
PowerSystemModel (HORIZON®)

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: PowerSystemModel (HORIZON®)

Introduction . 3
Supported Firmware Versions . 7
Enumerations . 7
Structures . 7
Classes . 8
Benchmarks. 43
Examples . 44
Log File Format . 69
Release Notes . 70

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

RTAC LIBRARY

PowerSystemModel

(HORIZON®)

Introduction

The PowerSystemModel library provides the ability to instantiate, describe, and connect
different power system elements. With each scan of the logic engine task, it will collect
the available measured information and determine which nodes are connected. The model
provides a single voltage quantity for all devices connected without impedance (an electrical
node) and a current for each branch that can be directly calculated using Kirchhoff’s current
law.

The PowerSystemModel library works with the C37.118 synchrophasor stream to provide a
more detailed snapshot of the system than can be provided by the raw data alone. Internally
the model treats all data and parameters as three-phase data at base units (e.g., ohms and
amperes) and it uses those three-phase data to perform its calculations. Each monitored
input contains a quality_t structure. If validity inside this structure is set to anything other
than GOOD, that measured value is not used in the calculations during this scan. Once all
inputs have been validated, the model expands existing current and voltage data to as many
nodes and branches as possible, and where sufficient data is available, provides a sanity
check on the measured values and breaker states.

The PowerSystemModel library is primarily designed to support the following two use cases:
extending system observability given a sparsely metered system and validating measurements
and topology given a densely metered system. The breaker-and-a-half configuration, shown
in Figure 1, is used to illustrate the different use cases.

A

A

A

(a)

A

A

A

A

(b)

A

A

A

A

A

(c)

Figure 1 Differing Levels of Observability

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

4 PowerSystemModel (HORIZON®)

Introduction

Observability Extension: Figure 1a shows current meters installed on all three breakers. By
combining these measurements and the topology information, the power system model can
calculate the current injected into both of the unmetered lines.

Error Detection: Figure 1b shows current meters installed on two of the three breakers and
both lines. By combining these measurements and the topology information, the power
system model can calculate the current flow through the unmetered breaker and detect if a
metering error has likely occurred.

Error Detection and Identification: Figure 1c shows fully redundant current. By combining
these measurements and the topology information, the power system model can validate
each of the redundant measurements, detect any inconsistencies, and provide an indicator
that one of the meters within the collection is providing incorrect data.

Glossary

These terms are used throughout this document to describe the functionality provided by
this library.

Conducting Equipment Any piece of electrical equipment that is designed to carry cur-
rent or that is conductively connected to the network. This does not include containers
that hold this equipment. For example, a power transformer is not conducting equip-
ment even though it can hold multiple power transformer ends which are themselves
conducting equipment.

Connectivity Node A representation of the connecting point for two or more terminals.
The model will create these anywhere two or more terminals are connected via the
bootstrap methods. At no time should the user ever instantiate a connectivity node.

Model In this library, the model is a collection of conducting equipment that is connected
and the data that describes that equipment.

Power Transformer End A transformer winding. A given transformer may have two or
more windings.

Terminal The part of a piece of electrical equipment that is meant to connect it to other
equipment. Every piece of conducting equipment has at least one terminal and all
terminals should be attached to at least one other terminal at a connectivity node.
These also serve as anchoring points for various measurement devices.

Placing a System Into the Model

As an example, the user desires to represent a substation using this library. The high-voltage
side of the substation being modeled is represented by the one-line diagram shown in
Figure 2:

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 5

Introduction

Figure 2 High-Voltage End of a Substation

To begin with, the user must identify the individual pieces of conducting equipment rep-
resented by this diagram. This defines what objects must be created within the library to
model this system, as seen in Figure 3. Note that every piece of conducting equipment in
the model has one or more terminals that are implicitly created with the object—the bus
can be represented as only a single terminal.

Bus

Energy Source

Energy Source

Breaker

Breaker Breaker

Switch

Switch

Switch Switch
Transformer End

Figure 3 High-Voltage Components Identified

To tie each of the pieces of equipment together, we introduce the idea of a connectivity node.
These nodes provide a location to tie together as many terminals as desired. In the library
the user does not need to create these nodes. They are created automatically when two or
more terminals are connected. Figure 4 shows how this might be conveyed. As before, there
is a connectivity node where the terminals of the three lines join the terminal of the bus.

Figure 4 Model Tied Together With Connectivity Nodes

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

6 PowerSystemModel (HORIZON®)

Introduction

Figure 5 shows the user indicating where data are fed into (classes named as Measurements)
and read out of (classes named as Report) the model. Each of these I/O points is tied
to a terminal that it monitors. The direction of current flow is standardized as being
positive when flow is moving through the terminal from the conducting equipment into the
connectivity node. For example; if current was flowing from left-to-right through a breaker,
a measurement point on the left terminal would read as a negative value flowing into the
conducting equipment, away from the connectivity node; and a measurement point on the
right terminal would read as a positive value flowing away from the conducting equipment,
into the connectivity node.

Though current and voltage values may be read in from measurements in whatever units
desired, they must be scaled to volts or amperes with the correct sign for use in the model.
Measurement classes provide a scalar that must be correctly populated to translate the units
and directionality being fed into the model from the synchrophasor stream into the required
magnitudes and directions.

V

A

A

A A

Figure 5 Tied Model With Measurement Points Identified

Finally, some objects need to be part of a container to define their interaction with other
objects. For example, all conducting equipment must be placed in a nominal voltage and
transformer ends must be placed in a transformer with other transformer ends, as shown in
Figure 6.

V

A

A

A A

230,000 V
High

to
Low

Figure 6 All Objects Defined for One Side of the Substation

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 7

Structures

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Version 3.5.0.0 can be used on RTAC firmware version R132 and higher.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_ValueSource

Enumeration Description

UNAVAILABLE The value is not measured and cannot be calculated by the installed
system.

MEASURED The value is reported exactly as measured.
DIRECT_ASSOCIATION The value was achieved through comparing like values connected

without impedance.
CALCULATED The value was achieved through linear extrapolation based on pro-

vided parameters.
UNTRUSTED The value measured here conflicts with other measured values or

the provided parameters. This can be set if a measured value is too
different from a calculated value or switch that reports open has a
calculated current.

enum_WindingConnection

Enumeration Description

DELTA A Delta winding.
WYE A Wye winding.
ZIGZAG A ZigZag winding.
WYE_NEUTRAL A Wye winding with neutral brought out for grounding.
ZIGZAG_NEUTRAL A ZigZag winding with neutral brought out for grounding.
AUTO An Autotransformer common winding.
INDEPENDENT An independent winding for single-phase connections.

Structures

Structures provide a means to group together several memory locations (variables), making
them easier to manage.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

8 PowerSystemModel (HORIZON®)

Classes

This library makes use of several ACSELERATOR RTAC Data Types for data input, output, and
storage. The layout of these structures can be found in the ACSELERATOR RTAC SEL-5033
Software Instruction Manual.

CMV A communications structure for moving phasors.

MV A communications structure for moving analog values.

quality_t A communications structure for indicating data health.

SPS A communications structure for moving binary points.

vector_t A structure for storing phasors as an angle and a magnitude.

Classes

Classes are a particular implementation of a function block. They are generally initialized
using bootstrap methods and provide methods and properties, which normal function blocks
do not provide.

class_PowerSystemModel (Class)

This class contains the working algorithms for the model. It stores the connections of objects
to each other, controls the order of operations each scan, and provides a centralizing point
for all other features.

For the model to do its work, all elements must be tied to it before calling run. In general, this
means that all terminals must be tied first using bootstrap_ConnectTerminals(). Then
individual objects should be configured using their assorted bootstrap_Set and bootstrap_-
Configure methods. Finally, objects can be grouped in containers and transformers and
meters can be added using bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

Filename STRING The name of the log file for this model’s initialization.
ABCRotation BOOL The rotation of the phases in this model. True indicates

that after the A-phase current crosses a reference angle,
B-phase current will cross it next.

bootstrap_ConnectTerminals (Method)

Call this method to connect two terminals to each other. A terminal can be used as an
argument to this method more than once to connect more than two terminals to each other.

If Terminal A is connected to Terminal B and then Terminal A is connected to Terminal C,
Terminal B is implicitly connected to Terminal C and the two do not need to be connected
by an explicit call to this method.

This is the first bootstrap method to be called. It must be called after all objects are
instantiated and before any other bootstrap method and before Run().

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 9

Classes

Inputs

Name IEC 61131 Type Description

pt_terminal1 POINTER TO class_Terminal The first terminal to connect.
pt_terminal2 POINTER TO class_Terminal The second terminal to connect.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the terminals are connected together and added to the
model.

Processing

This method is intended to be called before processing to link objects together in the model.
It performs the following actions:

ä Stores a reference to the model in both objects.

ä Connects the two terminals together at a connectivity node.

ä Connects both terminals to any other terminals already attached to the connectivity
node.

ä Returns FALSE if the references are not stored, either because the objects are no
longer in the initialization phase or a terminal is already attached to another model.

bootstrap_FinalizeConnections (Method)

To ensure proper tying of all model objects, this method must be called after all terminals
have been connected by bootstrap_ConnectTerminals and before calling any other
bootstrap methods or Run(). It switches the model out of the terminal connection state in
preparation for all other work.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the model has been successfully tied together.

Processing

This method prompts the model to perform the following actions:

ä Disable the connection of additional terminals.

ä Enable the insertion of objects (e.g., class_Breakers, class_ACLineSegments, and
others) into containers (i.e. class_VoltageLevels and class_PowerTransformers).

ä Build internal linking structures required for additional processing.

ä Return FALSE if bootstrap_ConnectTerminals() has not been successfully
called or if the system state prevented the final connections.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

10 PowerSystemModel (HORIZON®)

Classes

bootstrap_ValidateModel (Method)

This verifies the state of all objects and that the model itself can operate without error. Until
this method is called, no work is done by the Run() method.

Upon completion of this method, the model is ready to write out a log file summarizing the
configuration of the model. This file will be completed during the first few iterations of the
calls to the Run() method. Its format can be seen in Log File Format on page 69.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the model is ready to monitor inputs and update outputs.

Processing

This method is intended to be called before ever calling Run() to finalize all model configu-
ration. It prompts the model to perform the following actions:

ä Disable the attachment of any additional containers.

ä Check that all model objects have every reference required for calculations.

ä Return FALSE if the model is unable to calculate model state due to a configuration
error. Any such error will be described in the file filename.

Run (Method)

This method drives all work done by the model. It should be called once per task scan after
all configuration information has been processed.

Processing

Each time Run() is called, it performs the following tasks:

ä Checks that the model has been validated and deemed healthy.

ä Updates the measurements from all inputs configured during bootstrap.

ä Determines the observability of the system. This decides which current values can
be calculated and which cannot based on the switch states and valid measurement
values available.

ä Calculates the current through all observable pieces of conducting equipment and the
voltage at all observable terminals. If measurements beyond the minimum required
for observability are available, the method uses all available information to generate
a minimum mean squared error estimate.

ä If measurements are deemed to be too far from calculated values, the resulting output
will be flagged as UNTRUSTED. Likewise, any switch reporting as open with more
than minimal current running through it will be reported as UNTRUSTED.

ä Once all measurements are calculated and outputs are flagged, the time-aligned values
will be placed in the outputs of all user-provided measurement points and all switches
and breakers.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 11

Classes

class_ConductingEquipment

This class is never instantiated by the user. This is a category of object that is extended
to allow objects of multiple types to be treated as if they are the same for the purpose of
grouping and analysis. Classes that extend this class can be added to class_VoltageLevels.

class_Measurement

This class is never instantiated by the user. This is a category of object that is extended
to allow objects of multiple types to be treated as if they are the same for the purpose of
grouping and analysis. Classes that extend this class can be added to terminals for both
input and output of measurement values.

class_Terminal

The point on a piece of conducting equipment that connects to other conducting equipment.
Terminals are used to join all objects together and provide explicit points of contact for
measurement units.

This class is never instantiated by the user. All instantiated conducting equipment already
have terminals as member objects. The user must be aware that terminals exist to facilitate
calling bootstrap methods to ty the model together and to attach measurement points.

bootstrap_AddMeasurement (Method)

Call this method to tie a measurement point to a specific terminal.

This is the last type of bootstrap method to be called. It must be called after all terminals
are connected and all configure and set bootstrap methods have been completed.

Inputs/Outputs

Name IEC 61131 Type Description

measurement class_Measurement The measurement to be applied to this terminal.

Return Value

IEC 61131 Type Description

BOOL The measurement was successfully added to the terminal.

Processing

This method stores a reference to the provided measurement at this terminal unless the
objects are no longer in the initialization phase or the terminal is attached to a bus or junction
and the measurement is a current measurement. After being attached, these measurement
inputs and outputs will be used with all operations acting on the model.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

12 PowerSystemModel (HORIZON®)

Classes

class_Switch

Instantiate one instance of this class for any non-load breaking switch in the model. The
instance tracks the open-close state of that device. Before this class can be used, one or
both of its bootstrap methods must be called.

If none of the variables being monitored are healthy on a given scan, the switch will be
analyzed per its TypicallyClosed value and the StO_Quality will be set to UNAVAILABLE.
If only one value is available, because only one bootstrap method is called or only one
monitored value is healthy, that value will be used as the open-close state. If both values
are bootstrapped and healthy and the two values conflict, the switch will be analyzed per its
TypicallyClosed value and the StO_Quality will be set to UNTRUSTED.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
TypicallyClosed BOOL This switch is closed under normal operating condi-

tions. This is the value that will be used if there is no
communication with the switch.

Inputs/Outputs

Name IEC 61131 Type Description

pt_TerminalA POINTER TO class_Terminal The first terminal of this switch, used to
attach it inside the model.

pt_TerminalB POINTER TO class_Terminal The second terminal of this switch, used
to attach it inside the model.

StIn_IsClosed BOOL The switch is reporting as closed.
StIn_IsClosedQOk BOOL The channel communicating switch state

is healthy.
StO_IsClosed BOOL The state the model calculates the switch

to be in. The model may override an open
condition if current is still detected across
the link.

StO_Quality enum_ValueSource The confidence level in the StO_IsClosed
flag.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 13

Classes

bootstrap_ConfigureIsOpenInput (Method)

Call this method to provide a reference to the value the switch should monitor to detect an
open condition.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

stIn_IsOpen SPS The variable that will be monitored to determine the open
status of this switch.

Return Value

IEC 61131 Type Description

BOOL The switch was successfully configured.

Processing

This method is intended to be called before processing to associate a data location with the
switch. It performs the following actions:

ä Stores a reference to the provided variable to be used later.

ä Returns FALSE if the reference is not stored because the switch already had this
bootstrap method called.

bootstrap_ConfigureIsClosedInput (Method)

Call this method to provide a reference to the value the switch should monitor to detect a
closed condition.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

stIn_IsClosed SPS The variable that will be monitored to determine the
closed status of this switch.

Return Value

IEC 61131 Type Description

BOOL The switch was successfully configured.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

14 PowerSystemModel (HORIZON®)

Classes

Processing

This method is intended to be called before processing to associate a data location with the
switch. It performs the following actions:

ä Stores a reference to the provided variable to be used later.

ä Returns FALSE if the reference is not stored because the switch already had this
bootstrap method called.

class_Breaker

Instantiate one instance of this class for any load breaking device in the model. The instance
tracks open-close state of that device. Before this class can be used, one or both of its
bootstrap methods must be called.

If none of the variables being monitored are healthy on a given scan, the breaker will be
analyzed per its TypicallyClosed value and the StO_Quality will be set to UNAVAILABLE.
If only one value is available, because only one bootstrap method is called or only one
monitored value is healthy, that value will be used as the open-close state. If both values
are bootstrapped and healthy and the two values conflict, the breaker will be analyzed per
its TypicallyClosed value and the StO_Quality will be set to UNTRUSTED.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

ä class_Switch

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
TypicallyClosed BOOL This breaker is closed under normal operating condi-

tions. This is the value that will be used if there is no
communication with the breaker.

Outputs

Name IEC 61131 Type Description

pt_TerminalA POINTER TO class_Terminal The first terminal of this breaker, used to
attach it inside the model.

pt_TerminalB POINTER TO class_Terminal The second terminal of this breaker, used
to attach it inside the model.

StIn_IsClosed BOOL The breaker is reporting as closed.
StIn_IsClosedQOk BOOL The channel communicating breaker

state is healthy.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 15

Classes

Outputs

Name IEC 61131 Type Description

StO_IsClosed BOOL The state the model calculates the breaker
to be in. The model may override an open
condition if current is still detected across
the link.

StO_Quality enum_ValueSource The confidence level in the StO_IsClosed
flag.

bootstrap_ConfigureIsOpenInput (Method)

Call this method to provide a reference to the value the breaker should monitor to detect an
open condition.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

stIn_IsOpen SPS The variable that will be monitored to determine the open
status of this breaker.

Return Value

IEC 61131 Type Description

BOOL The breaker was successfully configured.

Processing

This method is intended to be called before processing to associate a data location with the
breaker. It performs the following actions:

ä Stores a reference to the provided variable to be used later.

ä Returns FALSE if the reference is not stored because the breaker already had this
bootstrap method called.

bootstrap_ConfigureIsClosedInput (Method)

Call this method to provide a reference to the value the breaker should monitor to detect a
closed condition.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

16 PowerSystemModel (HORIZON®)

Classes

Inputs/Outputs

Name IEC 61131 Type Description

stIn_IsClosed SPS The variable that will be monitored to determine the
closed status of this breaker.

Return Value

IEC 61131 Type Description

BOOL The breaker was successfully configured.

Processing

This method is intended to be called before processing to associate a data location with the
breaker. It performs the following actions:

ä Stores a reference to the provided variable to be used later.

ä Returns FALSE if the reference is not stored because the breaker already had this
bootstrap method called.

class_EnergySource

This class is a terminating element. It represents an edge of the model being worked on.
Instantiate one instance of this class anywhere it is desired to model all elements beyond
this point as a metered source of electrical power.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Outputs

Name IEC 61131 Type Description

pt_Terminal POINTER TO class_Terminal The terminal of this source, used to attach it
inside the model.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 17

Classes

class_EnergyConsumer

This class is a terminating element. It represents an edge of the model being worked on.
Instantiate one instance of this class anywhere it is desired to model all elements beyond
this point as a metered electrical load.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Outputs

Name IEC 61131 Type Description

pt_Terminal POINTER TO class_Terminal The terminal of this load, used to attach it inside
the model.

class_ShuntCompensator

This class is a terminating element. It represents an edge of the model being worked on.
Instantiate one instance of this class anywhere it is desired to model a shunt capacitor,
inductor, or resistor. The provided values are used during all operations on the model.

Inputs to this class must be in units of siemens.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

18 PowerSystemModel (HORIZON®)

Classes

Inputs

Name IEC 61131 Type Description

conductanceAPhase LREAL The real part of the shunt admittance of the
A-phase.

susceptanceAPhase LREAL The reactive part of the shunt admittance of the
A-phase.

conductanceBPhase LREAL The real part of the shunt admittance of the
B-phase.

susceptanceBPhase LREAL The reactive part of the shunt admittance of the
B-phase.

conductanceCPhase LREAL The real part of the shunt admittance of the
C-phase.

susceptanceCPhase LREAL The reactive part of the shunt admittance of the
C-phase.

conductanceABPhase LREAL The real part of the shunt admittance due to
mutual coupling between the A-phase and the
B-phase.

susceptanceABPhase LREAL The reactive part of the shunt admittance due to
mutual coupling between the A-phase and the
B-phase.

conductanceACPhase LREAL The real part of the shunt admittance due to
mutual coupling between the A-phase and the
C-phase.

susceptanceACPhase LREAL The reactive part of the shunt admittance due to
mutual coupling between the A-phase and the
C-phase.

conductanceBCPhase LREAL The real part of the shunt admittance due to
mutual coupling between the B-phase and the
C-phase.

susceptanceBCPhase LREAL The reactive part of the shunt admittance due
to mutual coupling between the B-phase and the
C-phase.

Outputs

Name IEC 61131 Type Description

pt_Terminal POINTER TO class_Terminal The terminal of this compensator, used to attach
it inside the model.

class_ACLineSegment

Instantiate one instance of this class at each location where it is desired to model the con-
nection between two points as having impedance. Each instance defaults to zero impedance
and zero shunt admittance unless an appropriate bootstrapping method is called.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 19

Classes

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Outputs

Name IEC 61131 Type Description

pt_TerminalA POINTER TO class_Terminal The first terminal of this line, used to attach it
inside the model.

pt_TerminalB POINTER TO class_Terminal The second terminal of this line, used to attach
it inside the model.

bootstrap_SetNominalLineImpedance1Line (Method)

Call this method to set the line impedance using a 1-line model. Arguments of this method
must be in units of ohms.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

resistance LREAL The real part of the positive-sequence series impedance.
reactance LREAL The reactive part of the positive-sequence series impedance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the impedance was set based on the provided values.

Processing

This method sets the impedance of the line based on the provided values and returns
TRUE, unless the impedance of the line was set previously or the model is no longer in the
initialization phase.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

20 PowerSystemModel (HORIZON®)

Classes

bootstrap_SetNominalLineImpedance3Phase (Method)

Call this method to set the line impedance using three-phase data. Arguments of this method
must be in units of ohms.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

resistanceAPhase LREAL The real part of the series impedance of the A-phase.
reactanceAPhase LREAL The reactive part of the series impedance of the

A-phase.
resistanceBPhase LREAL The real part of the series impedance of the B-phase.
reactanceBPhase LREAL The reactive part of the series impedance of the

B-phase.
resistanceCPhase LREAL The real part of the series impedance of the B-phase.
reactanceCPhase LREAL The reactive part of the series impedance of the

B-phase.
resistanceABPhase LREAL The real part of the series impedance due to mutual

coupling between the A-phase and the B-phase.
reactanceABPhase LREAL The reactive part of the series impedance due to mu-

tual coupling between the A-phase and the B-phase.
resistanceACPhase LREAL The real part of the series impedance due to mutual

coupling between the A-phase and the C-phase.
reactanceACPhase LREAL The reactive part of the series impedance due to mu-

tual coupling between the A-phase and the C-phase.
resistanceBCPhase LREAL The real part of the series impedance due to mutual

coupling between the B-phase and the C-phase.
reactanceBCPhase LREAL The reactive part of the series impedance due to mu-

tual coupling between the B-phase and the C-phase.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the impedance was set based on the provided values.

Processing

This method sets the impedance of the line based on the provided values and returns
TRUE, unless the impedance of the line was set previously or the model is no longer in the
initialization phase.

bootstrap_SetNominalLineImpedanceWZeroSequence (Method)

Call this method to set the line impedance using a positive- and zero-sequence data model.
Arguments of this method must be in units of ohms.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 21

Classes

Inputs

Name IEC 61131 Type Description

resistancePosSequence LREAL The real part of the positive-sequence series
impedance.

reactancePosSequence LREAL The reactive part of the positive-sequence se-
ries impedance.

resistanceZeroSequence LREAL The real part of the zero-sequence series
impedance.

reactanceZeroSequence LREAL The reactive part of the zero-sequence series
impedance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the impedance was set based on the provided values.

Processing

This method sets the impedance of the line based on the provided values and returns
TRUE, unless the impedance of the line was set previously or the model is no longer in the
initialization phase.

bootstrap_SetNominalShuntAdmittance1Line (Method)

Call this method to set the shunt admittance of the line using a one-line model. Arguments
of this method must be in units of siemens.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

conductance LREAL The real part of the positive-sequence shunt admittance.
susceptance LREAL The reactive part of the positive-sequence shunt admittance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the admittance was set based on the provided values.

Processing

This method sets the admittance of the line based on the provided values and returns
TRUE, unless the admittance of the line was set previously or the model is no longer in the
initialization phase.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

22 PowerSystemModel (HORIZON®)

Classes

bootstrap_SetNominalShuntAdmittance3Phase (Method)

Call this method to set the line’s shunt admittance using three-phase data. Arguments of
this method must be in units of siemens.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

conductanceAPhase LREAL The real part of the shunt admittance of the
A-phase.

susceptanceAPhase LREAL The reactive part of the shunt admittance of the
A-phase.

conductanceBPhase LREAL The real part of the shunt admittance of the
B-phase.

susceptanceBPhase LREAL The reactive part of the shunt admittance of the
B-phase.

conductanceCPhase LREAL The real part of the shunt admittance of the
C-phase.

susceptanceCPhase LREAL The reactive part of the shunt admittance of the
C-phase.

conductanceABPhase LREAL The real part of the shunt admittance due to
mutual coupling between the A-phase and the
B-phase.

susceptanceABPhase LREAL The reactive part of the shunt admittance due to
mutual coupling between the A-phase and the
B-phase.

conductanceACPhase LREAL The real part of the shunt admittance due to
mutual coupling between the A-phase and the
C-phase.

susceptanceACPhase LREAL The reactive part of the shunt admittance due to
mutual coupling between the A-phase and the
C-phase.

conductanceBCPhase LREAL The real part of the shunt admittance due to
mutual coupling between the B-phase and the
C-phase.

susceptanceBCPhase LREAL The reactive part of the shunt admittance due
to mutual coupling between the B-phase and the
C-phase.

Return Value

IEC 61131 Type Description

BOOL Returns true if the admittance was set based on the provided values.

Processing

This method sets the admittance of the line based on the provided values and returns
TRUE, unless the admittance of the line was set previously or the model is no longer in the
initialization phase.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 23

Classes

bootstrap_SetNominalShuntAdmittanceWZeroSequence (Method)

Call this method to set the line’s shunt admittance using a positive- and zero-sequence data
model. Arguments of this method must be in units of siemens.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

conductancePosSequence LREAL The real part of the positive-sequence shunt
admittance.

susceptancePosSequence LREAL The reactive part of the positive-sequence
shunt admittance.

conductanceZeroSeqeunce LREAL The real part of the zero-sequence shunt ad-
mittance.

susceptanceZeroSequence LREAL The reactive part of the zero-sequence shunt
admittance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the admittance was set based on the provided values.

Processing

This method sets the admittance of the line based on the provided values and returns
TRUE, unless the admittance of the line was set previously or the model is no longer in the
initialization phase.

class_PowerTransformerEnd

Instantiate one instance of this class for each transformer winding desired in the model.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

24 PowerSystemModel (HORIZON®)

Classes

Inputs

Name IEC 61131 Type Description

NominalRatio REAL The modifier to use as the expected change be-
tween this winding and others in the system.

ConnectionType enum_WindingConnection The wiring configuration of the winding.

Outputs

Name IEC 61131 Type Description

pt_Terminal POINTER TO class_Terminal The terminal of this transformer winding, used
to attach it into the model.

bootstrap_AddTapChanger (Method)

Call this method to add a tap changer that will modify the NominalRatio of this transformer
end.

This is the last type of bootstrap method to be called. It must be called after all terminals
are connected and all configure and set bootstrap methods have been completed.

Inputs/Outputs

Name IEC 61131 Type Description

tapChanger class_TapChanger The tap changer that will modify this winding.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the tap changer is added to this winding.

Processing

This method links the provided tap changer to this winding and returns true, unless another
tap changer has already been set, the tap changer is already modifying another transformer
end, or the model is no longer in the initialization phase.

bootstrap_SetNominalEndImpedance1Line (Method)

Call this method to set the impedance of the transformer winding from a 1-line model.
Arguments of this method must be in units of ohms.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 25

Classes

Inputs

Name IEC 61131 Type Description

resistance LREAL The real part of the positive-sequence series impedance.
reactance LREAL The reactive part of the positive-sequence series impedance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the impedance was set based on the provided values.

Processing

This method sets the impedance of the transformer end based on the provided values and
returns TRUE, unless the impedance of the transformer end was set previously or the model
is no longer in the initialization phase.

bootstrap_SetNominalEndImpedance3Phase (Method)

Call this method to set the impedance of the transformer winding from three-phase data.
Arguments of this method must be in units of ohms.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

resistanceAPhase LREAL The real part of the series impedance of the A-phase.
reactanceAPhase LREAL The reactive part of the series impedance of the

A-phase.
resistanceBPhase LREAL The real part of the series impedance of the B-phase.
reactanceBPhase LREAL The reactive part of the series impedance of the

B-phase.
resistanceCPhase LREAL The real part of the series impedance of the B-phase.
reactanceCPhase LREAL The reactive part of the series impedance of the

B-phase.
resistanceABPhase LREAL The real part of the series impedance due to mutual

coupling between the A-phase and the B-phase.
reactanceABPhase LREAL The reactive part of the series impedance due to mu-

tual coupling between the A-phase and the B-phase.
resistanceACPhase LREAL The real part of the series impedance due to mutual

coupling between the A-phase and the C-phase.
reactanceACPhase LREAL The reactive part of the series impedance due to mu-

tual coupling between the A-phase and the C-phase.
resistanceBCPhase LREAL The real part of the series impedance due to mutual

coupling between the B-phase and the C-phase.
reactanceBCPhase LREAL The reactive part of the series impedance due to mu-

tual coupling between the B-phase and the C-phase.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

26 PowerSystemModel (HORIZON®)

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the impedance was set based on the provided values.

Processing

This method sets the impedance of the transformer end based on the provided values and
returns TRUE, unless the impedance of the transformer end was set previously or the model
is no longer in the initialization phase.

bootstrap_SetNominalEndImpedanceWZeroSequence (Method)

Call this method to set the impedance of the transformer winding from a positive- and
zero-sequence data model. Arguments of this method must be in units of ohms.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

resistancePosSequence LREAL The real part of the positive-sequence series
impedance.

reactancePosSequence LREAL The reactive part of the positive-sequence se-
ries impedance.

resistanceZeroSequence LREAL The real part of the zero-sequence series
impedance.

reactanceZeroSequence LREAL The reactive part of the zero-sequence series
impedance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the impedance was set based on the provided values.

Processing

This method sets the impedance of the transformer end based on the provided values and
returns TRUE, unless the impedance of the transformer end was set previously or the model
is no longer in the initialization phase.

bootstrap_SetNominalShuntAdmittance1Line (Method)

Call this method to set the shunt admittance of the transformer end from a 1-line model.
Arguments of this method must be in units of siemens.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 27

Classes

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

conductance LREAL The real part of the positive-sequence shunt admittance.
susceptance LREAL The reactive part of the positive-sequence shunt admittance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the admittance was set based on the provided values.

Processing

This method sets the admittance of the transformer end based on the provided values and
returns TRUE, unless the admittance of the transformer end was set previously or the model
is no longer in the initialization phase.

bootstrap_SetNominalShuntAdmittance3Phase (Method)

Call this method to set the shunt admittance of the transformer winding from three-phase
data. Arguments of this method must be in units of siemens.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs

Name IEC 61131 Type Description

conductanceAPhase LREAL The real part of the shunt admittance of the
A-phase.

susceptanceAPhase LREAL The reactive part of the shunt admittance of the
A-phase.

conductanceBPhase LREAL The real part of the shunt admittance of the
B-phase.

susceptanceBPhase LREAL The reactive part of the shunt admittance of the
B-phase.

conductanceCPhase LREAL The real part of the shunt admittance of the
C-phase.

susceptanceCPhase LREAL The reactive part of the shunt admittance of the
C-phase.

conductanceABPhase LREAL The real part of the shunt admittance due to
mutual coupling between the A-phase and the
B-phase.

susceptanceABPhase LREAL The reactive part of the shunt admittance due to
mutual coupling between the A-phase and the
B-phase.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

28 PowerSystemModel (HORIZON®)

Classes

Inputs

Name IEC 61131 Type Description

conductanceACPhase LREAL The real part of the shunt admittance due to
mutual coupling between the A-phase and the
C-phase.

susceptanceACPhase LREAL The reactive part of the shunt admittance due to
mutual coupling between the A-phase and the
C-phase.

conductanceBCPhase LREAL The real part of the shunt admittance due to
mutual coupling between the B-phase and the
C-phase.

susceptanceBCPhase LREAL The reactive part of the shunt admittance due
to mutual coupling between the B-phase and the
C-phase.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the admittance was set based on the provided values.

Processing

This method sets the admittance of the transformer end based on the provided values and
returns TRUE, unless the admittance of the transformer end was set previously or the model
is no longer in the initialization phase.

bootstrap_SetNominalShuntAdmittanceWZeroSequence (Method)

Call this method to set the shunt admittance of the transformer end from a positive- and
zero-sequence data model. Arguments of this method must be in units of siemens.

Inputs

Name IEC 61131 Type Description

conductancePosSequence LREAL The real part of the positive-sequence shunt
admittance.

susceptancePosSequence LREAL The reactive part of the positive-sequence
shunt admittance.

conductanceZeroSeqeunce LREAL The real part of the zero-sequence shunt ad-
mittance.

susceptanceZeroSequence LREAL The reactive part of the zero-sequence shunt
admittance.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the admittance was set based on the provided values.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 29

Classes

Processing

This method sets the admittance of the transformer end based on the provided values and
returns TRUE, unless the admittance of the transformer end was set previously or the model
is no longer in the initialization phase.

class_BusbarSection

Instantiate one instance of this class for each location of a bus desired to be modeled.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Outputs

Name IEC 61131 Type Description

pt_Terminal POINTER TO class_Terminal The terminal of this bus, used to attach it into
the model.

class_Junction

Instantiate one instance of this class for each location of a non-bus intersection of three or
more terminals that requires a name.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_ConductingEquipment

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

30 PowerSystemModel (HORIZON®)

Classes

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Outputs

Name IEC 61131 Type Description

pt_Terminal POINTER TO class_Terminal The terminal of this junction, used to attach it
into the model.

class_TapChanger

Instantiate one instance of this class for each class_PowerTransformerEnd requiring a
dynamic transformer ratio.

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
DefaultStep INT The step value this tap changer will use if communication

with the device is unhealthy. A value of zero leaves the
PowerTransformer winding at its default NominalRatio.

StepSize REAL The size of each step in percentage.
StepHighLimit INT The maximum multiplier this tap changer allows.
StepLowLimit INT The minimum multiplier this tap changer allows.

Outputs

Name IEC 61131 Type Description

StIn_RatioModifier REAL The measured value of the tap changer as a
percentage.

StIn_RatioModifierQOk BOOL The health of the communications channel pro-
viding the ratio modifier. This will be FALSE
if the value is out of bounds or the communi-
cation is flagged as invalid.

bootstrap_ConfigureInputs (Method)

Call this method to provide a reference to all required variables the tap changer should
monitor for its state.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 31

Classes

Inputs/Outputs

Name IEC 61131 Type Description

ratioModifier INS The variable that will report the step position of the tap
changer.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the variables are successfully tied to the tap changer.

Processing

This method stores references to the provided variables and returns true, unless it has already
been called for this tap changer.

class_PowerTransformer

Instantiate one instance of this class for each set of correlated windings to be modeled. This
class acts as a container for class_PowerTransformerEnd objects and relates them to each
other.

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
PowerFactorRating REAL The information required to derive the maximum

angle from real power this transformer allows before
its behavior becomes non-linear.

RealPowerRating REAL The maximum real power this transformer can han-
dle.

bootstrap_AddWinding (Method)

Call this method to attach a class_PowerTransformerEnd to this transformer as one of
multiple windings.

This is the last type of bootstrap method to be called. It must be called after all terminals
are connected and all configure and set bootstrap methods have been completed.

Inputs/Outputs

Name IEC 61131 Type Description

winding class_PowerTransformerEnd The winding to add to this transformer.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

32 PowerSystemModel (HORIZON®)

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the winding was added successfully.

Processing

This method attaches the transformer end to this transformer and returns true, unless the
transformer end is already attached to a transformer, the transformer has ends attached to a
different model, or the model is no longer in the initialization stage.

class_VoltageLevel

Instantiate one voltage level for each nominal voltage desired in the model. The model uses
values provided here in per-unit calculations.

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
NominalVoltage REAL The voltage value to be used in per-unit calculations

for all equipment added to this voltage level.

bootstrap_AddEquipment (Method)

Call this method for each piece of equipment that should be associated with this container.

Inputs/Outputs

Name IEC 61131 Type Description

equipment class_ConductingEquipment The equipment to add to the container.

Return Value

IEC 61131 Type Description

BOOL The equipment was successfully added to the container.

Processing

This method is intended to be called before processing to associate equipment with this
container. It performs the following actions:

ä Stores a reference to the object so that it can be accessed as part of the container later.

ä If the equipment can be stored in only one of this container type, prompts the equip-
ment to store a reference to the container as well.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 33

Classes

ä Returns FALSE if the object cannot be added to the container because either the
objects are no longer in the initialization phase or the equipment was already added
to a conflicting container.

class_CurrentMeasurement

Current measurement objects can be added to any class_Terminal except one correlating to
a bus or junction. Measurements are complex phasors that must be scaled to present the
current injection from the equipment out, in amperes. Instantiate one instance of this class
for each set of current meter data that the model needs to account for.

class_CurrentMeasurement objects also reports three-phase current values after data manip-
ulation.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_Measurement

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
ScaleFactor REAL A multiplier applied as values enter the model.
MaxError REAL The maximum error percentage allowed on this meter

before it is flagged as UNTRUSTED. Default is 1%.
MinimumValue REAL The minimum value in amperes that will be used as the

denominator in calculating percentage error. Default is
1 ampere.

Outputs

Name IEC 61131 Type Description

StIn_IsEnabled BOOL The values read by this measurement are allowed
by the operator to be used in model calculations.

StIn_QOk BOOL The values provided to this measurement object are
healthy.

StIn_PhaseA vector_t A-phase values as measured for three-phase inputs,
or a decomposition to vectors for PosSequence or
Sequence input.

StIn_PhaseB vector_t B-phase values as measured for three-phase inputs,
or a decomposition to vectors for PosSequence or
Sequence input.

StIn_PhaseC vector_t C-phase values as measured for three-phase inputs,
or a decomposition to vectors for PosSequence or
Sequence input.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

34 PowerSystemModel (HORIZON®)

Classes

Outputs

Name IEC 61131 Type Description

StIn_PosSequence vector_t PosSequence is calculated for three-phase inputs,
or as a measured PosSequence input.

StIn_ZeroSequence vector_t ZeroSequence is calculated for three-phase inputs,
or as a measured ZeroSequence input.

StIn_NegSequence vector_t NegSequence is calculated for three-phase inputs,
or as a measured NegSequence input.

StO_PhaseAQuality enum_ValueSource The confidence level in the reported A-phase value.
StO_PhaseBQuality enum_ValueSource The confidence level in the reported B-phase value.
StO_PhaseCQuality enum_ValueSource The confidence level in the reported C-phase value.
StO_PhaseA vector_t The A-phase value after adjustments.
StO_PhaseB vector_t The B-phase value after adjustments.
StO_PhaseC vector_t The C-phase value after adjustments.

bootstrap_ConfigureInputsPosSequence (Method)

Call this method to provide a reference to all required variables the measurement should
monitor for its state. This method configures this measurement’s inputs to be read from a
single value, positive-sequence. It ensures that values read will be converted from positive-
sequence to three-phase for later calculations by the model.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

enable BOOL The variable that will report the state of the manual over-
ride of this measurement.

posSequence CMV The variable that will be monitored to determine the
positive-sequence value of this measurement.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if references to the variables are stored for future use.

Processing

This method stores references to the data locations provided as well as the type of data
expected and returns true, unless the measurement has already been given other inputs.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 35

Classes

bootstrap_ConfigureInputsSequence (Method)

Call this method to provide a reference to all required variables the measurement should
monitor for its state. This method configures this measurement’s inputs to be read from
three values: positive-, negative-, and zero-sequence. It ensures that values read will be
converted from sequence to three-phase for later calculations by the model.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

enable BOOL The variable that will report the state of the manual over-
ride of this measurement.

posSequence CMV The variable that will be monitored to determine the
positive-sequence value of this measurement.

zeroSequence CMV The variable that will be monitored to determine the zero-
sequence value of this measurement.

negSequence CMV The variable that will be monitored to determine the
negative-sequence value of this measurement.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if references to the variables are stored for future use.

Processing

This method stores references to the data locations provided as well as the type of data
expected and returns true, unless the measurement has already been given other inputs.

bootstrap_ConfigureInputsThreePhase (Method)

Call this method to provide a reference to all required variables the measurement should
monitor for its state. This method configures this measurement’s inputs to be read from
three-phase values. It ensures that values read will be used directly in later calculations by
the model.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

enable BOOL The variable that will report the state of the manual override of
this measurement.

phaseA CMV The variable that will be monitored to determine the A-phase
value of this measurement.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

36 PowerSystemModel (HORIZON®)

Classes

Inputs/Outputs

Name IEC 61131 Type Description

phaseB CMV The variable that will be monitored to determine the B-phase
value of this measurement.

phaseC CMV The variable that will be monitored to determine the C-phase
value of this measurement.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if references to the variables are stored for future use.

Processing

This method stores references to the data locations provided as well as the type of data
expected and returns true, unless the measurement has already been given other inputs.

class_VoltageMeasurement

Voltage measurement objects can be added to any class_Terminal. Measurements are
complex phasors that must be scaled to present the voltage in volts. Instantiate one instance
of this class for each set of voltage meter data that the model needs to account for.

class_VoltageMeasurement objects also reports three-phase voltage values after data manip-
ulation.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_Measurement

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
ScaleFactor REAL A multiplier applied as values enter the model.
MaxError REAL The maximum error percentage allowed on this meter

before it is flagged as UNTRUSTED. Default is 1%.
MinimumValue REAL The minimum value in volts that will be used as the

denominator in calculating percentage error. Default is
1 volt.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 37

Classes

Outputs

Name IEC 61131 Type Description

StIn_IsEnabled BOOL The values read by this measurement are allowed
by the operator to be used in model calculations.

StIn_QOk BOOL The values provided to this measurement object are
healthy.

StIn_PhaseA vector_t A-phase values as measured for three-phase inputs,
or a decomposition to vectors for PosSequence or
Sequence input.

StIn_PhaseB vector_t B-phase values as measured for three-phase inputs,
or a decomposition to vectors for PosSequence or
Sequence input.

StIn_PhaseC vector_t C-phase values as measured for three-phase inputs,
or a decomposition to vectors for PosSequence or
Sequence input.

StIn_PosSequence vector_t PosSequence is calculated for three-phase inputs,
or as a measured PosSequence input.

StIn_ZeroSequence vector_t ZeroSequence is calculated for three-phase inputs,
or as a measured ZeroSequence input.

StIn_NegSequence vector_t NegSequence is calculated for three-phase inputs,
or as a measured NegSequence input.

StO_PhaseAQuality enum_ValueSource The confidence level in the reported A-phase value.
StO_PhaseBQuality enum_ValueSource The confidence level in the reported B-phase value.
StO_PhaseCQuality enum_ValueSource The confidence level in the reported C-phase value.
StO_PhaseA vector_t The A-phase value after adjustments.
StO_PhaseB vector_t The B-phase value after adjustments.
StO_PhaseC vector_t The C-phase value after adjustments.

bootstrap_ConfigureInputsPosSequence (Method)

Call this method to provide a reference to all required variables the measurement should
monitor for its state. This method configures this measurement’s inputs to be read from a
single value, positive-sequence. It ensures that values read will be converted from positive-
sequence to three-phase for later calculations by the model.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

enable BOOL The variable that will report the state of the manual over-
ride of this measurement.

posSequence CMV The variable that will be monitored to determine the
positive-sequence value of this measurement.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

38 PowerSystemModel (HORIZON®)

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if references to the variables are stored for future use.

Processing

This method stores references to the data locations provided as well as the type of data
expected and returns true, unless the measurement has already been given other inputs.

bootstrap_ConfigureInputsSequence (Method)

Call this method to provide a reference to all required variables the measurement should
monitor for its state. This method configures this measurement’s inputs to be read from
three values: positive-, negative-, and zero-sequence. It ensures that values read will be
converted from sequence to three-phase for later calculations by the model.

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

enable BOOL The variable that will report the state of the manual over-
ride of this measurement.

posSequence CMV The variable that will be monitored to determine the
positive-sequence value of this measurement.

zeroSequence CMV The variable that will be monitored to determine the zero-
sequence value of this measurement.

negSequence CMV The variable that will be monitored to determine the
negative-sequence value of this measurement.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if references to the variables are stored for future use.

Processing

This method stores references to the data locations provided as well as the type of data
expected and returns true, unless the measurement has already been given other inputs.

bootstrap_ConfigureInputsThreePhase (Method)

Call this method to provide a reference to all required variables the measurement should
monitor for its state. This method configures this measurement’s inputs to be read from
three-phase values. It ensures that values read will be used directly in later calculations by
the model.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 39

Classes

This type of bootstrap method must be called after tying terminals and before calling any
bootstrap_Add methods.

Inputs/Outputs

Name IEC 61131 Type Description

enable BOOL The variable that will report the state of the manual override of
this measurement.

phaseA CMV The variable that will be monitored to determine the A-phase
value of this measurement.

phaseB CMV The variable that will be monitored to determine the B-phase
value of this measurement.

phaseC CMV The variable that will be monitored to determine the C-phase
value of this measurement.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if references to the variables are stored for future use.

Processing

This method stores references to the data locations provided as well as the type of data
expected and returns true, unless the measurement has already been given other inputs.

class_ReportedCurrent3Phase

Reported current objects can be added to any class_Terminal except one correlating to a
bus or junction. Reports are complex phasors that present the current injection from the
equipment out, in amperes. Instantiate one instance of this class for each unmonitored
location where knowledge of the current is desired.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_Measurement

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
PerPhaseMaxThreshold REAL The value that, if exceeded by the results of

any phase, will flag a possible error condition.
This value is compared directly against the final
unscaled output.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

40 PowerSystemModel (HORIZON®)

Classes

Outputs

Name IEC 61131 Type Description

StO_PhaseAQuality enum_ValueSource The confidence level in the reported
A-phase value.

StO_PhaseBQuality enum_ValueSource The confidence level in the reported
B-phase value.

StO_PhaseCQuality enum_ValueSource The confidence level in the reported
C-phase value.

StO_PhaseA vector_t The A-phase value after adjustments.
StO_PhaseB vector_t The B-phase value after adjustments.
StO_PhaseC vector_t The C-phase value after adjustments.
PhaseAThresholdExceeded BOOL The magnitude of the A-phase value re-

ported exceeds the provided threshold.
PhaseBThresholdExceeded BOOL The magnitude of the B-phase value re-

ported exceeds the provided threshold.
PhaseCThresholdExceeded BOOL The magnitude of the C-phase value re-

ported exceeds the provided threshold.

class_ReportedCurrentSequence

Reported current objects can be added to any class_Terminal except one correlating to a
bus or junction. Reports are complex phasors that present the current injection from the
equipment out, in amperes. Instantiate one instance of this class for each unmonitored
location where knowledge of the current is desired.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_Measurement

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.
positiveSeqMaxThreshold REAL The value that, if exceeded by the

positive-sequence results, will flag a possi-
ble error condition. This value is compared
directly against the final unscaled output.

zeroSeqMaxThreshold REAL The value that, if exceeded by the
zero-sequence results, will flag a possible
error condition. This value is compared
directly against the final unscaled output.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 41

Classes

Inputs

Name IEC 61131 Type Description

negativeSeqMaxThreshold REAL The value that, if exceeded by the
negative-sequence results, will flag a
possible error condition. This value is
compared directly against the final unscaled
output.

Outputs

Name IEC 61131 Type Description

StO_Quality enum_ValueSource The confidence level in the reported
sequence values.

StO_PosSequence vector_t The calculated positive-sequence
value.

StO_ZeroSequence vector_t The calculated negative-sequence
value.

StO_NegSequence vector_t The calculated zero-sequence value.
positiveSeqThresholdExceeded BOOL The magnitude of the

positive-sequence value reported
exceeds the provided threshold.

zeroSeqThresholdExceeded BOOL The magnitude of the zero-sequence
value reported exceeds the provided
threshold.

negativeSeqThresholdExceeded BOOL The magnitude of the
negative-sequence value reported
exceeds the provided threshold.

class_ReportedVoltage3Phase

Voltage report objects can be added to any class_Terminal. Reports are complex phasors
that present voltage in volts. Instantiate one instance of this class for each unmonitored
location where knowledge of the voltage is desired.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_Measurement

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

42 PowerSystemModel (HORIZON®)

Classes

Inputs

Name IEC 61131 Type Description

PerPhaseMaxThreshold REAL The value that, if exceeded by the results of
any phase, will flag a possible error condition.
This value is compared directly against the final
unscaled output.

Outputs

Name IEC 61131 Type Description

StO_PhaseAQuality enum_ValueSource The confidence level in the reported
A-phase value.

StO_PhaseBQuality enum_ValueSource The confidence level in the reported
B-phase value.

StO_PhaseCQuality enum_ValueSource The confidence level in the reported
C-phase value.

StO_PhaseA vector_t The A-phase value after adjustments.
StO_PhaseB vector_t The B-phase value after adjustments.
StO_PhaseC vector_t The C-phase value after adjustments.
PhaseAThresholdExceeded BOOL The magnitude of the A-phase value re-

ported exceeds the provided threshold.
PhaseBThresholdExceeded BOOL The magnitude of the B-phase value re-

ported exceeds the provided threshold.
PhaseCThresholdExceeded BOOL The magnitude of the C-phase value re-

ported exceeds the provided threshold.

class_ReportedVoltageSequence

Voltage report objects can be added to any class_Terminal. Reports are complex phasors
that present voltage in volts. Instantiate one instance of this class for each unmonitored
location where knowledge of the voltage is desired. All values presented are in the base
units used by the library.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_Measurement

Inputs

Name IEC 61131 Type Description

Name STRING The name of this object on the power system.
Description STRING A human-readable description of this object.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 43

Benchmarks

Inputs

Name IEC 61131 Type Description

positiveSeqMaxThreshold REAL The value that, if exceeded by the
positive-sequence results, will flag a possi-
ble error condition. This value is compared
directly against the final unscaled output.

zeroSeqMaxThreshold REAL The value that, if exceeded by the
zero-sequence results, will flag a possible
error condition. This value is compared
directly against the final unscaled output.

negativeSeqMaxThreshold REAL The value that, if exceeded by the
negative-sequence results, will flag a
possible error condition. This value is
compared directly against the final unscaled
output.

Outputs

Name IEC 61131 Type Description

StO_Quality enum_ValueSource The confidence level in the reported
sequence values.

StO_PosSequence vector_t The calculated positive-sequence
value.

StO_ZeroSequence vector_t The calculated negative-sequence
value.

StO_NegSequence vector_t The calculated zero-sequence value.
positiveSeqThresholdExceeded BOOL The magnitude of the

positive-sequence value reported
exceeds the provided threshold.

zeroSeqThresholdExceeded BOOL The magnitude of the zero-sequence
value reported exceeds the provided
threshold.

negativeSeqThresholdExceeded BOOL The magnitude of the
negative-sequence value reported
exceeds the provided threshold.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3505

â R135-V0 firmware

ä SEL-3530

â R135-V0 firmware

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

44 PowerSystemModel (HORIZON®)

Examples

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R135-V0 firmware

Benchmark Test Descriptions

Substation Example

The posted time is the average execution time of 100 consecutive calls to the Run() method
after initializing the system shown in Modeling a Substation on page 45.

Distribution Network Example

The posted time is the average execution time of 100 consecutive calls to the Run() method
after initializing the system shown in Modeling a Distribution Network on page 53.

Ring Network Example

The posted time is the average execution time of 100 consecutive calls to the Run() method
after initializing the system shown in Modeling a Ring Network on page 62.

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

Substation Example Run() Time 327,803 198,856 12,858
Distribution Example Run() Time 266,256 161,899 9,550
Ring Network Example Run() Time 164,639 97,313 6,689

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 45

Examples

Modeling a Substation

Objective

A user has a substation that needs to be monitored. The substation is laid out as seen in
Figure 7.

V V

A

A

A A

230,000 V

High
to

Low

115,000 V

A A

A

A

A

A

Figure 7 Example Substation Model

Assumptions

Typically all inputs to a model would be assigned directly from a communications channel,
however for ease in compilation for this example all inputs are pulled from a GVL shown
below in Code Snippet 1:

Code Snippet 1 gvl_TagHarness

VAR_GLOBAL
OpenStateValues : ARRAY [1..g_c_NumSwitches+g_c_NumBreakers] OF SPS
:= [(stVal := FALSE, q := (validity := good)),

(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good))

];

TapChangerValue : INS := (stVal := 1, q := (validity := good));

EnableBits : ARRAY [1..g_c_NumVoltageMeters+g_c_NumCurrentMeters] OF
BOOL :=

[g_c_NumVoltageMeters(TRUE), g_c_NumCurrentMeters(TRUE)];

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

46 PowerSystemModel (HORIZON®)

Examples

PhaseAValues : ARRAY [1..g_c_NumVoltageMeters+g_c_NumCurrentMeters] OF
CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 2000)),
(q := (validity := good), instCVal := (ang := 0, mag := 1000))

];

PhaseBValues : ARRAY [1..g_c_NumVoltageMeters+g_c_NumCurrentMeters] OF
CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 2000)),
(q := (validity := good), instCVal := (ang := 0, mag := 1000))

];

PhaseCValues : ARRAY [1..g_c_NumVoltageMeters+g_c_NumCurrentMeters] OF
CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 2000)),
(q := (validity := good), instCVal := (ang := 0, mag := 1000))

];
END_VAR

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 47

Examples

Solution

Once the user has identified all the elements of the model and decided the source for all
required data there are only two other elements the user must create for the model to do its
work. First, all configuration and bootstrap methods must be called before calling Run().
In this example this is shown as completed in a GVL, Code Snippet 3, which allows the
configuration to complete before any task cycles begin. Second, the user must create a
program that calls the model instance’s Run() method, as shown in Code Snippet 2.

Code Snippet 2 prg_RunModel

PROGRAM prg_RunModel

g_Model1.Run();

Code Snippet 3 gvl_Bootstrap

{attribute 'linkalways'}
VAR_GLOBAL CONSTANT

g_c_NumSwitches : UDINT := 10;
g_c_NumBreakers : UDINT := 8;
g_c_ConnectionCount : UDINT := 28;
g_c_NumVoltageMeters : UDINT := 2;
g_c_NumCurrentMeters : UDINT := 10;
g_c_AreaCount : UDINT := 45;
g_c_ConfigurationCount : UDINT := 39;

END_VAR

VAR_GLOBAL
// Instantiate any desired models here:
g_Model1 : class_PowerSystemModel :=

(Filename := 'GlobalModel1.log', ABCRotation := TRUE);

// Instantiate all other components:
g_Source1 : class_EnergySource :=

(Name := 'Source1', Description := 'Line from elsewhere');
g_Source2 : class_EnergySource :=

(Name := 'Source2', Description := 'Another line');
g_Load1 : class_EnergyConsumer := (Name := 'Load1');
g_Load2 : class_EnergyConsumer := (Name := 'Load2');
g_Load3 : class_EnergyConsumer := (Name := 'Load3');
g_Load4 : class_EnergyConsumer := (Name := 'Load4');

g_Bus1 : class_BusbarSection := (Name := 'Bus1');
g_Bus2 : class_BusbarSection := (Name := 'Bus2');

g_Switches : ARRAY [1..g_c_NumSwitches] OF class_Switch
:= [(Name := 'Sw_Source1', TypicallyClosed := TRUE),

(Name := 'Sw_Source2', TypicallyClosed := TRUE),
(Name := 'Sw_Bus1Bkr', TypicallyClosed := TRUE),
(Name := 'Sw_Bus1Transformer', TypicallyClosed := TRUE),
(Name := 'Sw_Bus2Transformer', TypicallyClosed := TRUE),
(Name := 'Sw_Bus2Bkr', TypicallyClosed := TRUE),
(Name := 'Sw_Load1', TypicallyClosed := TRUE),
(Name := 'Sw_Load2', TypicallyClosed := TRUE),
(Name := 'Sw_Load3', TypicallyClosed := FALSE),
(Name := 'Sw_Load4', TypicallyClosed := TRUE)

];

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

48 PowerSystemModel (HORIZON®)

Examples

g_Breakers : ARRAY [1..g_c_NumBreakers] OF class_Breaker
:= [(Name := 'Bkr_Source1', TypicallyClosed := TRUE),

(Name := 'Bkr_Source2', TypicallyClosed := TRUE),
(Name := 'Bkr_TransformerHigh', TypicallyClosed := TRUE),
(Name := 'Bkr_TransformerLow', TypicallyClosed := TRUE),
(Name := 'Bkr_Load1', TypicallyClosed := TRUE),
(Name := 'Bkr_Load2', TypicallyClosed := TRUE),
(Name := 'Bkr_Load3', TypicallyClosed := FALSE),
(Name := 'Bkr_Load4', TypicallyClosed := TRUE)

];

g_VoltageMeters : ARRAY [1..g_c_NumVoltageMeters] OF
class_VoltageMeasurement

:= [(Name := 'Bus1Voltage', ScaleFactor := 1000),
(Name := 'Bus2Voltage', ScaleFactor := 1000)

];

g_CurrentMeters : ARRAY [1..g_c_NumCurrentMeters] OF
class_CurrentMeasurement

:= [(Name := 'Source1', ScaleFactor := 1),
(Name := 'Source2', ScaleFactor := 1),
(Name := 'Bus1CurrentOut', ScaleFactor := -1),
(Name := 'TransformerCurrentHigh', ScaleFactor := -1),
(Name := 'TransformerCurrentLow', ScaleFactor := 1),
(Name := 'Bus2CurrentIn', ScaleFactor := 1),
(Name := 'Load1', ScaleFactor := -1),
(Name := 'Load2', ScaleFactor := -1),
(Name := 'Load3', ScaleFactor := -1),
(Name := 'Load4', ScaleFactor := -1)

];

g_Source1Line : class_ACLineSegment := (Name := 'Line1');
g_Source2Line : class_ACLineSegment := (Name := 'Line2');

g_TransformerA : class_PowerTransformer := (Name :=
'InboundTransformer');

g_TransformerAHighVoltage : class_PowerTransformerEnd :=
(Name := 'TransEndHigh', ConnectionType := WYE, NominalRatio :=

1.0);
g_TransformerALowVoltage : class_PowerTransformerEnd :=

(Name := 'TransEndLow', ConnectionType := WYE, NominalRatio :=
0.5);

g_TransformerATapChanger : class_TapChanger := (DefaultStep := 0,
StepSize := 0.05, StepHighLimit := 16, StepLowLimit := -16);

g_HighVoltage : class_VoltageLevel;
g_LowVoltage : class_VoltageLevel;

(* Tie object terminals together.
** This should be done immediately after instantiating objects.
** This must be done before adding objects to containers. *)
g_ObjectsTied : ARRAY [1 .. g_c_ConnectionCount] OF BOOL
:= [g_Model1.bootstrap_ConnectTerminals

(g_Source1.pt_Terminal, g_Source1Line.pt_TerminalA),
g_Model1.bootstrap_ConnectTerminals

(g_Source1Line.pt_TerminalB, g_Switches[1].pt_TerminalA),
g_Model1.bootstrap_ConnectTerminals

(g_Source2.pt_Terminal, g_Source2Line.pt_TerminalA),

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 49

Examples

g_Model1.bootstrap_ConnectTerminals
(g_Source2Line.pt_TerminalB, g_Switches[2].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Switches[1].pt_TerminalB, g_Breakers[1].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Switches[2].pt_TerminalB, g_Breakers[2].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Bus1.pt_Terminal, g_Breakers[1].pt_TerminalB),

g_Model1.bootstrap_ConnectTerminals
(g_Bus1.pt_Terminal, g_Breakers[2].pt_TerminalB),

g_Model1.bootstrap_ConnectTerminals
(g_Bus1.pt_Terminal, g_Switches[3].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Switches[3].pt_TerminalB, g_Breakers[3].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Breakers[3].pt_TerminalB, g_Switches[4].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Switches[4].pt_TerminalB,

g_TransformerAHighVoltage.pt_Terminal),
g_Model1.bootstrap_ConnectTerminals

(g_TransformerALowVoltage.pt_Terminal,
g_Switches[5].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Switches[5].pt_TerminalB, g_Breakers[4].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Breakers[4].pt_TerminalB, g_Switches[6].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Bus2.pt_Terminal, g_Switches[6].pt_TerminalB),

g_Model1.bootstrap_ConnectTerminals
(g_Bus2.pt_Terminal, g_Breakers[5].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Bus2.pt_Terminal, g_Breakers[6].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Bus2.pt_Terminal, g_Breakers[7].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Bus2.pt_Terminal, g_Breakers[8].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Breakers[5].pt_TerminalB, g_Switches[7].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Breakers[6].pt_TerminalB, g_Switches[8].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Breakers[7].pt_TerminalB, g_Switches[9].pt_TerminalA),

g_Model1.bootstrap_ConnectTerminals
(g_Breakers[8].pt_TerminalB,

g_Switches[10].pt_TerminalA),
g_Model1.bootstrap_ConnectTerminals

(g_Switches[7].pt_TerminalB, g_Load1.pt_Terminal),
g_Model1.bootstrap_ConnectTerminals

(g_Switches[8].pt_TerminalB, g_Load2.pt_Terminal),
g_Model1.bootstrap_ConnectTerminals

(g_Switches[9].pt_TerminalB, g_Load3.pt_Terminal),
g_Model1.bootstrap_ConnectTerminals

(g_Switches[10].pt_TerminalB, g_Load4.pt_Terminal)
];
// Finish connecting terminals and enable population of containers.
g_TerminalsComplete : BOOL := g_Model1.bootstrap_FinalizeConnections();

// Set object configuration:
g_ConfigsSet : ARRAY [1 .. g_c_ConfigurationCount] OF BOOL := [

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

50 PowerSystemModel (HORIZON®)

Examples

g_Switches[1].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[1]),

g_Switches[2].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[2]),

g_Switches[3].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[3]),

g_Switches[4].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[4]),

g_Switches[5].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[5]),

g_Switches[6].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[6]),

g_Switches[7].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[7]),

g_Switches[8].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[8]),

g_Switches[9].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[9]),

g_Switches[10].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[10]),

g_Breakers[1].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[11]),

g_Breakers[2].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[12]),

g_Breakers[3].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[13]),

g_Breakers[4].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[14]),

g_Breakers[5].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[15]),

g_Breakers[6].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[16]),

g_Breakers[7].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[17]),

g_Breakers[8].bootstrap_ConfigureIsOpenInput
(stIn_IsOpen := OpenStateValues[18]),

g_CurrentMeters[1].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[1], phaseA := PhaseAValues[1],
phaseB := PhaseBValues[1], phaseC := PhaseCValues[1]),

g_CurrentMeters[2].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[2], phaseA := PhaseAValues[2],
phaseB := PhaseBValues[2], phaseC := PhaseCValues[2]),

g_CurrentMeters[3].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[3], phaseA := PhaseAValues[3],
phaseB := PhaseBValues[3], phaseC := PhaseCValues[3]),

g_CurrentMeters[4].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[4], phaseA := PhaseAValues[4],
phaseB := PhaseBValues[4], phaseC := PhaseCValues[4]),

g_CurrentMeters[5].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[5], phaseA := PhaseAValues[5],
phaseB := PhaseBValues[5], phaseC := PhaseCValues[5]),

g_CurrentMeters[6].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[6], phaseA := PhaseAValues[6],
phaseB := PhaseBValues[6], phaseC := PhaseCValues[6]),

g_CurrentMeters[7].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[7], phaseA := PhaseAValues[7],
phaseB := PhaseBValues[7], phaseC := PhaseCValues[7]),

g_CurrentMeters[8].bootstrap_ConfigureInputsThreePhase

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 51

Examples

(enable := EnableBits[8], phaseA := PhaseAValues[8],
phaseB := PhaseBValues[8], phaseC := PhaseCValues[8]),

g_CurrentMeters[9].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[9], phaseA := PhaseAValues[9],
phaseB := PhaseBValues[9], phaseC := PhaseCValues[9]),

g_CurrentMeters[10].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[10], phaseA := PhaseAValues[10],
phaseB := PhaseBValues[10], phaseC := PhaseCValues[10]),

g_VoltageMeters[1].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[11], phaseA := PhaseAValues[11],
phaseB := PhaseBValues[11], phaseC := PhaseCValues[11]),

g_VoltageMeters[2].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits[12], phaseA := PhaseAValues[12],
phaseB := PhaseBValues[12], phaseC := PhaseCValues[12]),

g_Source1Line.bootstrap_SetNominalLineImpedance1Line
(resistance := 1.2, reactance := 12),

g_Source1Line.bootstrap_SetNominalShuntAdmittance1Line
(conductance := 12, susceptance := 1.2),

g_Source2Line.bootstrap_SetNominalLineImpedance1Line
(resistance := 1.2, reactance := 12),

g_Source2Line.bootstrap_SetNominalShuntAdmittance1Line
(conductance := 12, susceptance := 1.2),

g_TransformerAHighVoltage.bootstrap_SetNominalEndImpedance3Phase(
reactanceAPhase := 10, resistanceAPhase := 1,
reactanceBPhase := 10, resistanceBPhase := 1,
reactanceCPhase := 10, resistanceCPhase := 1,
reactanceABPhase := 1, resistanceABPhase := 0.1,
reactanceACPhase := 1, resistanceACPhase := 0.1,
reactanceBCPhase := 1, resistanceBCPhase := 0.1),

g_TransformerAHighVoltage.bootstrap_SetNominalShuntAdmittance3Phase(
conductanceAPhase := 10, susceptanceAPhase := 1,
conductanceBPhase := 10, susceptanceBPhase := 1,
conductanceCPhase := 10, susceptanceCPhase := 1,
conductanceABPhase := 1, susceptanceABPhase := 0.1,
conductanceACPhase := 1, susceptanceACPhase := 0.1,
conductanceBCPhase := 1, susceptanceBCPhase := 0.1),

g_TransformerALowVoltage.bootstrap_SetNominalEndImpedance3Phase(
reactanceAPhase := 10, resistanceAPhase := 1,
reactanceBPhase := 10, resistanceBPhase := 1,
reactanceCPhase := 10, resistanceCPhase := 1,
reactanceABPhase := 1, resistanceABPhase := 0.1,
reactanceACPhase := 1, resistanceACPhase := 0.1,
reactanceBCPhase := 1, resistanceBCPhase := 0.1),

g_TransformerALowVoltage.bootstrap_SetNominalShuntAdmittance3Phase(
conductanceAPhase := 10, susceptanceAPhase := 1,
conductanceBPhase := 10, susceptanceBPhase := 1,
conductanceCPhase := 10, susceptanceCPhase := 1,
conductanceABPhase := 1, susceptanceABPhase := 0.1,
conductanceACPhase := 1, susceptanceACPhase := 0.1,
conductanceBCPhase := 1, susceptanceBCPhase := 0.1),

g_TransformerATapChanger.bootstrap_ConfigureInputs
(ratioModifier := TapChangerValue)

];

(* Add objects to containers as desired.
** This should be the last configuration done. *)
g_AreaLoaded : ARRAY [1 .. g_c_AreaCount] OF BOOL

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

52 PowerSystemModel (HORIZON®)

Examples

:= [g_TransformerA.bootstrap_AddWinding(winding :=
g_TransformerAHighVoltage),

g_TransformerA.bootstrap_AddWinding(winding :=
g_TransformerALowVoltage),

g_TransformerALowVoltage.bootstrap_AddTapChanger
(tapChanger := g_TransformerATapChanger),

g_HighVoltage.bootstrap_AddEquipment(equipment :=
g_TransformerAHighVoltage),

g_HighVoltage.bootstrap_AddEquipment(equipment := g_Source1),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Source2),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Bus1),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Switches[1]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Switches[2]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Switches[3]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Switches[4]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Breakers[1]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Breakers[2]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Breakers[3]),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Source1Line),
g_HighVoltage.bootstrap_AddEquipment(equipment := g_Source2Line),

g_LowVoltage.bootstrap_AddEquipment(equipment :=
g_TransformerALowVoltage),

g_LowVoltage.bootstrap_AddEquipment(equipment := g_Bus2),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Switches[5]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Switches[6]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Switches[7]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Switches[8]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Switches[9]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Switches[10]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Breakers[4]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Breakers[5]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Breakers[6]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Breakers[7]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Breakers[8]),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Load1),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Load2),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Load3),
g_LowVoltage.bootstrap_AddEquipment(equipment := g_Load4),

g_Breakers[1].pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[1]),

g_Breakers[2].pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[2]),

g_Breakers[3].pt_TerminalA^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[3]),

g_TransformerAHighVoltage.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[4]),

g_TransformerALowVoltage.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[5]),

g_Breakers[4].pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[6]),

g_Breakers[5].pt_TerminalA^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[7]),

g_Breakers[6].pt_TerminalA^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[8]),

g_Breakers[7].pt_TerminalA^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[9]),

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 53

Examples

g_Breakers[8].pt_TerminalA^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters[10]),

g_Bus1.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters[1]),

g_Bus2.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters[2])

];

// Finalize all model configuration.
g_ModelValidated : BOOL := g_Model1.bootstrap_ValidateModel();

END_VAR

Modeling a Distribution Network

Objective

A user would like to monitor the power used on some distribution lines. The layout of the
lines is as seen in Figure 8.

V
115 kV 23 kV 5 kV

A

A

AB

BC

CA

A
V

AG

A
V

BG

A
V

CG

Figure 8 Distribution Network of Interest

Assumptions

Typically all inputs to a model would be assigned directly from a communication channel,
however for ease in compilation for this example all inputs are pulled from a GVL shown in
Code Snippet 4. Because the user needs to add single-phase monitoring, they must create
dummy inputs for the non-existent phases as the input sources for both voltage and current.

Code Snippet 4 gvl_TagHarness

VAR_GLOBAL
g_DummyVoltage : CMV

:= (q := (validity := invalid), instCVal := (ang := 0, mag :=
0));

g_DummyCurrent : CMV
:= (q := (validity := good), instCVal := (ang := 0, mag := 0));

OpenStateValues2 : ARRAY [1..g_c_NumSwitches2+g_c_NumBreakers2] OF SPS
:= [(stVal := FALSE, q := (validity := good)),

(stVal := FALSE, q := (validity := good)),

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

54 PowerSystemModel (HORIZON®)

Examples

(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good))

];

TapChangerValueN : INS := (stVal := 0, q := (validity := good));
TapChangerValueS : INS := (stVal := 0, q := (validity := good));

EnableBits2 : ARRAY [1..g_c_NumVoltageMeters2+g_c_NumCurrentMeters2] OF
BOOL :=

[g_c_NumVoltageMeters2(TRUE), g_c_NumCurrentMeters2(TRUE)];

PhaseAValues2 : ARRAY [1..g_c_NumVoltageMeters2+g_c_NumCurrentMeters2]
OF CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.5)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.25)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.25)),
(q := (validity := good), instCVal := (ang := 0, mag := 25)),
(q := (validity := good), instCVal := (ang := 0, mag := 5)),
(q := (validity := invalid), instCVal := (ang := 0, mag := 0)),
(q := (validity := invalid), instCVal := (ang := 0, mag := 0))

];

PhaseBValues2 : ARRAY [1..g_c_NumVoltageMeters2+g_c_NumCurrentMeters2]
OF CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.5)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.25)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.25)),
(q := (validity := good), instCVal := (ang := 0, mag := 25)),
(q := (validity := invalid), instCVal := (ang := 0, mag := 0)),
(q := (validity := good), instCVal := (ang := 0, mag := 5)),
(q := (validity := invalid), instCVal := (ang := 0, mag := 0))

];

PhaseCValues2 : ARRAY [1..g_c_NumVoltageMeters2+g_c_NumCurrentMeters2]
OF CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.5)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.25)),
(q := (validity := good), instCVal := (ang := 0, mag := 0.25)),
(q := (validity := good), instCVal := (ang := 0, mag := 25)),
(q := (validity := invalid), instCVal := (ang := 0, mag := 0)),
(q := (validity := invalid), instCVal := (ang := 0, mag := 0)),
(q := (validity := good), instCVal := (ang := 0, mag := 5))

];
END_VAR

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 55

Examples

Solution

Once the user has identified all the elements of the model and decided the source for all
required data there are only two other elements the user must create for the model to do its
work. First, all configuration and bootstrap methods must be called before calling Run().
In this example this is shown as completed in a GVL, Code Snippet 6, which allows the
configuration to complete before any task cycles begin. Second, the user must create a
program that calls the model instance’s Run() method, Code Snippet 5:

Code Snippet 5 prg_RunModel

PROGRAM prg_RunModel

g_Model2.Run();

Code Snippet 6 gvl_Bootstrap

{attribute 'linkalways'}
VAR_GLOBAL CONSTANT

g_c_NumSwitches2 : UDINT := 4;
g_c_NumBreakers2 : UDINT := 2;
g_c_ConnectionCount2 : UDINT := 28;
g_c_NumVoltageMeters2 : UDINT := 4;
g_c_NumCurrentMeters2 : UDINT := 5;
g_c_AreaCount2 : UDINT := 49;
g_c_ConfigurationCount2 : UDINT := 37;

g_c_SeriesRealImpedancePerMile : LREAL := 0.186;
g_c_SeriesReactiveImpedancePerMile : LREAL := 0.415;
g_c_ShuntRealAdmittancePerMile : LREAL := 0;
g_c_ShuntReactiveAdmittancePerMile : LREAL := 1.044E-5;

END_VAR

VAR_GLOBAL
// Instantiate any desired models here:
g_Model2 : class_PowerSystemModel :=

(Filename := 'GlobalModel2.log', ABCRotation := TRUE);

// Instantiate all other components:
g_SourceN : class_EnergySource :=

(Name := 'Source1', Description := 'North Line');
g_SourceS : class_EnergySource :=

(Name := 'Source2', Description := 'South Line');
g_LoadAB : class_EnergyConsumer := (Name := 'LoadAB');
g_LoadBC : class_EnergyConsumer := (Name := 'LoadBC');
g_LoadCA : class_EnergyConsumer := (Name := 'LoadCA');
g_LoadA : class_EnergyConsumer := (Name := 'LoadA');
g_LoadB : class_EnergyConsumer := (Name := 'LoadB');
g_LoadC : class_EnergyConsumer := (Name := 'LoadC');

g_Bus : class_BusbarSection := (Name := 'Bus');
g_Junction1 : class_Junction := (Name := 'Source Line Junction');
g_Junction2 : class_Junction := (Name := 'Junction N Shunt');
g_Junction3 : class_Junction := (Name := 'Junction S Shunt');
g_Junction4 : class_Junction := (Name := 'Junction two phase split');
g_Junction5 : class_Junction := (Name := 'Junction one phase split');

g_Switches2 : ARRAY [1..g_c_NumSwitches2] OF class_Switch

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

56 PowerSystemModel (HORIZON®)

Examples

:= [(Name := 'Sw_SourceS', TypicallyClosed := TRUE),
(Name := 'Sw_SourceTrans', TypicallyClosed := TRUE),
(Name := 'Sw_LineN', TypicallyClosed := TRUE),
(Name := 'Sw_LineS', TypicallyClosed := TRUE)

];
g_Breakers2 : ARRAY [1..g_c_NumBreakers2] OF class_Breaker
:= [(Name := 'Bkr_LineN', TypicallyClosed := TRUE),

(Name := 'Bkr_LineS', TypicallyClosed := TRUE)
];

g_VoltageMeters2 : ARRAY [1..g_c_NumVoltageMeters2] OF
class_VoltageMeasurement

:= [(Name := 'TransformerOutVolts', ScaleFactor := 1000),
(Name := 'ALineVoltage', ScaleFactor := 1000),
(Name := 'BLineVoltage', ScaleFactor := 1000),
(Name := 'CLineVoltage', ScaleFactor := 1000)

];

g_CurrentMeters2 : ARRAY [1..g_c_NumCurrentMeters2] OF
class_CurrentMeasurement

:= [(Name := 'CurrentN', ScaleFactor := 1),
(Name := 'CurrentS', ScaleFactor := 1),
(Name := 'CurrentA', ScaleFactor := -1),
(Name := 'CurrentB', ScaleFactor := -1),
(Name := 'CurrentC', ScaleFactor := -1)

];

g_LineN1 : class_ACLineSegment := (Name := 'LineN1');
g_LineN2 : class_ACLineSegment := (Name := 'LineN2');
g_LineS1 : class_ACLineSegment := (Name := 'LineS1');
g_LineS2 : class_ACLineSegment := (Name := 'LineS2');

g_TransformerIn : class_PowerTransformer := (Name :=
'InboundTransformer');

g_TransformerN : class_PowerTransformer := (Name := 'LineNTransformer');
g_TransformerS : class_PowerTransformer := (Name := 'LineSTransformer');

g_TransformerInHigh : class_PowerTransformerEnd :=
(Name := 'InHighVolts', ConnectionType := WYE, NominalRatio :=

1.0);
g_TransformerInLow : class_PowerTransformerEnd :=

(Name := 'InLowVolts', ConnectionType := WYE, NominalRatio :=
0.2);

g_TransformerNHigh : class_PowerTransformerEnd :=
(Name := 'LineNHighVolts', ConnectionType := WYE, NominalRatio

:= 1.0);
g_TransformerNLow : class_PowerTransformerEnd :=

(Name := 'LineNLowVolts', ConnectionType := WYE, NominalRatio :=
0.21739);

g_TransformerNTap : class_TapChanger := (DefaultStep := 0,
StepSize := 0.05, StepHighLimit := 16, StepLowLimit := -16);

g_TransformerSHigh : class_PowerTransformerEnd :=
(Name := 'LineSHighVolts', ConnectionType := WYE, NominalRatio

:= 1.0);
g_TransformerSLow : class_PowerTransformerEnd :=

(Name := 'LineSLowVolts', ConnectionType := WYE, NominalRatio :=
0.21739);

g_TransformerSTap : class_TapChanger := (DefaultStep := 0,
StepSize := 0.05, StepHighLimit := 16, StepLowLimit := -16);

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 57

Examples

g_HighVoltage2 : class_VoltageLevel;
g_MidVoltage2 : class_VoltageLevel;
g_LowVoltage2 : class_VoltageLevel;

g_NorthShunt : class_ShuntCompensator
:= (Name := 'North Line Shunt Cap',

conductanceAPhase := 0,
susceptanceAPhase := 25,
conductanceBPhase := 0,
susceptanceBPhase := 25,
conductanceCPhase := 0,
susceptanceCPhase := 25

);
g_SouthShunt : class_ShuntCompensator
:= (Name := 'South Line Shunt Cap',

conductanceAPhase := 0,
susceptanceAPhase := 25,
conductanceBPhase := 0,
susceptanceBPhase := 25,
conductanceCPhase := 0,
susceptanceCPhase := 25

);

(* Tie object terminals together.
** This should be done immediately after instantiating objects.
** This must be done before adding objects to containers. *)
g_ObjectsTied2 : ARRAY [1 .. g_c_ConnectionCount2] OF BOOL
:= [g_Model2.bootstrap_ConnectTerminals

(g_Junction1.pt_Terminal, g_SourceN.pt_Terminal),
g_Model2.bootstrap_ConnectTerminals

(g_Junction1.pt_Terminal, g_Switches2[1].pt_TerminalB),
g_Model2.bootstrap_ConnectTerminals

(g_SourceS.pt_Terminal, g_Switches2[1].pt_TerminalA),
g_Model2.bootstrap_ConnectTerminals

(g_Junction1.pt_Terminal, g_Switches2[2].pt_TerminalA),
g_Model2.bootstrap_ConnectTerminals

(g_Switches2[2].pt_TerminalB,
g_TransformerInHigh.pt_Terminal),

//The equipment between the transformers
g_Model2.bootstrap_ConnectTerminals

(g_Bus.pt_Terminal, g_TransformerInLow.pt_Terminal),
g_Model2.bootstrap_ConnectTerminals

(g_Bus.pt_Terminal, g_Switches2[3].pt_TerminalA),
g_Model2.bootstrap_ConnectTerminals

(g_Switches2[3].pt_TerminalB,
g_Breakers2[1].pt_TerminalA),

g_Model2.bootstrap_ConnectTerminals
(g_Breakers2[1].pt_TerminalB,

g_TransformerNHigh.pt_Terminal),
g_Model2.bootstrap_ConnectTerminals

(g_Bus.pt_Terminal, g_Switches2[4].pt_TerminalA),
g_Model2.bootstrap_ConnectTerminals

(g_Switches2[4].pt_TerminalB,
g_Breakers2[2].pt_TerminalA),

g_Model2.bootstrap_ConnectTerminals
(g_Breakers2[2].pt_TerminalB,

g_TransformerSHigh.pt_Terminal),
//The equipment on the north line after the transformer

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

58 PowerSystemModel (HORIZON®)

Examples

g_Model2.bootstrap_ConnectTerminals
(g_TransformerNLow.pt_Terminal, g_LineN1.pt_TerminalA),

g_Model2.bootstrap_ConnectTerminals
(g_Junction2.pt_Terminal, g_LineN1.pt_TerminalB),

g_Model2.bootstrap_ConnectTerminals
(g_Junction2.pt_Terminal, g_NorthShunt.pt_Terminal),

g_Model2.bootstrap_ConnectTerminals
(g_Junction2.pt_Terminal, g_LineN2.pt_TerminalA),

g_Model2.bootstrap_ConnectTerminals
(g_Junction4.pt_Terminal, g_LineN2.pt_TerminalB),

g_Model2.bootstrap_ConnectTerminals
(g_Junction4.pt_Terminal, g_LoadAB.pt_Terminal),

g_Model2.bootstrap_ConnectTerminals
(g_Junction4.pt_Terminal, g_LoadBC.pt_Terminal),

g_Model2.bootstrap_ConnectTerminals
(g_Junction4.pt_Terminal, g_LoadCA.pt_Terminal),

// The equipment on the south line after the transformer
g_Model2.bootstrap_ConnectTerminals

(g_TransformerSLow.pt_Terminal, g_LineS1.pt_TerminalA),
g_Model2.bootstrap_ConnectTerminals

(g_Junction3.pt_Terminal, g_LineS1.pt_TerminalB),
g_Model2.bootstrap_ConnectTerminals

(g_Junction3.pt_Terminal, g_SouthShunt.pt_Terminal),
g_Model2.bootstrap_ConnectTerminals

(g_Junction3.pt_Terminal, g_LineS2.pt_TerminalA),
g_Model2.bootstrap_ConnectTerminals

(g_Junction5.pt_Terminal, g_LineS2.pt_TerminalB),
g_Model2.bootstrap_ConnectTerminals

(g_Junction5.pt_Terminal, g_LoadA.pt_Terminal),
g_Model2.bootstrap_ConnectTerminals

(g_Junction5.pt_Terminal, g_LoadB.pt_Terminal),
g_Model2.bootstrap_ConnectTerminals

(g_Junction5.pt_Terminal, g_LoadC.pt_Terminal)

];
// Finish connecting terminals and enable population of conatiners.
g_TerminalsComplete2 : BOOL := g_Model2.bootstrap_FinalizeConnections();

// Set object configuration:
g_ConfigsSet2 : ARRAY [1 .. g_c_ConfigurationCount2] OF BOOL
:= [g_Switches2[1].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues2[1]),
g_Switches2[2].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues2[2]),
g_Switches2[3].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues2[3]),
g_Switches2[4].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues2[4]),
g_Breakers2[1].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues2[5]),
g_Breakers2[2].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues2[6]),

g_CurrentMeters2[1].bootstrap_ConfigureInputsThreePhase(
enable := EnableBits2[1], phaseA := PhaseAValues2[1],
phaseB := PhaseBValues2[1], phaseC := PhaseCValues2[1]),

g_CurrentMeters2[2].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[2], phaseA := PhaseAValues2[2],
phaseB := PhaseBValues2[2], phaseC := PhaseCValues2[2]),

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 59

Examples

g_CurrentMeters2[3].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[3], phaseA := PhaseAValues2[3],
phaseB := g_DummyCurrent, phaseC := g_DummyCurrent),

g_CurrentMeters2[4].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[4], phaseA := g_DummyCurrent,
phaseB := PhaseBValues2[4], phaseC := g_DummyCurrent),

g_CurrentMeters2[5].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[5], phaseA := g_DummyCurrent,
phaseB := g_DummyCurrent, phaseC := PhaseCValues2[5]),

g_VoltageMeters2[1].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[6], phaseA := PhaseAValues2[6],
phaseB := PhaseBValues2[6], phaseC := PhaseCValues2[6]),

g_VoltageMeters2[2].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[7], phaseA := PhaseAValues2[7],
phaseB := g_DummyVoltage, phaseC := g_DummyVoltage),

g_VoltageMeters2[3].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[8], phaseA := g_DummyVoltage,
phaseB := PhaseBValues2[8], phaseC := g_DummyVoltage),

g_VoltageMeters2[4].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits2[9], phaseA := g_DummyVoltage,
phaseB := g_DummyVoltage, phaseC := PhaseCValues2[9]),

g_LineN1.bootstrap_SetNominalLineImpedance1Line
(resistance := g_c_SeriesRealImpedancePerMile * 45,
reactance := g_c_SeriesReactiveImpedancePerMile * 45),

g_LineN1.bootstrap_SetNominalShuntAdmittance1Line
(conductance := g_c_ShuntRealAdmittancePerMile * 45,
susceptance := g_c_ShuntReactiveAdmittancePerMile * 45),

g_LineN2.bootstrap_SetNominalLineImpedance1Line
(resistance := g_c_SeriesRealImpedancePerMile * 2,
reactance := g_c_SeriesReactiveImpedancePerMile * 2),

g_LineN2.bootstrap_SetNominalShuntAdmittance1Line
(conductance := g_c_ShuntRealAdmittancePerMile * 2,
susceptance := g_c_ShuntReactiveAdmittancePerMile * 2),

g_LineS1.bootstrap_SetNominalLineImpedance1Line
(resistance := g_c_SeriesRealImpedancePerMile * 37,
reactance := g_c_SeriesReactiveImpedancePerMile * 37),

g_LineS1.bootstrap_SetNominalShuntAdmittance1Line
(conductance := g_c_ShuntRealAdmittancePerMile * 37,
susceptance := g_c_ShuntReactiveAdmittancePerMile * 37),

g_LineS2.bootstrap_SetNominalLineImpedance1Line
(resistance := g_c_SeriesRealImpedancePerMile * 2,
reactance := g_c_SeriesReactiveImpedancePerMile * 2),

g_LineS2.bootstrap_SetNominalShuntAdmittance1Line
(conductance := g_c_ShuntRealAdmittancePerMile * 2,
susceptance := g_c_ShuntReactiveAdmittancePerMile * 2),

g_TransformerInHigh.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_TransformerInHigh.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_TransformerInLow.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_TransformerInLow.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_TransformerNHigh.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_TransformerNHigh.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

60 PowerSystemModel (HORIZON®)

Examples

g_TransformerNLow.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_TransformerNLow.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_TransformerSHigh.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_TransformerSHigh.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_TransformerSLow.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_TransformerSLow.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_TransformerNTap.bootstrap_ConfigureInputs
(ratioModifier := TapChangerValueN),

g_TransformerSTap.bootstrap_ConfigureInputs
(ratioModifier := TapChangerValueS)

];

(* Add objects to containers as desired.
** This should be the last configuration done. *)
g_AreaLoaded2 : ARRAY [1 .. g_c_AreaCount2] OF BOOL
:= [g_TransformerIn.bootstrap_AddWinding(winding :=

g_TransformerInHigh),
g_TransformerIn.bootstrap_AddWinding(winding :=

g_TransformerInLow),
g_TransformerN.bootstrap_AddWinding(winding :=

g_TransformerNHigh),
g_TransformerN.bootstrap_AddWinding(winding :=

g_TransformerNLow),
g_TransformerNLow.bootstrap_AddTapChanger

(tapChanger := g_TransformerNTap),
g_TransformerS.bootstrap_AddWinding(winding :=

g_TransformerSHigh),
g_TransformerS.bootstrap_AddWinding(winding :=

g_TransformerSLow),
g_TransformerSLow.bootstrap_AddTapChanger

(tapChanger := g_TransformerSTap),

g_HighVoltage2.bootstrap_AddEquipment(equipment :=
g_TransformerInHigh),

g_HighVoltage2.bootstrap_AddEquipment(equipment := g_SourceN),
g_HighVoltage2.bootstrap_AddEquipment(equipment := g_SourceS),
g_HighVoltage2.bootstrap_AddEquipment(equipment := g_Junction1),
g_HighVoltage2.bootstrap_AddEquipment(equipment :=

g_Switches2[1]),
g_HighVoltage2.bootstrap_AddEquipment(equipment :=

g_Switches2[2]),

g_MidVoltage2.bootstrap_AddEquipment(equipment :=
g_TransformerInLow),

g_MidVoltage2.bootstrap_AddEquipment(equipment := g_Bus),
g_MidVoltage2.bootstrap_AddEquipment(equipment :=

g_Switches2[3]),
g_MidVoltage2.bootstrap_AddEquipment(equipment :=

g_Switches2[4]),
g_MidVoltage2.bootstrap_AddEquipment(equipment :=

g_Breakers2[1]),

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 61

Examples

g_MidVoltage2.bootstrap_AddEquipment(equipment :=
g_Breakers2[2]),

g_MidVoltage2.bootstrap_AddEquipment(equipment :=
g_TransformerNHigh),

g_MidVoltage2.bootstrap_AddEquipment(equipment :=
g_TransformerSHigh),

g_LowVoltage2.bootstrap_AddEquipment(equipment :=
g_TransformerNLow),

g_LowVoltage2.bootstrap_AddEquipment(equipment :=
g_TransformerSLow),

g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LineN1),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LineN2),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LineS1),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LineS2),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_Junction2),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_Junction3),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_Junction4),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_Junction5),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_NorthShunt),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_SouthShunt),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LoadAB),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LoadBC),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LoadCA),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LoadA),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LoadB),
g_LowVoltage2.bootstrap_AddEquipment(equipment := g_LoadC),

g_Breakers2[1].pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters2[1]),

g_Breakers2[2].pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters2[2]),

g_LoadA.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters2[3]),

g_LoadB.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters2[4]),

g_LoadC.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters2[5]),

g_Bus.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters2[1]),

g_LoadA.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters2[2]),

g_LoadB.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters2[3]),

g_LoadC.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters2[4])

];

// Finalize all model configuration.
g_ModelValidated2 : BOOL := g_Model2.bootstrap_ValidateModel();

END_VAR

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

62 PowerSystemModel (HORIZON®)

Examples

Modeling a Ring Network

Objective

A user would like to monitor the power supplied on a ring network as seen in Figure 9.

V

V

V
A

A
A

A

A
A

A

12 kV

120 V

600 V

240 V

Figure 9 ring of Network of Interest

Assumptions

Typically all inputs to a model would be assigned directly from a communication channel,
however for ease in compilation for this example all inputs are pulled from a GVL shown in
Code Snippet 7.

Code Snippet 7 gvl_TagHarness

VAR_GLOBAL
OpenStateValues3 : ARRAY [1..1+g_c_NumBreakers3] OF SPS
:= [(stVal := FALSE, q := (validity := good)),

(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good)),
(stVal := FALSE, q := (validity := good))

];

EnableBits3 : ARRAY [1..g_c_NumVoltageMeters3+g_c_NumCurrentMeters3] OF
BOOL :=

[g_c_NumVoltageMeters3(TRUE), g_c_NumCurrentMeters3(TRUE)];

PhaseAValues3 : ARRAY [1..g_c_NumVoltageMeters3+g_c_NumCurrentMeters3]
OF CMV

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 63

Examples

:= [(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 10)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 2))

];

PhaseBValues3 : ARRAY [1..g_c_NumVoltageMeters3+g_c_NumCurrentMeters3]
OF CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 10)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 2))

];

PhaseCValues3 : ARRAY [1..g_c_NumVoltageMeters3+g_c_NumCurrentMeters3]
OF CMV

:= [(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 600)),
(q := (validity := good), instCVal := (ang := 0, mag := 10)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 2)),
(q := (validity := good), instCVal := (ang := 0, mag := 1)),
(q := (validity := good), instCVal := (ang := 0, mag := 4)),
(q := (validity := good), instCVal := (ang := 0, mag := 2))

];
END_VAR

Solution

Once the user has identified all the elements of the model and decided the source for all
required data there are only two other elements the user must create for the model to do
its work. First, the user must call all configuration and bootstrap methods before calling
Run(). In this example, this is shown as completed in a GVL, Code Snippet 9, which allows
the configuration to complete before any task cycles begin. Second, the user must create a
program that calls the model instance’s Run() method, Code Snippet 8:

Code Snippet 8 prg_RunModel

PROGRAM prg_RunModel

g_Model2.Run();

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

64 PowerSystemModel (HORIZON®)

Examples

Code Snippet 9 gvl_Bootstrap

{attribute 'linkalways'}
VAR_GLOBAL CONSTANT

g_c_NumBreakers3 : UDINT := 8;
g_c_ConnectionCount3 : UDINT := 21;
g_c_NumVoltageMeters3 : UDINT := 3;
g_c_NumCurrentMeters3 : UDINT := 7;
g_c_AreaCount3 : UDINT := 40;
g_c_ConfigurationCount3 : UDINT := 31;

END_VAR

VAR_GLOBAL
// Instantiate any desired models here:
g_Model3 : class_PowerSystemModel :=

(Filename := 'GlobalModel3.log', ABCRotation := TRUE);

// Instantiate all other components:
g_Source12K : class_EnergySource :=

(Name := 'Utility');
g_Source600 : class_EnergySource :=

(Name := 'Generation');
g_Load120 : class_EnergyConsumer := (Name := 'Load120');
g_Load600_1 : class_EnergyConsumer := (Name := 'LargeLoad1');
g_Load600_2 : class_EnergyConsumer := (Name := 'LargeLoad2');
g_Load240 : class_EnergyConsumer := (Name := 'Load240');

g_JunctionW : class_Junction := (Name := 'W Junction');
g_JunctionE : class_Junction := (Name := 'E Junction');
g_JunctionS : class_Junction := (Name := 'S Junction');

g_Switch : class_Switch := (Name := 'Sw_Generation');

g_Breakers3 : ARRAY [1..g_c_NumBreakers3] OF class_Breaker
:= [(Name := 'Bkr_W', TypicallyClosed := TRUE),

(Name := 'Bkr_WNW', TypicallyClosed := TRUE),
(Name := 'Bkr_NW', TypicallyClosed := TRUE),
(Name := 'Bkr_NE', TypicallyClosed := TRUE),
(Name := 'Bkr_ESE', TypicallyClosed := TRUE),
(Name := 'Bkr_SE', TypicallyClosed := TRUE),
(Name := 'Bkr_SW', TypicallyClosed := TRUE),
(Name := 'Bkr_WSW', TypicallyClosed := TRUE)

];

g_VoltageMeters3 : ARRAY [1..g_c_NumVoltageMeters3] OF
class_VoltageMeasurement

:= [(Name := 'Volts_W', ScaleFactor := 1),
(Name := 'Volts_E', ScaleFactor := 1),
(Name := 'Volts_S', ScaleFactor := 1)

];

g_CurrentMeters3 : ARRAY [1..g_c_NumCurrentMeters3] OF
class_CurrentMeasurement

:= [(Name := 'CurrentW' , ScaleFactor := 1),
(Name := 'CurrentNW', ScaleFactor := -1),
(Name := 'CurrentE' , ScaleFactor := -1),
(Name := 'CurrentSE', ScaleFactor := -1),
(Name := 'CurrentS' , ScaleFactor := 1),
(Name := 'CurrentSW', ScaleFactor := -1),
(Name := 'CurrentRing' , ScaleFactor := 1)

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 65

Examples

];

g_Transformer12Kto600 : class_PowerTransformer := (Name :=
'Transformer12K');

g_Transformer600to120 : class_PowerTransformer := (Name :=
'Transformer120');

g_Transformer600to240 : class_PowerTransformer := (Name :=
'Transformer240');

g_12Kin600 : class_PowerTransformerEnd :=
(Name := '12K Winding', ConnectionType := WYE, NominalRatio :=

1.0);
g_12Kout600 : class_PowerTransformerEnd :=

(Name := '600 Winding', ConnectionType := WYE, NominalRatio :=
0.05);

g_600in120 : class_PowerTransformerEnd :=
(Name := '600 Winding 120', ConnectionType := WYE, NominalRatio

:= 1.0);
g_600out120 : class_PowerTransformerEnd :=

(Name := '120 Winding', ConnectionType := WYE, NominalRatio :=
0.2);

g_600in240 : class_PowerTransformerEnd :=
(Name := '600 Winding 240', ConnectionType := WYE, NominalRatio

:= 1.0);
g_600out240 : class_PowerTransformerEnd :=

(Name := '240 Winding', ConnectionType := WYE, NominalRatio :=
0.4);

g_12KVolts : class_VoltageLevel;
g_600Volts : class_VoltageLevel;
g_240Volts : class_VoltageLevel;
g_120Volts : class_VoltageLevel;

(* Tie object terminals together.
** This should be done immediately after instantiating objects.
** This must be done before adding objects to containers. *)
g_ObjectsTied3 : ARRAY [1 .. g_c_ConnectionCount3] OF BOOL
:= [g_Model3.bootstrap_ConnectTerminals

(g_Source12K.pt_Terminal, g_Breakers3[1].pt_TerminalA),
g_Model3.bootstrap_ConnectTerminals

(g_Breakers3[1].pt_TerminalB, g_12Kin600.pt_Terminal),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionW.pt_Terminal, g_12Kout600.pt_Terminal),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionW.pt_Terminal, g_Breakers3[2].pt_TerminalA),
g_Model3.bootstrap_ConnectTerminals

(g_Breakers3[2].pt_TerminalB, g_600in120.pt_Terminal),
g_Model3.bootstrap_ConnectTerminals

(g_Breakers3[2].pt_TerminalB,
g_Breakers3[3].pt_TerminalA),

g_Model3.bootstrap_ConnectTerminals
(g_Breakers3[3].pt_TerminalB,

g_Breakers3[4].pt_TerminalA),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionE.pt_Terminal, g_Breakers3[4].pt_TerminalB),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionE.pt_Terminal, g_Load600_1.pt_Terminal),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionE.pt_Terminal, g_Breakers3[5].pt_TerminalA),

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

66 PowerSystemModel (HORIZON®)

Examples

g_Model3.bootstrap_ConnectTerminals
(g_Breakers3[5].pt_TerminalB, g_600in240.pt_Terminal),

g_Model3.bootstrap_ConnectTerminals
(g_Breakers3[5].pt_TerminalB,

g_Breakers3[6].pt_TerminalA),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionS.pt_Terminal, g_Breakers3[6].pt_TerminalB),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionS.pt_Terminal, g_Switch.pt_TerminalB),
g_Model3.bootstrap_ConnectTerminals

(g_Switch.pt_TerminalA, g_Source600.pt_Terminal),
g_Model3.bootstrap_ConnectTerminals

(g_JunctionS.pt_Terminal, g_Breakers3[7].pt_TerminalA),
g_Model3.bootstrap_ConnectTerminals

(g_Breakers3[7].pt_TerminalB, g_Load600_2.pt_Terminal),
g_Model3.bootstrap_ConnectTerminals

(g_Breakers3[7].pt_TerminalB,
g_Breakers3[8].pt_TerminalA),

g_Model3.bootstrap_ConnectTerminals
(g_JunctionW.pt_Terminal, g_Breakers3[8].pt_TerminalB),

g_Model3.bootstrap_ConnectTerminals
(g_600out120.pt_Terminal, g_Load120.pt_Terminal),

g_Model3.bootstrap_ConnectTerminals
(g_600out240.pt_Terminal, g_Load240.pt_Terminal)

];

// Finish connecting terminals and enable population of conatiners.
g_TerminalsComplete3 : BOOL := g_Model3.bootstrap_FinalizeConnections();

// Set object configuration:
g_ConfigsSet3 : ARRAY [1 .. g_c_ConfigurationCount3] OF BOOL
:= [g_Switch.bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[1]),
g_Breakers3[1].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[2]),
g_Breakers3[2].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[3]),
g_Breakers3[3].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[4]),
g_Breakers3[4].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[5]),
g_Breakers3[5].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[6]),
g_Breakers3[6].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[7]),
g_Breakers3[7].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[8]),
g_Breakers3[8].bootstrap_ConfigureIsOpenInput(stIn_IsOpen :=

OpenStateValues3[9]),

g_CurrentMeters3[1].bootstrap_ConfigureInputsThreePhase(
enable := EnableBits3[1], phaseA := PhaseAValues3[1],
phaseB := PhaseBValues3[1], phaseC := PhaseCValues3[1]),

g_CurrentMeters3[2].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[2], phaseA := PhaseAValues3[2],
phaseB := PhaseBValues3[2], phaseC := PhaseCValues3[2]),

g_CurrentMeters3[3].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[3], phaseA := PhaseAValues3[3],
phaseB := PhaseBValues3[3], phaseC := PhaseCValues3[3]),

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 67

Examples

g_CurrentMeters3[4].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[4], phaseA := PhaseAValues3[4],
phaseB := PhaseBValues3[4], phaseC := PhaseCValues3[4]),

g_CurrentMeters3[5].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[5], phaseA := PhaseAValues3[5],
phaseB := PhaseBValues3[5], phaseC := PhaseCValues3[5]),

g_CurrentMeters3[6].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[6], phaseA := PhaseAValues3[6],
phaseB := PhaseBValues3[6], phaseC := PhaseCValues3[6]),

g_CurrentMeters3[7].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[7], phaseA := PhaseAValues3[7],
phaseB := PhaseBValues3[7], phaseC := PhaseCValues3[7]),

g_VoltageMeters3[1].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[8], phaseA := PhaseAValues3[8],
phaseB := PhaseBValues3[8], phaseC := PhaseCValues3[8]),

g_VoltageMeters3[2].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[9], phaseA := PhaseAValues3[9],
phaseB := PhaseBValues3[9], phaseC := PhaseCValues3[9]),

g_VoltageMeters3[3].bootstrap_ConfigureInputsThreePhase
(enable := EnableBits3[10], phaseA := PhaseAValues3[10],
phaseB := PhaseBValues3[10], phaseC :=

PhaseCValues3[10]),

g_12Kin600.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_12Kin600.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_12Kout600.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_12Kout600.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_600in240.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_600in240.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_600out240.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_600out240.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_600in120.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_600in120.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1),

g_600out120.bootstrap_SetNominalEndImpedance1Line(
reactance := 10, resistance := 1),

g_600out120.bootstrap_SetNominalShuntAdmittance1Line(
conductance := 10, susceptance := 1)

];

(* Add objects to containers as desired.
** This should be the last configuration done. *)
g_AreaLoaded3 : ARRAY [1 .. g_c_AreaCount3] OF BOOL
:= [g_Transformer12Kto600.bootstrap_AddWinding(winding :=

g_12Kin600),
g_Transformer12Kto600.bootstrap_AddWinding(winding :=

g_12Kout600),

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

68 PowerSystemModel (HORIZON®)

Examples

g_Transformer600to240.bootstrap_AddWinding(winding :=
g_600in240),

g_Transformer600to240.bootstrap_AddWinding(winding :=
g_600out240),

g_Transformer600to120.bootstrap_AddWinding(winding :=
g_600in120),

g_Transformer600to120.bootstrap_AddWinding(winding :=
g_600out120),

g_12KVolts.bootstrap_AddEquipment(equipment := g_12Kin600),
g_12KVolts.bootstrap_AddEquipment(equipment := g_Breakers3[1]),
g_12KVolts.bootstrap_AddEquipment(equipment := g_Source12K),

g_600Volts.bootstrap_AddEquipment(equipment := g_12Kout600),
g_600Volts.bootstrap_AddEquipment(equipment := g_600in240),
g_600Volts.bootstrap_AddEquipment(equipment := g_600in120),
g_600Volts.bootstrap_AddEquipment(equipment := g_JunctionW),
g_600Volts.bootstrap_AddEquipment(equipment := g_JunctionE),
g_600Volts.bootstrap_AddEquipment(equipment := g_JunctionS),
g_600Volts.bootstrap_AddEquipment(equipment := g_Source600),
g_600Volts.bootstrap_AddEquipment(equipment := g_Load600_1),
g_600Volts.bootstrap_AddEquipment(equipment := g_Load600_2),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[2]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[3]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[4]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[5]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[6]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[7]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Breakers3[8]),
g_600Volts.bootstrap_AddEquipment(equipment := g_Switch),

g_240Volts.bootstrap_AddEquipment(equipment := g_600out240),
g_240Volts.bootstrap_AddEquipment(equipment := g_Load240),

g_120Volts.bootstrap_AddEquipment(equipment := g_600out120),
g_120Volts.bootstrap_AddEquipment(equipment := g_Load120),

g_JunctionW.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters3[1]),

g_JunctionE.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters3[1]),

g_JunctionS.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_VoltageMeters3[1]),

g_12Kout600.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[1]),

g_600in120.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[2]),

g_Load600_1.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[3]),

g_600in240.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[4]),

g_Switch.pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[5]),

g_Load600_2.pt_Terminal^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[6]),

g_Breakers3[4].pt_TerminalB^.bootstrap_AddMeasurement
(measurement := g_CurrentMeters3[7])

];

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

PowerSystemModel (HORIZON®) 69

Log File Format

// Finalize all model configuration.
g_ModelValidated3 : BOOL := g_Model3.bootstrap_ValidateModel();

END_VAR

Log File Format

A log file is written to a file defined by the class_PowerSystemModel object’s Filename
variable. This file is written in four parts.

First is a summary of connections. This should show a count of terminals, equipment,
and nodes (locations where terminals are tied). Next is a list of quantities for each type
of equipment. These two sets of numbers can be compared to the system desired to be
modeled to validate that all pieces of the model are tied together. Third, any errors that might
have been encountered during validation are printed. This prints any errors detected in a
particular device, followed by the name of the device in which the errors were encountered.
Finally, a summary of windings per transformer is provided. A sample log file for Modeling
a Substation on page 45 with an added voltage tying error is presented below:

This model is constructed from 50 terminals connected to 30 pieces of
equipment by 22 nodes.

This model is comprised of the following equipment:
Energy Sources: 2
Energy Consumers: 4
Switches: 10
Breakers: 8
Lines: 2
Buses and Junctions: 2
Shunt Compensators: 0
Transformers: 1

Conducting equipment TransEndLow not in Voltage Level.
Errors in transformer winding TransEndLow.
Transformer InboundTransformer tied to model with 2 windings.

Date Code 20180924 Instruction Manual PowerSystemModel (HORIZON®)

70 PowerSystemModel (HORIZON®)

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.0.0 ä Initial release. 20150924

PowerSystemModel (HORIZON®) Instruction Manual Date Code 20180924

	Section 1: PowerSystemModel (HORIZON®)
	Introduction
	Glossary
	Placing a System Into the Model

	Supported Firmware Versions
	Enumerations
	enum_ValueSource
	enum_WindingConnection

	Structures
	Classes
	class_PowerSystemModel (Class)
	bootstrap_ConnectTerminals (Method)
	bootstrap_FinalizeConnections (Method)
	bootstrap_ValidateModel (Method)
	Run (Method)

	class_ConductingEquipment
	class_Measurement
	class_Terminal
	bootstrap_AddMeasurement (Method)

	class_Switch
	Extended Classes
	bootstrap_ConfigureIsOpenInput (Method)
	bootstrap_ConfigureIsClosedInput (Method)

	class_Breaker
	Extended Classes
	bootstrap_ConfigureIsOpenInput (Method)
	bootstrap_ConfigureIsClosedInput (Method)

	class_EnergySource
	Extended Classes

	class_EnergyConsumer
	Extended Classes

	class_ShuntCompensator
	Extended Classes

	class_ACLineSegment
	Extended Classes
	bootstrap_SetNominalLineImpedance1Line (Method)
	bootstrap_SetNominalLineImpedance3Phase (Method)
	bootstrap_SetNominalLineImpedanceWZeroSequence (Method)
	bootstrap_SetNominalShuntAdmittance1Line (Method)
	bootstrap_SetNominalShuntAdmittance3Phase (Method)
	bootstrap_SetNominalShuntAdmittanceWZeroSequence (Method)

	class_PowerTransformerEnd
	Extended Classes
	bootstrap_AddTapChanger (Method)
	bootstrap_SetNominalEndImpedance1Line (Method)
	bootstrap_SetNominalEndImpedance3Phase (Method)
	bootstrap_SetNominalEndImpedanceWZeroSequence (Method)
	bootstrap_SetNominalShuntAdmittance1Line (Method)
	bootstrap_SetNominalShuntAdmittance3Phase (Method)
	bootstrap_SetNominalShuntAdmittanceWZeroSequence (Method)

	class_BusbarSection
	Extended Classes

	class_Junction
	Extended Classes

	class_TapChanger
	bootstrap_ConfigureInputs (Method)

	class_PowerTransformer
	bootstrap_AddWinding (Method)

	class_VoltageLevel
	bootstrap_AddEquipment (Method)

	class_CurrentMeasurement
	Extended Classes
	bootstrap_ConfigureInputsPosSequence (Method)
	bootstrap_ConfigureInputsSequence (Method)
	bootstrap_ConfigureInputsThreePhase (Method)

	class_VoltageMeasurement
	Extended Classes
	bootstrap_ConfigureInputsPosSequence (Method)
	bootstrap_ConfigureInputsSequence (Method)
	bootstrap_ConfigureInputsThreePhase (Method)

	class_ReportedCurrent3Phase
	Extended Classes

	class_ReportedCurrentSequence
	Extended Classes

	class_ReportedVoltage3Phase
	Extended Classes

	class_ReportedVoltageSequence
	Extended Classes

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	Substation Example
	Distribution Network Example
	Ring Network Example

	Benchmark Results

	Examples
	Modeling a Substation
	Objective
	Assumptions
	Solution

	Modeling a Distribution Network
	Objective
	Assumptions
	Solution

	Modeling a Ring Network
	Objective
	Assumptions
	Solution

	Log File Format
	Release Notes

