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Analyzing Faulted Transmission Lines:  
Phase Components as an Alternative  

to Symmetrical Components 
Steven Chase, Sumit Sawai, and Amol Kathe, Schweitzer Engineering Laboratories, Inc. 

Abstract—Protection engineers are often interested in 
calculating the steady-state voltages and currents on faulted 
transmission lines. This necessitates the use of accurate fault 
solution techniques. The most commonly taught and used methods 
involve symmetrical components. Symmetrical components are 
advantageous in that they yield multiple decoupled systems that 
are simple to solve. This simplicity was crucial before the advent 
of digital computers. With modern computers, it is equally easy to 
perform calculations with phase components (A, B, C) or with 
symmetrical components (positive, negative, zero). With 
symmetrical components, different circuit topologies must be used 
for different fault types, which can be inconvenient in practice. 
Additionally, symmetrical component techniques commonly 
assume line transposition and give oversimplified results for real-
life cases. 

This paper presents phase-domain solution methods as an 
alternative to symmetrical components. Phase-domain analysis 
allows all ten common shunt faults to be modeled using a single 
circuit topology. In exchange for this convenience, the 
phase-domain approach must account for mutual coupling 
between the three phases of a transmission line. However, this in 
turn allows phase-domain analysis to be used to model 
untransposed transmission lines without compromising the 
accuracy of the solution. 

This paper presents a general derivation for a steady-state, 
phase-domain transmission line solution and illustrates its 
practical use through several examples. Steady-state signals can 
be reliably used for testing traditional phasor-based relays. This 
steady-state solution is then translated into a time-domain 
equivalent, which numerically solves differential equations to 
accurately model the transition between prefault and fault states. 
Accurate modeling of state transitions makes this solution suitable 
for testing relays that use incremental quantities. 

I. INTRODUCTION 
Modern, microprocessor-based line protective relays 

implement a variety of sophisticated protection functions. A 
few examples of such functions include the following: 

• Distance elements  
• Directional elements 
• Fault location 

In order to test such protection functions, it is necessary to 
supply secondary voltage and current signals that have the 
correct magnitudes and relative phase relationships to the relay. 
In addition, it is often necessary to simulate both prefault and 
fault conditions and to accurately model the changes in the 
voltages and currents from one state to the next. 

This testing requires simulating a power system and using 
the simulation results to generate test signals. There are 
numerous solutions that meet this need, ranging from 
non-real-time transient analysis software programs run on PC 
computers to real-time simulators run on dedicated hardware. 
These applications are very general and powerful, allowing 
users to build and simulate arbitrarily complex power systems 
using graphical user interfaces (GUI). Additionally, component 
models within these simulation products can be quite complex 
and can require users to enter simulation parameters that are not 
of immediate interest. 

In many cases, such as bench testing with a secondary test 
set, relatively few simulation parameters are of immediate 
interest. The following are some essential line and fault 
parameters: 

• Line positive- and zero-sequence impedances 
• Per-unit fault locations 
• Source voltage magnitudes and phase angles 
• Fault type and fault resistance 

In such simple cases, it is neither necessary nor desirable to 
explicitly account for complexities such as transmission line 
geometry and soil resistivity. These are implicitly encapsulated 
within the given essential line parameters, and it is often 
convenient for an engineer or test technician to simply declare 
these values. 

Additionally, certain system topologies, such as the classic 
two-source system with a transmission line, are used very 
frequently in simulations. Because engineers and technicians 
are often interested in only a few simulation parameters and 
because certain classic topologies are frequently used, 
handcrafted signal solvers can be very useful for supplementing 
more sophisticated and more demanding simulation tools. 
These solvers allow common fault scenarios to be simulated 
quickly and with minimal effort. 

Historically, engineering practice and education have relied 
heavily on symmetrical components for faulted transmission 
line analysis. The principal reason for this is the ability of 
symmetrical components to resolve an electromagnetically 
coupled, three-phase power system into a superposition of three 
decoupled power systems. These decoupled sequence networks 
(positive, negative, zero) are ideally suited to handwritten 
analysis. 
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In the modern computer age, the coupling between the three 
phases (A, B, and C) is less problematic, given the ability of 
software programs to solve relatively large linear systems with 
complex numbers as matrix entries. In addition, phase domain 
analysis offers several advantages over symmetrical 
components. A key advantage among these is the ability to 
model all ten common shunt faults using a single circuit 
topology. 

Section II of this paper introduces a simple, two-source 
power system model with a single transmission line that serves 
as an example system to demonstrate the differences between 
sequence-domain analysis and phase-domain analysis. This 
section also establishes some general nomenclature that is used 
throughout this paper. 

Section III briefly reviews symmetrical component analysis 
for faults on the system presented in Section II. This section 
illustrates the benefits and disadvantages of symmetrical 
component analysis. 

Section IV introduces a general shunt fault model that is 
used in faulted transmission line phase-domain analysis. This 
section presents a derivation for a system of linear equations 
that, when solved, yields the fault current for any of the ten 
standard shunt faults. These equations are applicable to the 
generation of steady-state fault signals that are useful for testing 
traditional phasor-based relays. We present derivations for 
transposed and untransposed lines. 

Section V presents test results for the single-circuit 
phase-domain solver. All ten shunt fault types were simulated 
and tested with a distance relay. 

Section VI develops a double-circuit, phase-domain model 
consisting of two parallel transmission lines with common 
buses on both ends. 

Section VII presents test results for the double-circuit, 
phase-domain solver. Examples illustrate the effect of 
zero-sequence mutual coupling on relay impedance 
calculations.  

Section VIII translates the two-source, single-line, 
steady-state model into an equivalent time-domain model. The 
time-domain model uses a state-space representation of the 
power system and implements numerical integration to solve 
for the time-varying currents and voltages on a faulted 
transmission line. 

Sections IX and X discuss the application of the 
phase-domain solver to the testing of time-domain, incremental 
quantity-based protection functions. Both ac steady-state and 
time-domain variants of the solver were tested, and the results 
presented in these sections illustrate the impact of the prefault 
to fault state transition on the time-domain incremental 
quantities and associated directional elements. 

 Finally, we provide some key conclusions. 

II. BASIC POWER SYSTEM MODEL AND NOMENCLATURE 
Fig. 1 illustrates the basic power system model that is central 

to the analysis presented in this paper. The model consists of 
two solidly grounded, three-phase system sources at the ends of 

a single transmission line. The source on the left is designated 
“S,” and the source on the right is designated “R.” There are 
two virtual relays at the line ends that are also designated “S” 
and “R.” 

For the system sources and the line, the phase-to-phase 
electromagnetic couplings are assumed to be identical, 
resulting in only two impedance parameters for each element: a 
self-impedance and a mutual impedance. The self-impedance 
and mutual impedance for System Source S are ZSS and ZMS, 
respectively. The self-impedances and mutual impedances for 
System Source R are ZSR and ZMR, respectively. The 
self-impedances and mutual impedances for the transmission 
line are ZS and ZM, respectively. 

These parameters correspond to an ideally transposed line 
(this assumption is relaxed in Section IV). For practical 
purposes, this system can be regarded as three ideally 
transposed transmission line segments in series with two ideal 
voltage sources. Of course, this arrangement does not exactly 
correspond to a real power system, but it is adequate for the 
general testing of line protective relays. 

Relay SRelay S

ZSS, ZMS

ZS, ZM

ZSR, ZMR

System Source S System Source R

Bus S Bus R

Relay R  

Fig. 1. Two-source power system with one transmission line 

III. FAULT ANALYSIS USING SYMMETRICAL COMPONENTS 
This section provides a very brief overview of some of the 

key aspects of fault analysis using symmetrical components. 
There is a vast amount of existing literature on this topic. 
Indeed, the fields of protective relaying and power system 
analysis have largely been built on these symmetrical 
component principles over roughly the past hundred years. 
Some introductory texts and papers on this subject include [1], 
[2], and [3]. 

The phenomenon of mutual electromagnetic coupling is 
fundamentally important in motivating the use of symmetrical 
components for power system analysis. Consider the change in 
voltage (voltage drop) over the length of a transmission line 
resulting from the current flowing through it. The voltage drop 
in a particular phase (e.g., Phase A) depends not only on the 
current flowing in Phase A but also on the current flowing in 
the neighboring Phases B and C. This phenomenon makes 
three-phase systems difficult to analyze in the phase-domain 
without the aid of computer software.  

Fig. 2 illustrates the voltages and currents during a Phase-C-
to-ground fault on a three-phase transmission line. Notice that 
the voltages in Phases A and B are disturbed, even though there 
are no prominent disturbances in the Phase A and Phase B 
currents. The change in the Phase C current alters the Phase A 
and Phase B voltages via electromagnetic coupling. 
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Fig. 2. Electromagnetic coupling illustration  

The relationship between the Phase A voltage drop and the 
Phase A current is encapsulated in the self-impedance of the 
transmission line. The relationship between the Phase A voltage 
drop and the Phase B and Phase C currents is encapsulated by 
the mutual impedance of the transmission line. Similar 
statements can be made for the Phase B and Phase C voltage 
drops. Equation (1) illustrates this mathematically. The voltage 
and current quantities in (1) are complex vectors, but for 
convenience, they are represented without vector notation, 
relying instead on capital letters to denote complex values. The 
terms VSRA, VSRB, and VSRC are the voltage drops over the 
length of the transmission line (see Fig. 1). 

 
SRA S M M A

SRB M S M B

M M S CSRC

V Z Z Z I
V Z Z Z • I

Z Z Z IV

     
     =     
         

  (1) 

Recall the transformation between phase-domain (A, B, C) 
and sequence-domain (zero [0], positive [1], and negative [2]) 
quantities for an ABC phase rotation as shown in (2). This 
transformation is equally applicable to both voltages and 
currents. The equations are written considering Phase A as the 
reference, and we follow this same convention throughout the 
paper.  

 

[ ]2

2

2 –1

2

1 1 1qA q0 q0
qB 1 a a • q1 A • q1
qC q2 q21 a a

1 1 1q0 qA qA
1q1 • 1 a a • qB A • qB
3

q2 qC qC1 a a

      
      = =      
            

      
       = =       
            

  (2) 

where: 
a = ej • 120° 

j 1= −  
q = voltage or current 

Replacing the phase quantities in (1) with the sequence 
quantities via matrix transformation yields the relationship 
between the sequence voltage drops and the sequence currents,  

shown in (3). For an ideally transposed line, the transmission 
line voltage drop in each sequence depends only on the current 
in that same sequence (i.e., the zero-sequence voltage drop 
depends only on the zero-sequence current). This is the 
principal advantage of symmetrical component analysis. 
Symmetrical components split a coupled system, which is 
difficult to solve by hand, into three decoupled systems, each 
of which is relatively easy to solve without the aid of advanced 
tools. 

 

[ ] [ ]

[ ]

SR0 S M M 0

SR1 M S M 1

SR 2 M M S 2

SR0 S M M 0
–1

SR1 M S M 1

SR 2 M M S 2

SR0 0 0

SR1 1 1

SR 2 2 2

V Z Z Z I
A V Z Z Z • A • I

V Z Z Z I

V Z Z Z I
V A Z Z Z • A • I
V Z Z Z I

V Z 0 0 I
V 0 Z 0 • I
V 0 0 Z I

     
     =     
         
     
      =      
         
   
   =   
     

 
 
 
  

  (3) 

where: 
Z0 = ZS + 2 • ZM 

Z1 = Z2 = ZS – ZM 
We now show, without derivation, some of the classic 

sequence network representations of common shunt faults. 
Fig. 3, Fig. 4, and Fig. 5 illustrate the sequence networks for an 
AG fault (Phase-A-to-ground), a BC fault (Phase-B-to-
Phase-C), and a BCG fault (Phase-B-to-Phase-C-to-ground), 
respectively [4]. These figures each show a two-source network 
with a single transmission line. The transmission line is faulted 
at a per-unit location denoted as m. For example, a fault at 
50 percent of the line length relative to Relay S has an 
associated m value of 0.5 pu. Because the system sources 
produce only positive-sequence voltage, only the 
positive-sequence network contains sources. In these figures, 
RF refers to the fault resistance. 

V1S V1R

Z1S Z1R

(1 – m)Z1m•Z1

m•Z2

m•Z0 (1 – m)Z0

(1 – m)Z2

Z2S

Z0S Z0R

Z2R

3•RF

I0R

I2R

I1R

I0S

I2S

I1S

I0F

I2F

I1F
Relay RRelay S

 

Fig. 3. Sequence networks for an AG fault 



4 

V1S V1R

Z1S Z1R

(1 – m)Z1m•Z1

m•Z2 (1 – m)Z2

Z2S Z2R

RF

I2R

I1R

I2S

I1S

I2F

I1F

Relay S Relay R

 

Fig. 4. Sequence networks for a BC fault 

V1S V1R

Z1S Z1R

(1 – m)Z1m•Z1

m•Z2

m•Z0 (1 – m)Z0

(1 – m)Z2

Z2S

Z0S Z0R

Z2R

3•RF

I0R

I2R

I1R

I0S

I2S

I1S

I0F

I2F

I1F
Relay S Relay R

 

Fig. 5. Sequence networks for a BCG fault 

These figures clearly illustrate that different fault types 
result in different topologies when the power system is 
represented in terms of sequence networks. For the shunt faults, 
the zero-sequence network is only present when the ground is 
involved. The positive-sequence and negative-sequence 
networks are in series for single-line-to-ground faults and are 
parallel (neglecting fault resistance) for line-to-line faults. 

Additionally, the relationships between the sequence 
quantities depend on which family the fault falls into. AG, BC, 
and BCG faults are most naturally described in terms of 
sequence quantities using Phase A as the reference (e.g., I0, I1, 
I2 = IA0, IA1, IA2). Fig. 3, Fig. 4, and Fig. 5 thus illustrate the 
relationships between the Phase A sequence quantities. For a 
BG fault, the symmetrical component diagram would show the 
Phase B sequence quantities (e.g., I0, I1, I2 = IB0, IB1, IB2). 
To get back to the Phase A sequence quantities from the 
Phase B quantities requires a phase rotation. 

A general process outline for solving shunt faults using 
symmetrical components is as follows (note that there is some 
flexibility, subject to individual preference): 

1. Connect the sequence networks together 
appropriately, given the fault type. 

2. Determine the Thevenin equivalent circuit for each 
sequence network. 

3. Condense the impedances from the three Thevenin 
circuits into a total network impedance. 

4. Use Ohm’s law to calculate the total fault current from 
the positive-sequence voltage and the total network 
impedance. 

5. Use current division to determine how the total fault 
current splits between the S and R terminals. 

6. If the fault is not within the Phase A family, apply 
phase rotations as necessary to get back to the classic, 
symmetrical components (e.g., I0, I1, I2 = IA0, IA1, IA2) 
and ultimately back to the phase domain (A, B, C).  

While the decoupling of the sequence networks is very 
useful for engineers who want to perform calculations by hand, 
there can be considerable complexity involved with the fault 
calculations (outlined in Bullets 1 through 6 listed previously). 
This complexity derives primarily from the fact that the circuit 
topology varies with the fault type. 

IV. FAULT ANALYSIS IN THE PHASE DOMAIN 
Fig. 6 shows a three-phase power system that forms the basis 

of the analysis presented in this section. The voltage system 
sources VAS, VBS, and VCS drive the circuit on the S side, and 
the voltage sources VAR, VBR, and VCR drive the circuit on the R 
side. The S-side currents are IAS, IBS, and ICS, and the R-side 
currents are IAR, IBR, and ICR. The S-side system source has self-
impedance ZSS and mutual impedance ZMS, and the R-side 
system source has self-impedance ZSR and mutual impedance 
ZMR. The self-impedances and mutual impedances of the 
transmission line are ZS and ZM, respectively. The per-unit 
distance to the fault is m. Virtual relays are located at the S and 
R terminal power system buses. 

VASVBSVCS

RCFRAF RBF

RGF

m(ZS, ZM)

m(ZS, ZM)

m(ZS, ZM)

(1 – m)(ZS, ZM)

(1 – m)(ZS, ZM)

(1 – m)(ZS, ZM)

(ZSS,
ZMS)

ICS

IBS

IAS IAR

IBR

ICRVCF

VAF

VBF

VCRVBRVAR

(ZSR,
ZMR)

 

Fig. 6. Three-phase power system representation with fault circuit 

The fault circuit in Fig. 6 can be used to simulate any of the 
ten common shunt faults (AG, BG, CG, AB, BC, CA, ABG, 
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BCG, CAG, and ABC). Reference [5] presents the same fault 
circuit, also in the context of phase-domain analysis. 

In this scenario, the mutual impedances between the phases 
are equal, and the relationships between (Z1, Z0) and (ZS, ZM) 
are as expressed in (4). Similar relationships hold for the system 
source impedances, because the system source impedances are 
modeled as transmission line segments for convenience. Note 
that for this analysis, we have effectively transitioned from the 
sequence domain to the phase domain, and we have embraced 
the mutual coupling instead of avoiding it by using 
transformations. 

 
( )

( )

S 0 1

M 0 1

1Z Z 2Z
3
1Z Z Z
3

= +

= −
  (4) 

Fig. 7 illustrates the values RAF, RBF, RCF, and RGF that 
correspond to the bolted AG, BC, and CAG faults, as well as to 
the prefault condition. Other line-to-ground, line-to-line, and 
line-to-line-to-ground faults can be modeled similarly. In 
practice, large, finite numbers can be used in place of infinity. 

AG BC

0

0

0

0

RCFRAF RBF

RGF

Prefault

∞

∞

∞ ∞

RCFRAF RBF

RGF

∞ ∞
RCFRAF RBF

RGF

∞

∞

RCFRAF RBF

RGF

∞ 0

CAG

00

 
Fig. 7. Modeling various shunt faults using the three-phase fault circuit 

When solving the circuit in Fig. 6, the objective is to 
determine the three-phase voltages and currents at Relays S and 
R. We therefore solve for six steady-state currents and six 
steady-state voltages, all of which are represented as complex 
numbers in the ac steady-state solution. This solution consists 
of the following steps: 

1. Write six linear Kirchoff’s voltage law (KVL) 
equations that describe the power system. 

2. Represent the system in matrix form (Ax = B). 
3. Solve the linear system for the six unknown currents. 
4. Using the system currents, calculate the voltages at the 

power system buses (the virtual relay locations) by 
accounting for the voltage drops over the source 
impedances.  

We begin by writing and equating expressions for the phase 
voltages at the fault point (VAF, VBF, and VCF), as seen from 
the S side and the R side. The equations in (5) show the 
expressions for the fault voltages. 

  

( )
( )

( )
( )

( )
( )

( )
( ) ( ) ( )

AF _S AS SS AS MS BS CS

S AS M BS CS

BF _ S BS SS BS MS AS CS

S BS M AS CS

CF _S CS SS CS MS AS BS

S CS M AS BS

AF _ R AR SR AR MR BR CR

S AR M BR CR

B

V V Z • I Z I I

m • Z • I m • Z I I

V V Z • I Z I I

m • Z • I m • Z I I

V V Z • I Z I I

m • Z • I m • Z I I

V V Z • I Z I I

1 m Z • I 1 m Z I I

V

= − − +

− − +

= − − +

− − +

= − − +

− − +

= − − +

− − − − +

( )
( ) ( ) ( )

F _ R BR SR BR MR AR CR

S BR M AR CR

V Z • I Z I I

1 m Z • I 1 m Z I I

= − − +

− − − − +

   (5) 

 
( )

( ) ( ) ( )
CF _ R CR SR CR MR AR BR

S CR M AR BR

V V Z • I Z I I

1 m Z • I 1 m Z I I

= − − +

− − − − +
   

Equating these expressions gives (6): 

 
AF _ S AF _ R AF _ S AF _ R

BF _ S BF _ R BF _ S BF _ R

CF _ S CF _ R CF _ S CF _ R

V V V V 0

V V V V 0

V V V V 0

= → − =

= → − =

= → − =

 (6) 

The equations in (6) show the first three equations in the 
linear system. To form the next three equations, we create KVL 
loops that begin at the reference bus and travel through the 
S-side system sources, the line on the S-side of the fault, and 
the fault impedance before returning to the reference bus. The 
equations in (7) show the result. 

 

( )
( ) ( )

( )

( )
( ) ( )

( )

( )

AS SS AS MS BS CS

S AS M BS CS AF AS AR

GF AS AR BS BR CS CR

BS SS BS MS AS CS

S BS M AS CS BF BS BR

GF AS AR BS BR CS CR

CS SS CS MS AS BS

S CS

V Z • I Z I I

m • Z • I m • Z I I R I I

R I I I I I I 0

V Z • I Z I I

m • Z • I m • Z I I R I I

R I I I I I I 0

V Z • I Z I I

m • Z • I m •

− − +

− − + − +

− + + + + + =

− − +

− − + − +

− + + + + + =

− − +

− − ( ) ( )
( )

M AS BS CF CS CR

GF AS AR BS BR CS CR

Z I I R I I

R I I I I I I 0

+ − +

− + + + + + =

   (7) 

Putting the six linear equations into matrix form yields the 
six-by-six linear system given in (8) through (12). The solution 
of this linear system results in six complex numbers 
representing the currents measured by Relays S and R. These 
solutions are easily obtained by using modern computer 
software (via matrix inversion and other linear algebra 
techniques).
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( ) ( ) ( )
( ) ( ) ( )

SR S MR M MR M

MR M SR S MR M

MR M MR M SR S

–Z 1 m Z –Z 1 m Z –Z 1 m Z
UR –Z 1 m Z –Z 1 m Z –Z 1 m Z

–Z 1 m Z –Z 1 m Z –Z 1 m Z

 − − − − − −
 = − − − − − − 
 − − − − − − 

 (10) 

 [ ]
SS S AF GF MS M GF MS M GF

MS M GF SS S BF GF MS M GF

MS M GF MS M GF SS S CF GF

Z m • Z R R Z m • Z R Z m • Z R
BL Z m • Z R Z m • Z R R Z m • Z R

Z m • Z R Z m • Z R Z m • Z R R

+ + + + + + + 
 = + + + + + + + 
 + + + + + + + 

 (11) 

 [ ]
AF GF GF GF

GF BF GF GF

GF GF CF GF

R R R R
BR R R R R

R R R R

+ 
 = + 
 + 

 (12) 

Having solved for the currents, we can now determine the 
phase voltages at the S and R buses by taking the voltage drops 
over the source impedances, as shown in (13). 

 

( )
( )
( )
( )
( )
( )

AS_ relay AS SS AS MS BS CS

BS_ relay BS SS BS MS AS CS

CS_ relay CS SS CS MS AS BS

AR _ relay AR SR AR MR BR CR

BR _ relay BR SR BR MR AR CR

CR _ relay CR SR CR MR AR BR

V V Z • I Z • I I

V V Z • I Z • I I

V V Z • I Z • I I

V V Z • I Z • I I

V V Z • I Z • I I

V V Z • I Z • I I

= − − +

= − − +

= − − +

= − − +

= − − +

= − − +

  (13) 

At this point, the phase-domain solution has yielded 
complex numbers that represent the six voltages and six 
currents that correspond to the measurements taken by the 
virtual relays under steady-state fault conditions. These 
voltages and currents can be converted into time-varying, ac 
signals by using secondary test sets and associated software 
programs. Test software programs typically allow users to 
specify the secondary test signals in a complex format and are 
thus easily paired with the solution approach presented in this 
section. For relay testing, it is often useful to generate signals 
at the secondary level within the simulator (e.g., using 67 V for 
the line-to-neutral source voltage magnitude and entering 
secondary impedance parameters). 

Implementing the phase-domain solution requires an 
up-front investment in the form of writing equations and 
forming the system matrix. Care must be taken to properly 
account for the coupling interactions between the three phases 
of the power system and the transmission line. In exchange, the 
phase-domain solver allows all ten common shunt faults to be 

simulated with a single circuit topology. One general linear 
system is all that is required for basic distance-element testing. 
Given that a solver (phase- or sequence-domain) is likely to be 
implemented on a digital computer today, the single topology 
offered by the phase-domain solution can be considerably more 
convenient than the decoupling offered by symmetrical 
components. Modern computers make it easy to solve relatively 
large linear systems with complex-valued matrix entries. 

So far, we have considered transmission lines with ideal 
transposition, resulting in identical mutual impedances between 
the three phases. Consequently, the voltage drops in a particular 
sequence network depend only on the currents in that sequence 
network. If the line is not ideally transposed, the mutual 
impedances are not identical, and the result is a set of coupled 
sequence networks (with non-zero, off-diagonal terms in the 
sequence impedance matrix). For example, for an untransposed 
line, the positive-sequence current can induce a zero-sequence 
voltage drop. In order to derive exact results in such a case, 
engineers would be forced to write systems of equations in the 
sequence domain, which would resemble the coupled phase-
domain equations given previously in this section. While it is 
possible to neglect the coupling between sequence networks 
and still derive reasonably accurate results for an untransposed 
line, the fundamental advantage of symmetrical components is 
somewhat undermined in this case. 

In contrast, the phase-domain solution is explicitly built 
around these coupling interactions. In the case of an 
untransposed line, we simply modify the impedance matrices 
and corresponding voltage drop equations so that they take a 
more general form. Equation (14) shows how the impedance 
matrices are updated from the ideally transposed line case to the  
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more general case that accommodates untransposed lines. 
Conversions for the two system source impedances are similar 
but with the impedance terms having additional S and 
R subscripts. 

 
S M M AA AB AC

M S M BA BB BC

M M S CA CB CC

Z Z Z Z Z Z
Z Z Z Z Z Z
Z Z Z Z Z Z

   
   →   
      

  (14) 

These substitutions can be made in the linear system 
derivation, allowing (8) through (12) to be expressed as shown 
in (15) through (19), respectively. 

The more general phase-domain solution can be used to test 
the behavior of protective relay elements (which generally 
assume line transposition) for faults on untransposed lines. This 
solution (with generalized impedance parameters) gives 
accurate results for such cases. These tests can provide insights 
into the effects of coupling between sequence networks and can 
be useful for checking related relay settings.  

Thus far, we have focused solely on faults in the forward 
direction, as seen by the relays on either end of a single 
transmission line. Starting with the general phase-domain 
solution obtained previously, it is possible to create additional 
buses and relays in the power system based on the calculated 
voltages and currents at the line ends. This effectively allows 
users to simulate multiple series transmission line sections, 
each with its own pair of relays. Any fault on such a system 

appears forward to some relays and reverse to others. In this 
way, reverse faults can be simulated without any need to revise 
the general solution procedure. The following steps provide an 
example of such a process (refer to Fig. 8): 

1. Employ the general phase-domain solution described 
thus far using twice the actual line impedance in the 
system solution (Z′ = 2 • Z, where Z′ is entered as the 
line impedance in the solver). Note that the relays 
under test are set with Z as the line impedance. 

2. In the system solver, enter m′ as the per-unit fault 
location, where (m′ = (1– m)/2). The m parameter is 
the desired per-unit fault location seen by the virtual 
relays. Recall that the general solution presented 
previously assumes that the fault location is given 
relative to Relay S. 

3. Use the Relay R current for virtual Relay X, and use 
the negative of the Relay R current for virtual 
Relay Y. These relationships result from the CT 
polarities shown in Fig. 8. 

4. Calculate the voltage for virtual Relays X and Y as 
being equal to the Relay R voltage minus the voltage 
drop from Bus R to the virtual bus at the location of 
the virtual relays (VR – Z • IR). 

5. Observe that Relay X sees the fault in the forward 
direction with a measured impedance of m • Z, and 
Relay Y sees the fault in the reverse direction with a 
measured impedance of m • Z.

 

 
[ ] [ ]
[ ] [ ]

AS AR AS

BS BR BS

CS CR CS

AS AR

BS BR

CRCS

V V I
V V I
V V IUL UR

•
V IBL BR
V I

IV

−   
   −   
   −  

=    
     

   
   
     

 (15) 

 [ ]
AAS AA ABS AB ACS AC

BAS BA BBS BB BCS BC

CAS CA CBS CB CCS CC

Z m • Z Z m • Z Z m • Z
UL Z m • Z Z m • Z Z m • Z

Z m • Z Z m • Z Z m • Z

+ + + 
 = + + + 
 + + + 

 (16) 

 [ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

AAR AA ABR AB ACR AC

BAR BA BBR BB BCR BC

CAR CA CBR CB CCR CC

–Z 1 m Z –Z 1 m Z –Z 1 m Z
UR –Z 1 m Z –Z 1 m Z –Z 1 m Z

–Z 1 m Z –Z 1 m Z –Z 1 m Z

 − − − − − −
 = − − − − − − 
 − − − − − − 

 (17) 

 [ ]
AAS AA AF GF ABS AB GF ACS AC GF

BAS BA GF BBS BB BF GF BCS BC GF

CAS CA GF CBS CB GF CCS CC CF GF

Z m • Z R R Z m • Z R Z m • Z R
BL Z m • Z R Z m • Z R R Z m • Z R

Z m • Z R Z m • Z R Z m • Z R R

 + + + + + + +
 

= + + + + + + + 
 + + + + + + + 

 (18) 

 [ ]
AF GF GF GF

GF BF GF GF

GF GF CF GF

R R R R
BR R R R R

R R R R

+ 
 = + 
 + 

 (19) 
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The preceding description uses shorthand notation to 
describe the currents, voltages, and impedances on the system. 
In actuality, the calculations must account for all of the 
coupling interactions that are present, as in the other derivations 
presented in this section. The detailed calculations are very 
similar to those already discussed. 

VS
VR

Relay S Relay RRelay X Relay Y

IS IR = –IY = IX

VX = VY = VR – Z • IR

Z Z

m′  • Z′  = (1 – m) • Z m • Z

Z′  = 2 • Z  

Fig. 8. Creating virtual relays to simulate reverse faults 

V. SHUNT FAULT TEST RESULTS 
To test the performance of the single-line, phase-domain 

solver on an actual relay, we generated fault signals for various 
fault types (both in forward and reverse directions). Fault 
signals were applied to the local relay (Relay S) using a test set 
(see Fig. 1).  

A symmetrically transposed and homogeneous system with 
a source impedance ratio of 0.5 was simulated. The line and 
source setting parameters are specified in Table I. Zone 1 and 
Zone 2 were set to 80 percent and 120 percent of the line length, 
respectively. Zone 3 was set farther than the Zone 2 of the 
remote relay. 

As Table II illustrates, the relay operated correctly with 
accurate directionality and fault location for all the test cases. 
This serves as a validation of the phase-domain model.

 
TABLE I 

TEST SYSTEM DETAILS 

Line and 
Source 

Parameters 

Source End (S) Line Remote End (R) 

Magnitude  
(ohms primary) 

Angle  
(degrees) 

Magnitude  
(ohms primary) 

Angle  
(degrees) 

Magnitude  
(ohms primary) 

Angle  
(degrees) 

Z1 18.93 86 37.86 86 18.93 86 

Z0 69.91 76.5 139.82 76.5 69.91 76.5 

ZS 35.81 79.834 71.621 79.834 35.81 79.834 

ZM 17.11 73.011 34.22 73.011 17.11 73.011 

TABLE II 
SUMMARY OF SHUNT FAULT CASES TESTED ON THE TRANSMISSION LINE  

Fault Case Fault Type Fault Resistance 
(ohms primary) 

Direction Forward (F)/ 
Reverse (R) 

Location Applied 
(% of length) 

Fault Location Calculated by Relay 
(% of length) 

1 AG 20 F 7 7.05 

2 BG 30 F 15 15.02 

3 CG 50 F 20 20.03 

4 AB 15 F 35 35.01 

5 BC 25 F 45 45.01 

6 CA 10 F 55 55 

7 ABG 5 F 65 65.01 

8 BCG 8 F 75 75.02 

9 CAG 0 F 90 90 

10 ABC 0 F 99.5 99.42 

11 AG 25 R –10 –10.03 

12 BC 30 R –15 –15.03 

13 CAG 20 R –22.5 –22.66 

14 ABC 0 R –29 –28.97 
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VI. SOLUTION FOR PARALLEL TRANSMISSION LINES 
We can expand the solution from Section IV to cover a 

system with mutually coupled parallel lines. Fig. 9 shows a 
single-line diagram of such a system. For simplicity, both lines 
are identical and are ideally transposed, resulting in one 
self-impedance parameter (ZS) and one mutual impedance 
parameter (ZM). The system source impedances are modeled 
similarly (as transposed transmission line segments). These 
impedances reflect the self-interactions and mutual interactions 
between the three phases of each transmission line. There is 
also a single, mutual impedance parameter (ZMP) that reflects 
the coupling between the two lines. The implicit assumption 
behind the single, line-to-line mutual impedance is that the 
distance between the two lines is much greater than the distance 
between the phase conductors on either line. The two lines 
share common buses (and thus common voltages) on both ends. 

The S terminal current is denoted as IS, the R terminal 
current is denoted as IR, and the parallel line current is denoted 
as IP. The general phase-domain fault circuit (not shown in full 
detail) is positioned on the line between Terminals S and R at a 
per-unit distance m relative to the S terminal. Because there is 
no shunt capacitance modeled in the system, the current on the 
unfaulted line (IP) is uniform over the line. The S source current 
is the sum of the Relay S current and the parallel line current 
(IS + IP). The R source current is the difference between the 
Relay R current and the parallel line current (IR – IP). 

Depending on the relative flow directions of the 
zero-sequence currents in the faulted line and the unfaulted line, 
the distance elements in the relays at Buses S and R can either 
overreach or underreach. The next section explores this 
phenomenon in more detail. See [6] for more information on 
zero-sequence mutual coupling and its effects on transmission 
line protection. 

VS VR

IS IR

IP
IS + IP IR – IP

IP

ZSS, ZMS ZSR, ZMR

m(ZS, ZM) (1 – m)(ZS, ZM)

ZS, ZM

ZMP

 

Fig. 9. System with two parallel transmission lines and common buses 

In the double-circuit system of Fig. 9, there are nine 
principal unknowns: IS (A, B, C), IR (A, B, C), and IP (A, B, C). 
The subsequent unknowns are the voltages at the S and R buses, 
which are readily calculated once the currents have been solved. 
We therefore must solve a nine-by-nine system consisting of 
nine linear equations. For each phase (A, B, C), three equations 
are written, which are summarized as follows (note that there is 
some flexibility in writing these equations): 

• An equation relating the fault-point voltages as seen 
from the S and R sides of the system (line voltage 
drops are calculated on the faulted line). 

• A KVL loop starting on the S side and dropping 
through the fault circuit (line voltage drops are 
calculated on the faulted line). 

• An equation relating the Bus R voltages as seen from 
the S and R sides of the system (line voltage drops are 
calculated on the unfaulted line). 

These equations are shown for Phase A in the remainder of 
this section. The equations for Phases B and C are similar. 
Equation (20) shows the fault voltages as seen from the S and 
R sides. 

 

( )
( )

( )
( )

( )
( )

( )
( ) ( )
( ) ( )

AF _S AS SS AS AP

MS BS BP CS CP

S AS M BS CS

MP AP BP CP

AF _ R AR SR AR AP

MR BR BP CR CP

S AR

M BR CR

MP AP BP CP

AF _S AF _ R AF _S AF _ R

V V Z I I

Z I I I I

m • Z • I m • Z I I

m • Z I I I

V V Z I I

Z I I I I

1 m Z • I

1 m Z I I

1 m Z I I I

V V V V 0

= − +

− + + +

− − +

− + +

= − −

− − + −

− −

− − +

+ − + +

= → − =

   (20) 

The KVL loop through the fault circuit is shown in (21). 
The results of equating the Bus R voltages, as seen from the 

S and R sides, are shown in (22). 

 

( ) ( )
( )

( )
( )
( )

AS SS AS AP MS BS BP CS CP

S AS M BS CS

MP AP BP CP

AF AS AR

GF AS AR BS BR CS CR

V Z I I Z I I I I

m • Z • I m • Z I I

m • Z I I I

R I I

R I I I I I I 0

− + − + + +

− − +

− + +

− +

− + + + + + =

  (21) 

 

( )
( )

( )
( )

( ) ( )

( )
( )

AR _S AS SS AS AP

MS BS BP CS CP

S AP M BP CP

MP AS BS CS

MP AR BR CR

AR _ R AR SR AR AP

MR BR BP CR CP

AR _S AR _ R AR _S AR _ R

V V Z I I

Z I I I I

Z • I Z I I

m • Z I I I

1 m Z I I I

V V Z I I

Z I I I I

V V V V 0

= − +

− + + +

− − +

− + +

+ − + +

= − −

− − + −

= → − =

  (22) 

Representing the nine linear equations in matrix form yields 
(23) through (32). 
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[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

AS AR AS

BS BR BS

CS CR CS

AS AR

BS BR

CRCS

APAS AR

BPBS BR

CPCS CR

V V I
V V I
V V I

V IUL UM UR
V ML MM MR I

BL BM BR IV
IV V
IV V
IV V

−   
   −   
   −
   

    
    =     
        −   

   −
   

−      

 (23) 

 [ ]
SS S MS M MS M

MS M SS S MS M

MS M MS M SS S

Z m • Z Z m • Z Z m • Z
UL Z m • Z Z m • Z Z m • Z

Z m • Z Z m • Z Z m • Z

+ + + 
 = + + + 
 + + + 

 (24) 

 [ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

SR S MR M MR M

MR M SR S MR M

MR M MR M SR S

Z 1 m Z Z 1 m Z Z 1 m Z
UM Z 1 m Z Z 1 m Z Z 1 m Z

Z 1 m Z Z 1 m Z Z 1 m Z

 − − − − − − − − −
 = − − − − − − − − − 
 − − − − − − − − − 

 (25) 

 [ ]
SS SR MP MS MR MP MS MR MP

MS MR MP SS SR MP MS MR MP

MS MR MP MS MR MP SS SR MP

Z Z Z Z Z Z Z Z Z
UR Z Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z Z

+ + + + + + 
 = + + + + + + 
 + + + + + + 

 (26) 

 [ ]
SS S AF GF MS M GF MS M GF

MS M GF SS S BF GF MS M GF

MS M GF MS M GF SS S CF GF

Z m • Z R R Z m • Z R Z m • Z R
ML Z m • Z R Z m • Z R R Z m • Z R

Z m • Z R Z m • Z R Z m • Z R R

+ + + + + + + 
 = + + + + + + + 
 + + + + + + + 

 (27) 

 [ ]
AF GF GF GF

GF BF GF GF

GF GF CF GF

R R R R
MM R R R R

R R R R

+ 
 = + 
 + 

 (28) 

 [ ]
SS MP MS MP MS MP

MS MP SS MP MS MP

MS MP MS MP SS MP

Z m • Z Z m • Z Z m • Z
MR Z m • Z Z m • Z Z m • Z

Z m • Z Z m • Z Z m • Z

+ + + 
 = + + + 
 + + + 

 (29) 

 [ ]
SS MP MS MP MS MP

MS MP SS MP MS MP

MS MP MS MP SS MP

Z m • Z Z m • Z Z m • Z
BL Z m • Z Z m • Z Z m • Z

Z m • Z Z m • Z Z m • Z

+ + + 
 = + + + 
 + + + 

 (30) 

 [ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

SR MP MR MP MR MP

MR MP SR MP MR MP

MR MP MR MP SR MP

Z 1 m Z Z 1 m Z Z 1 m Z
BM Z 1 m Z Z 1 m Z Z 1 m Z

Z 1 m Z Z 1 m Z Z 1 m Z

 − − − − − − − − −
 = − − − − − − − − − 
 − − − − − − − − − 

 (31) 

 [ ]
SS S SR MS M MR MS M MR

MS M MR SS S SR MS M MR

MS M MR MS M MR SS S SR

Z Z Z Z Z Z Z Z Z
BR Z Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z Z

+ + + + + + 
 = + + + + + + 
 + + + + + + 

 (32) 
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Once all nine currents have been solved for, the phase 
voltages at Buses S and R can be calculated as shown in (33) 
(these are the relay voltages). 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )

AS_ relay AS SS AS AP

MS BS BP CS CP

BS_ relay BS SS BS BP

MS AS AP CS CP

CS_ relay CS SS CS CP

MS AS AP BS BP

AR _ relay AR SR AR AP

MR BR BP CR CP

BR _ relay BR SR BR BP

MR

V V Z I I

Z I I I I

V V Z I I

Z I I I I

V V Z I I

Z I I I I

V V Z I I

Z I I I I

V V Z I I

Z

= − +

− + + +

= − +

− + + +

= − +

− + + +

= − −

− − + −

= − −

− ( )AR AP CR CPI I I I− + −

  (33) 

 
( )

( )
CR _ relay CR SR CR CP

MR AR AP BR BP

V V Z I I

Z I I I I

= − −

− − + −
   

VII. TEST RESULTS FOR FAULTS ON A 
DOUBLE-CIRCUIT SYSTEM 

For a system with two parallel transmission lines, 
zero-sequence mutual coupling has an effect on the distance 
elements and fault location. We can study this effect by 
considering three scenarios. Consider a homogeneous system 
with parallel lines and common buses at both ends.  

A. Scenario 1 
When a line-to-ground fault is applied close to the local end 

on the system, as shown in Fig. 10, the zero-sequence current 
in the parallel line is out of phase with the zero-sequence 
current in the faulted line (measured by Relay S). 

VS VR

Relay S Relay R

 

Fig. 10. Mutual coupling Scenario 1 

This causes the voltage measured by Relay S to be smaller 
than what the relay would see in the absence of a parallel line. 
In turn, this causes the relay to overreach, as is evident from the 
single-ended fault location equation shown in (34) [7]. 
Reducing the measured relay voltage reduces the numerator 
term, which artificially decreases the measured impedance [6]. 
When a phase-to-phase fault occurs, there is no zero-sequence 

current flow in the adjacent line, and correspondingly, there are 
no reach problems. 

 *
AS_ relay 2S

*
AS 0 0S 1L 2S

Fault Location (pu)

Im V • I

Im I k • I • Z • I

=

  
 +   

  (34) 

B. Scenario 2 
When a line-to-ground fault is applied close to the remote 

end on the system, as shown in Fig. 11, the zero-sequence 
current in the parallel line is in phase with the zero-sequence 
current in the faulted line (measured by Relay S). 

VR

Relay S Relay R

VS

 

Fig. 11. Mutual coupling Scenario 2 

This causes the voltage measured by Relay S to be greater 
than what the relay would see in the absence of a parallel line. 
In turn, this causes the relay to underreach. Once more, the 
relays experience no reach problems for ungrounded phase 
faults. 

C. Scenario 3 
When a line-to-ground fault is applied exactly halfway 

between the local and remote buses, as shown in Fig. 12, the 
symmetry of the faulted system prohibits the flow of 
zero-sequence current in the parallel line (recall that the test 
system is perfectly symmetrical).  

VR

Relay S Relay R

VS

 

Fig. 12. Mutual coupling Scenario 3 

In this scenario, the relays experience no reach problems for 
grounded or ungrounded faults. 

D. Results 
We simulated several faults for each of the three scenarios 

using the double-circuit, phase-domain solver. The results are 
summarized in Table III. Scenario 1 corresponds to faults at 
30 percent of the line length. Scenario 2 corresponds to faults 
at 90 percent of the line length. Scenario 3 corresponds to faults 
at 50 percent of the line length.  

As evident from Table III, the fault location is essentially 
perfect for faults at the midpoint of the line. We notice the 
overreaching and underreaching effects for faults associated 
with Scenarios 1 and 2, respectively. It is important to note that 
only the ground faults caused the reach problems in the relay in 
these two scenarios.
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TABLE III 
SUMMARY OF SHUNT FAULT CASES TESTED ON THE PARALLEL TRANSMISSION LINE 

Fault Case Fault Type Fault Resistance 
(ohms primary) 

Direction 
Forward (F)/  
Reverse (R) 

Location 
Applied (percent) 

Fault Location 
Calculated by Relay 

(percent) 

1 AG 10 F 30 29.65 

2 BC 10 F 30 30.06 

3 AG 10 F 50 50.06 

4 BC 10 F 50 50.04 

5 AG 10 F 90 96.61 

6 BC 10 F 90 89.98 

 
Fig. 13 illustrates the reach behavior for ground faults over 

the entire line length. Numerous faults were simulated (using 
the phase-domain solver) along the length of the line from 
Bus S to Bus R. The Terminal S signals from the simulation 
were applied to a physical relay and into (34). Fault location 
results obtained from both are plotted in per unit of the actual 
fault location. 

We can clearly observe the overreaching and underreaching 
effects for faults below and above 50 percent of the line length, 
respectively. Greater coupling distance associated with farther 
fault distance aggravates the reach problems. This explains why 
the error is larger for faults beyond 50 percent of the line length. 
These results add credibility to the accuracy of the 
double-circuit, phase-domain solver.  
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Fig. 13. Effect of zero-sequence current in parallel lines 

VIII. DERIVING A TIME-DOMAIN, STATE-SPACE SOLVER  
We have now derived several solutions that apply under ac 

steady-state fault conditions. Such solutions are suited to testing 
traditional, phasor-based protective relays. In this section, we 
derive time-domain representations of the steady-state 
solutions presented previously. 

Consider the simple circuit shown in Fig. 14, where an ac 
source is connected in series with a resistor and an inductor. In 
ac steady-state conditions, the resistance and the inductive 
reactance combine in quadrature to form a complex impedance. 
The voltage drop across the series RL (resistive-inductive) 
combination is expressed as a single, complex term, equal to 
the product of the complex current and the complex circuit 
impedance. The use of capital letters indicates the ac steady-
state quantities. 

The second circuit of Fig. 14 shows the time-domain 
equivalent circuit. The voltage and current quantities are 
correspondingly denoted with lower case letters. Both the 
voltage and the current are time-varying scalars, and the voltage 
drop in the circuit consists of two parts: a resistive drop (R • i) 
and an inductive drop (L• di / dt). 

V

R

I

R

i

L

v

Lj • X

div R • i L •
dt

= +( )LV I R j • X I • Z= + =
 

Fig. 14. AC steady-state and time-domain equivalent circuits 

We now examine the general transmission line voltage drop 
equations in a time-domain context starting with steady-state 
equations. Once more, the ac steady-state voltage drop 
relationship is shown in (35). 

 
A AA AB AC A

B BA BB BC B

C CA CB CC C

V Z Z Z I
V Z Z Z • I
V Z Z Z I

     
     =     
          

  (35) 

In each phase of the transmission line, the voltage drop 
consists of one complex self-impedance term and two complex 
mutual impedance terms. Expanding the Phase A equation from 
(35) yields (36). 
 A AA A AB B AC CV Z • I Z • I Z • I= + +   (36) 
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As in Fig. 14, each of the three complex voltage drop terms 
can be expressed as a sum of the two scalar voltage drop terms 
in the time domain, yielding (37). 

 
A

A AA A AA AB B

CB
AB AC C AC

diV R • i L • R • i
dt

didiL • R • i L •
dt dt

= + +

+ + +
  (37) 

We now apply similar transformations to the general steady-
state solution for a two-source system with a single 
transmission line. Once more, the system has the general form 
shown in (38). Note that (38), (39), and (40) have a six-by-six 
matrix dimension.  

 [ ]

AS AR AS

BS BR BS

CS CR CS

AS AR

BS BR

CRCS

V V I
V V I
V V I

Z •
V I
V I

IV

−   
   −   
   −

=   
   
   
   
     

  (38) 

Applying the time-domain transformation results in (39) 
(note the lower-case convention).The dot convention in this 
equation is used to denote the time-derivative of an array of 
currents, and correspondingly, an array of current 
time-derivatives. 

 [ ] [ ]

•

AS AR AS AS

BS BR BS BS

CS CR CS CS

AS AR AR

BS BR BR

CR CRCS

v v i i
v v i i
v v i i

R • L •
v i i
v i i

i iv

−     
     −     
     −

= +     
     
     
     
         

  (39) 

Rearranging the terms in (39) provides (40). In (40), the 
C matrix is simply a matrix of constants that implements the 
source voltage subtractions, allowing the source voltage array 
to be represented in a simpler form. 

 [ ] [ ] [ ]

•

AS AS AS

BS BS BS

CS CS CS

AR AR AR

BR BR BR

CR CR CR

i v i
i v i
i v i

L • C • R •
i v i
i v i
i v i

     
     
     
     

= −     
     
     
     
          

  (40) 

Equation (41) is a further condensation of (40). The 
resistance and inductance terms follow the same subscript 
conventions used in previous sections. 

 [ ] [ ] [ ] [ ] [ ] [ ]
•

L • i C • v R • i= −   (41) 

 Matrix descriptions are provided in (42) through (52). 
Matrix L reflects the line and source parameters and is thus 
constant throughout the entire simulation (in both prefault and 
fault states). Matrix R (specifically submatrices R_BL and 
R_BR) contains the fault resistance parameters, which are 
updated during the transition from the prefault to fault state. 

The matrix equation in (42) is a state-space representation of 
the power system with the following three key components: 

• State variables are the time-domain system currents 
(iAS, iBS, iCS, iAR, iBR, iCR) and are the primary 
variables that are solved for. 

•  Forcing functions are the time-domain system source 
voltages (vAS, vBS, vCS, vAR, vBR, vCR). They are 
known because they are explicitly specified within the 
simulator program. 

• Expressions are for the time-derivatives (dot terms) of 
the state variables in terms of the state variables and 
the forcing functions.

 

 [ ] [ ] [ ]
[ ] [ ]
L _ UL L _ UR

L
L _ BL L _ BR

 
=  
  

 (42) 

 [ ]
AAS AA ABS AB ACS AC

BAS BA BBS BB BCS BC

CAS CA CBS CB CCS CC

L m • L L m • L L m • L
L _ UL L m • L L m • L L m • L

L m • L L m • L L m • L

+ + + 
 = + + + 
 + + + 

 (43) 

 [ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

AAR AA ABR AB ACR AC

BAR BA BBR BB BCR BC

CAR CA CBR CB CCR CC

L 1 m • L L 1 m • L L 1 m • L
L _ UR L 1 m • L L 1 m • L L 1 m • L

L 1 m • L L 1 m • L L 1 m • L

 − − − − − − − − −
 = − − − − − − − − − 
 − − − − − − − − − 

 (44) 

 [ ]
AAS AA ABS AB ACS AC

BAS BA BBS BB BCS BC

CAS CA CBS CB CCS CC

L m • L L m • L L m • L
L _ BL L m • L L m • L L m • L

L m • L L m • L L m • L

+ + + 
 = + + + 
 + + + 

 (45) 

 [ ]
0 0 0

L _ BR 0 0 0
0 0 0

 
 =  
  

 (46) 
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 [ ] [ ] [ ]
[ ] [ ]
R _ UL R _ UR

R
R _ BL R _ BR

 
=  
  

 (47) 

 [ ]
AAS AA ABS AB ACS AC

BAS BA BBS BB BCS BC

CAS CA CBS CB CCS CC

R m • R R m • R R m • R
R _ UL R m • R R m • R R m • R

R m • R R m • R R m • R

+ + + 
 = + + + 
 + + + 

 (48) 

 [ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

AAR AA ABR AB ACR AC

BAR BA BBR BB BCR BC

CAR CA CBR CB CCR CC

R 1 m • R R 1 m • R R 1 m • R
R _ UR R 1 m • R R 1 m • R R 1 m • R

R 1 m • R R 1 m • R R 1 m • R
=

 − − − − − − − − −
 − − − − − − − − − 
 − − − − − − − − − 

 (49) 

 [ ]
AAS AA AF GF ABS AB GF ACS AC GF

BAS BA GF BBS BB BF GF BCS BC GF

CAS CA GF CBS CB GF CCS CC CF GF

R m • R R R R m • R R R m • R R
R _ BL R m • R R R m • R R R R m • R R

R m • R R R m • R R R m • R R R

+ + + + + + + 
 = + + + + + + + 
 + + + + + + + 

 (50) 

 [ ]
AF GF GF GF

GF BF GF GF

GF GF CF GF

R R R R
R _ BR R R R R

R R R R

+ 
 = + 
 + 

 (51) 

 

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

C
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

− 
 − 
 −

=  
 
 
 
  

 (52) 

  
Knowing the present values of the state variables and forcing 

functions is equivalent to knowing how the state variables are 
changing. The state variables can be incrementally updated by 
numerically integrating the time-derivatives. Equations (53) 
through (56) show an example of this process. The example 
uses backward Euler integration because this method offers a 
reasonable balance between simplicity and numerical stability 
(see [8] for further details). Convergence of the numerical 
simulation depends only on the convergence of the physical 
system being simulated. Because there are no significant 
run-time constraints on the solver program, a sufficiently small 
simulation time-step compensates for the simplicity of the 
integration technique. Other integration methods can be used as 
well, with different methods having distinct simulation time-
step size requirements (determined by their inherent stability 
properties). 

In the backward Euler solution, the currents at the present 
iteration (subscript k) are calculated based on the currents from 
the previous iteration (subscript k – 1) and the time-derivatives 
of the currents from the present iteration (subscript k). The  
subscript k on the time-derivatives is what distinguishes the  
backward and forward Euler methods (with the forward  

method using k – 1). In (53), Δt represents the simulation 
time-step. 

 [ ] [ ] [ ]
•

k k 1 k
i i i • t

−
= + ∆   (53) 

 Premultiplying both sides by the inductance matrix yields 
(54). 

 [ ] [ ] [ ] [ ] [ ] [ ]
•

k k 1 k
L • i L • i L • i • t

−
= + ∆   (54) 

We recognize the last term of this equation (the L • i_dot 
term) as the left side of the state-space equation derived 
previously in (41). The substitution shown in (55) can therefore 
be made. 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]k k 1 k k
L • i L • i t • C • v R • i

−
 = + ∆ −    (55) 

Thus, we have an implicit expression for the present value 
of the current array in terms of the previous value of the current 
array and the present value of the forcing function (the source 
voltages). The backward Euler method is also known as an 
implicit method for this reason. Rearranging (55) into a more 
convenient form provides (56). 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]k k 1 k
L t • R • i L • i t • C • v

−
 + ∆ = + ∆    (56) 
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The right side of (56) consists entirely of known quantities 
(the old value of the current array and the present forcing 
function value). Thus, the solution of this linear system yields 
the updated current array. The remaining solution steps are as 
follows: 

1. Insert the present value of the current back into the 
state-space equation in (41) to solve for the updated 
current time-derivatives. 

2. Use the present value of both the current and the 
current time-derivative to update the S and R bus 
voltages (which are also the relay voltages) by taking 
voltage drops over the source impedances. This is 
similar to the approach described previously in this 
paper, except that now it takes a time-domain form. 

Thus, we have transformed the ac steady-state solution for 
the two-source, single-line system into a direct, time-domain 
equivalent. For such simple systems, the state-space solution is 
intuitive and relatively easy to understand. The correspondence 
between ac steady-state circuit behavior and time-domain 
circuit behavior is also readily apparent using this method. This 
solution correctly models the RL circuit behavior under both 
steady-state and transient conditions. 

IX. APPLICATION OF THE PHASE-DOMAIN  
SOLVER TO THE TESTING OF TIME-DOMAIN,  

INCREMENTAL QUANTITY-BASED PROTECTION FUNCTION 
Time-domain, incremental quantity-based relaying is 

available and offers notable advantages, such as faster fault 
clearing [9]. The concept was first employed in the early 1980s 
in ultra-high-speed directional relays [9] [10] [11]. As 
explained in [10], [11], [12], [13], and [14], the concept of an 
incremental quantity is to measure the increment (difference) 
between the present instantaneous value of a measured quantity 
and the value from some time in the past. The time difference 
is in multiples of power system cycles. Reference [13] 
describes an example incremental quantity, which is shown in 
(57). 
 ( ) ( ) ( )s t s t s t p • T∆ = − −   (57) 

where: 
Δs(t) is the instantaneous incremental quantity. 
s(t) is the measured instantaneous value. 
t is the instantaneous time value. 
T is the period of the measured quantity. 
p is an arbitrary number of power cycles. 

Incremental quantities can be used for ultra-high-speed 
directional relaying and for faulted phase selection. Fault 
directionality is established by comparing the incremental 
voltage to the incremental replica current. Reference [13] 
describes the principle of the incremental quantity-based  

directional element. If there is a fault in front of the relay 
(forward direction), the incremental voltage and incremental 
current in the faulted phase have opposite polarity. For a fault 
behind the relay (reverse direction), the incremental voltage and 
incremental replica current in the faulted phase have the same 
polarity. These signatures establish the fault directionality. 

What happens when we use a test set to apply two sequential 
sets of steady-state signals (one for the prefault state and one 
for the fault state) to a time-domain relay without properly 
considering the state transition? Will the relay element 
performance match expectations? We can use the steady-state, 
phase-domain solver (derived in previous sections) to test this. 
Consider a two-source system connected with a single 
transmission line shown in Fig. 1 using the same impedance 
values as shown in Table I. Self-impedance and mutual 
impedance parameters are derived from the positive- and 
zero-sequence parameters and are used in the phase-domain 
solver. 

The following two example cases illustrate the behavior of 
incremental quantity-based directional elements when 
sequential steady-states are applied to simulate prefault and 
fault conditions. 

A. Case 1 
An AG fault is simulated in the forward direction at 

30 percent of the line length, as seen by Relay S. The prefault 
state is 1 second long (note the disturbance in the voltages and 
currents at the fault inception in Fig. 15) Fig. 16 shows the 
incremental voltage and current waveforms (with the relevant 
transition highlighted in blue) measured by Relay S, as well as 
the forward and reverse directional element assertions. 

During the first few milliseconds of the fault, the directional 
element provides reverse declaration. This behavior is 
attributed to the artificial discontinuity between the prefault and 
fault states generated by the secondary test set. Therefore, 
combining two ac steady-state solutions in a state sequence can 
yield unexpected results. 
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Fig. 15. Voltage and current signals with prefault time of 1 second 
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Fig. 16. Incremental voltage and currents with prefault time of 1 second 
(zoomed in) 

B. Case 2 
Applying the same ac steady-state signals as in Case 1 while 

changing the prefault duration to 1.00136 seconds eliminated 
the artificial discontinuity at the fault inception, as shown in 
Fig. 17. Consequently, the fault is declared forward, as 
expected, with respect to Relay S, and the time-domain 
protection operates correctly. The incremental voltages and 
currents are shown in Fig. 18. 

Evidently, the prefault duration affects the point on the wave 
at fault inception, which profoundly influences the relationship 
between the voltage and current incremental quantities when 
sequential ac steady-states are applied. Similar results are 
observed for line-to-line faults. Fig. 19 and Fig. 20 show the 
incremental quantities for bolted CA faults with prefault 
lengths of 1 second and 1.00226 seconds, respectively. 
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Fig. 17. Voltage and current signals with prefault time of 1.00136 seconds 
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Fig. 18. Incremental voltage and currents with prefault time of 
1.00136 seconds (zoomed in) 
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Fig. 19. Line-to-line fault with prefault time of 1 second (declared as reverse 
fault) 
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Fig. 20. Line-to-line fault with prefault time of 1.00226 seconds (declared as 
forward fault) 
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Once again, the same ac steady-state solutions for the 
prefault and fault signals yield different directional 
declarations, with the difference being attributable to the 
prefault length and the resulting point on the wave. 

Combining two ac steady-states to simulate the transition 
from prefault to fault can result in an artificial (nonphysical) 
discontinuity. This can cause time-domain, incremental 
quantity-based elements to exhibit unexpected behavior. 
Possible remedies for this include the following: 

• Precisely calculate the prefault length to minimize or 
eliminate the artificial discontinuity when applying 
sequential steady-states. 

• Use a proper time-domain simulation to generate relay 
test signals. 

The prefault durations for Case 2 (1.00136 seconds for the 
successful AG trial and 1.00226 seconds for the successful CA 
trial) were calculated using a methodology described in [15]. 
Essentially, the prefault duration is calculated to eliminate the 
problematic discontinuities between ac steady-states. 
Equation (58) is used to calculate the prefault duration. Observe 
in Fig. 18 and Fig. 20 that the incremental current changes 
smoothly, with no abrupt discontinuities, when the prefault 
time is calculated using this formula. This is true despite the 
fact that no decaying dc signal is applied. 

 
( )

0
ang I1t • NC

NFREQ 360
 ∆

= −  ° 
  (58) 

where: 
t0 is the prefault duration in seconds. 
ΔI is the phasor difference between the fault current and 
the prefault current. 
NC is the number of power cycles for the length of 
prefault at nominal frequency. 
NFREQ is the system nominal frequency. 

C. Options for Generating Reliable Test Signals 
This approach of carefully stitching together two ac 

steady-states can work well for the commissioning and bench 
testing of incremental quantity-based protection functions. It is 
particularly well-suited for testing single-line-to-ground faults 
because for a single faulted phase, there is only one point on the 
wave to optimize. 

Another method is to use a genuine time-domain solver to 
generate realistic test signals. Many widely used transient 
simulation software programs are suitable for this task. As an 
alternative, this paper presents a state-space solution that 
accurately models the RL dynamics of a transmission line, 
requiring minimal settings and modeling complexity.  

Instead of outputting complex numbers that correspond to ac 
steady-states, a time-domain solver generates a stream of scalar 
data samples that correspond to the waveform data. These data 
can be packaged into a file format that facilitates secondary-
level playback using a test set. The IEEE COMTRADE file 
format, among others, is suitable for this purpose. The use of a 
time-domain solver ensures that incremental quantity-based 
protection functions operate properly, regardless of the fault 
point on the wave (this is subject to relay design and sensitivity 

constraints). This is because the numerical simulation generates 
the proper decaying dc signal that, in real RL systems, prevents 
the current from changing abruptly. These solvers also allow 
both single-phase and multiphase fault loops to be tested with 
equal ease. 

X. USING THE TIME-DOMAIN SOLVER TO TEST  
TIME-DOMAIN PROTECTION FUNCTIONS 

In the previous section, the cases with a prefault length of 
1 second proved to be problematic when ac steady-state signals 
were used to test time-domain, incremental quantity-based 
protection functions. These cases were recreated using the 
time-domain solution presented in Section VIII. A simulation 
time-step of 12.5 μs (corresponding to 80 kHz processing) was 
used, and COMTRADE data were generated at 8 kHz. The 
following figures show the test result for an AG fault with a 
prefault time of 1 second (Case 1 from Section IX). The 
waveforms generated with the time-domain solution (shown in 
Fig. 21) provide the correct transition from prefault to fault 
(meaning that the transition reflects the actual transient 
response of the system). Because the artificial discontinuity is 
no longer present, the directional element correctly indicates a 
forward fault (see Fig. 22). 

Similar results can be seen for a bolted CA fault with a 
prefault length of 1 second (see Fig. 23 and Fig. 24). Again, the 
incremental current transitions smoothly, and the incremental 
quantities correctly yield a forward declaration. 

Table IV shows the incremental quantity-based protection 
function results for several BCG faults in both the forward and 
reverse directions. Faults were simulated at 50 percent of the 
line length, as seen by Relay S. The faults were simulated with 
various points on the wave at the fault inception in order to 
illustrate correct directional pickup, regardless of inception 
angle. The use of a time-domain simulation ensures the correct 
directional pickup by properly modeling the RL dynamics. We 
also recreated the results of Table II with the time-domain 
solver, and they were nearly identical. 
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Fig. 21. Time-domain voltage and current signals with prefault time of 
1 second for AG fault at 30 percent of line length and with time-domain 
solver 
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Fig. 22. Incremental voltage and current with prefault time of 1 second for 
AG fault at 30 percent of line length and with time-domain solver 
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Fig. 23. Time-domain voltage and current signals with a prefault time of 
1 second for CA fault at 40 percent of the line length and with time-domain 
solver 
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Fig. 24. Incremental voltage and current with prefault time of 1 second for 
CA fault 40 percent of line length and with time-domain solver 

TABLE IV 
BC-TO-GROUND FAULT ON VARIOUS POINTS  
ON THE WAVE WITH TIME-DOMAIN SOLVER 

Number 
Point on 

Wave 
(degrees) 

Simulated 
Fault 

Direction 

Fault 
Direction 

Declared by 
Relay 

1 36 F F 

2 45 F F 

3 90 F F 

4 159 F F 

5 175 F F 

6 192 F F 

7 230 F F 

8 285 F F 

9 333 F F 

10 351 F F 

11 45 R R 

12 90 R R 

13 285 R R 

XI. CONCLUSIONS 
Phase-domain analysis of faulted transmission lines requires 

detailed consideration of the mutual coupling interactions 
between the three phases (A, B, C). In practice, this entails 
solving linear systems of a modest size (six-by-six for a two-
ended system) with complex-valued matrix coefficients. This 
was prohibitively difficult before the advent of digital 
computers, necessitating the use of symmetrical components. 
Solving three decoupled systems (positive, negative, zero) is 
considerably easier to do by hand, resulting in the widespread 
use of symmetrical components in teaching and in practice. 
Today, symmetrical component techniques remain dominant in 
university curricula. 

Whereas symmetrical components offer decoupling, 
phase-domain methods allow multiple fault types to be 
modeled with a single general circuit topology. This can be very 
convenient in practice, and it contrasts with the multiple 
topologies required with symmetrical components. In addition, 
phase-domain analysis minimizes the amount of abstraction 
required to make models, and the associated equations 
correspond more directly to basic physics. Because 
phase-domain analysis explicitly models the phase-to-phase 
electromagnetic coupling interactions, it is well-suited to model 
untransposed lines and to generate results for such lines with 
uncompromised accuracy. 

AC steady-state signals derived from phase-domain solvers 
are ideally suited for performing secondary-level testing on 
traditional, phasor-based relays. These solvers are 
advantageous in the following ways: 

• One solver handles multiple fault types. 
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• Modeling complexity is kept to a minimum. Only a 
few basic parameters are needed (such as the fault 
location and the self-impedances and mutual 
impedances of the line and sources). 

• Results are displayed in a complex format and can be 
directly entered into testing software programs. 

For time-domain protection function testing, the equations 
of the steady-state, phase-domain solver can be directly 
translated into a time-domain, state-space equivalent. This way, 
the number of modeling parameters remains at a minimum. In 
conjunction with numerical integration techniques, this solution 
yields transient waveform data that accurately reflect the 
prefault to fault transition. Accurate modeling of this transition 
ensures reliable testing results and does not require fine-tuning 
of the prefault length and resulting point on the wave. 
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