million data points from a commercially available ∆Σ ADC. The limit line is described by (51) plotted as vertical values against (50) on the 
horizontal axis for a ∈ [0,64]. 

VIII. CONCLUSION 
Oversampling ∆Σ ADCs offer unparalleled accuracy and 

precision. The oversampling ADC topology necessitates that 
digital filtering be implemented to noise shape and 
decimation. The digital filter latency can be a barrier to 
multiplexing in test signals to verify the ADC health. A 
rudimentary verification of the ADC’s integrity can be 
determined by comparing data from the ADC with known 
filter characteristics. The internal sinc-shaped filters common 
to ∆Σ ADCs exhibit a limited output swing characteristic. That 
is, the derivative of samples from a sinc filter has a finite limit 
that can be calculated. In addition, combinations of these 
derivatives can be used to discern data conformance to other 
filter characteristics. This paper demonstrates, by calculation 
and test results, an error-checking method for ∆Σ ADCs that is 
simple to implement. 

Further work in this area may include developing the error-
checking methods for the combination of two and three 
derivatives in a general case for a sinc filter of an arbitrary 
order and oversample ratio. 
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