
SVPplus (HORIZON®)

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: SVPplus (HORIZON®)

Introduction . 3
Supported Firmware Versions . 5
Global Constants . 5
Structure Definitions . 6
Classes . 6
Benchmarks. 9
Examples . 10
Release Notes . 15

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

RTAC LIBRARY

SVPplus (HORIZON®)

Introduction

The SVPplus (Synchrophasor Vector Processor Plus) library provides Prony Analysis of
signals, referred to here as modal analysis. The overall goal of this library is to encapsulate
algorithms that describe the dynamics of a substation or electrical grid.

Modal Analysis (MA)

Similar to Fourier series, modal analysis decomposes a signal into its individual frequencies
or modes. In addition, it also provides the damping rate of each frequency. Damping
information is vital when monitoring wide area power system stability as it can be used to
predict sustained or uncontrolled oscillations.

Sample Timing

The timing requirements of the modal analysis input signal are the responsibility of the
user of the library. The library does not check the times of the samples given. The interval
between each sample must be within acceptable error of the sample rate given in hertz.
For example, if 20 Hz is given, the period between samples should be 0.05 seconds. The
recommended error threshold is 5 percent.

Use Cases

Modal Analysis has been proven significantly useful in several areas of power system
analysis.

Sometimes power system equipment or their controllers can be configured in such a way that
they unintentionally incite growing oscillations. Rapid detection of these forced oscillations
is important to guard against excessive mechanical fatigue and system instability. Modal
analysis can detect these events by noting the maximum modal amplitudes of a system
and triggering an alarm or control action based on larger than normal and/or increasing
magnitude of oscillatory modal amplitude.

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

4 SVPplus (HORIZON®)

Introduction

Disturbances in the power system are often identifiable from the decaying oscillations
visible from streaming synchrophasor measurements. These events provide an opportunity
to determine the natural system dynamic modes. The dynamic modes inform planners of
the inherent stability, or lack thereof, of the power system and help identify areas where
additional stabilizing devices could be installed.

Modal analysis performed on ambient data can identify the frequency of the natural dynamic
modes. A change in the frequency component of these modes can indicate a system change
that may require further investigation.

Operation

The modal analysis function block in this library is responsible for two primary tasks. The
first task is to collect and store samples given to it. The second task is to analyze these
stored values once enough new samples are given and return the modes of the stored signal.

The samples are stored in a ring buffer. Once a certain percentage of new samples are
given, modal analysis is conducted on the stored array of samples. Figure 1 shows this
visually, where blue indicates old samples and red new samples. If the object has just been
initialized and there are no stored samples, modal analysis is not complete until the entire
buffer has been filled. After the initial filling of the buffer, modal analysis is done once the
percentage of new samples has been reached. For example, if the total number of samples
specified as the initialization variable numSamples is set to 100, and percentUpdate is set to
10 percent, then the tenth call to GiveSample() will trigger another calculation. This new
modal calculation is performed on the most recent 90 old samples and the 10 new samples,
with the oldest 10 samples having been overwritten in the ring buffer.

Figure 1 Ring Buffer Used To Store Samples In Modal Analysis Object

Because modal analysis is very computationally expensive, the analysis is done over many
task cycles. The Run() method of each modal object does part of the analysis each cycle
until it is complete. If a new analysis has been triggered and the previous is not yet complete,
it is ignored until the previous analysis is finished. Once the current analysis is complete,
the ignored trigger causes a new analysis to begin immediately. The ignored trigger is not a
queue, but rather is a single request to restart once the previous analysis completes.

Modes

Modes are returned from modal analysis, which is the decomposition of the input signal
into a series of modes. These modes consist of sinusoidal decaying signals that closely
match the original signal when summed together. The equation used to construct each mode
from their values is given in Equation 1, where A is the amplitude, α is the decay, f is the
frequency, and θ is the angle phase.

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

SVPplus (HORIZON®) 5

Global Constants

Aeαt cos (2πft + θ) (Equation 1)

The quality of the signal is determined by the signal-to-noise ratio (SNR) returned with a
call to GetModes(). Equation 2 shows how the SNR is calculated, where S is the original
signal and N is a signal reconstructed from the modes returned.

SNR = 20 log10

(√
S2

1 + S2
2 + ... + S2

n√
(S1 − N1)2 + (S2 − N2)2 + ... + (Sn − Nn)2

)
(Equation 2)

The SNR is calculated by using the decibel logarithmic unit on the ratio of the root-mean-
square of the original signal over the root-mean-square of the difference between the original
signal and reconstructed signal. If the value is 20, then the amplitude of the signal is 10
times greater than the error; when the value is 40, the amplitude of the signal is 100 times
greater than the error, and so on.

Damping Ratio

The damping ratio ς is determined from the decay α and the frequency f (as seen in “Modern
Solutions for Protection, Control, and Monitoring of Electric Power Systems” ISBN 978-0-
9725026-3-4). Equation 3 is used to compute the damping ratio. A negative damping ratio
illustrates an increasing oscillation that can lead to power system instability.

ς = − α√
α2 + (2πf)2

(Equation 3)

Modal Analysis

Because of the computationally intensive nature of this algorithm, it is very important to
consider benchmarks while using this object. See Benchmarks on page 9 for benchmark
information.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.3 and older can be used on RTAC firmware version R132 and higher.

Global Constants

This section lists values of global constants provided for facilitating work with the library.

Name IEC 61131 Type Value Description

g_c_Infinity REAL ∞ Positive infinity.

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

6 SVPplus (HORIZON®)

Classes

Structure Definitions

This section enumerates structures needed for the user to communicate with this library.

struct_Mode

This object contains the information for one sinusoidal mode returned from class_Modal-
Analysis.

Name IEC 61131 Type Description

Amplitude REAL Amplitude of this mode.
Frequency REAL Frequency of this mode.
Phase REAL Phase of this mode in radians.
Damping REAL Decay rate of this mode.
DampingRatio REAL Damping ratio of this mode.

Classes

This section enumerates the classes used to access the functionality of this library.

class_ModalAnalysis (Class)

This class conducts modal analysis on an input signal.

Initialization Inputs

Name IEC 61131 Type Description

numSamples UDINT Total number of samples this modal analysis object uses.
sampleRate UINT Rate at which samples are taken in hertz.
percentUpdate UDINT(10..100) Percentage of new samples this modal analysis collects

before performing analysis.
stepTime ULINT The amount of time in microseconds the Run() method

will run each time it is called.
numModes UDINT(1..16) Number of modes that are returned from analysis.

For any meaningful analysis of a digital input signal, a minimum number of sample history
must be stored in a buffer. numSamples is the size of this buffer for modal analysis.

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

SVPplus (HORIZON®) 7

Classes

Outputs

Name IEC 61131 Type Description

Outputs

Name IEC 61131 Type Description

IsEnabled BOOL Flag that states if this class instance is active.
Error POINTER TO STRING(80) If class instance failed initialization, this points to a

string describing what failed.

These outputs give the status of the modal analysis object as a whole. If the initialization of
the class instance was successful, it is flagged and enabled and ready to take new samples
to analyze. If initialization failed, it is flagged as not enabled and the error string pointer
returns a pointer to a string which described what failed in initialization.

bootstrap_SetFilter (Method)

This initialization routine sets the filter that is used on the raw input provided by GiveSample().
This routine is optional to call, and if it is not called no filter is used and the raw samples
are fed directly into modal analysis.

Inputs

Name IEC 61131 Type Description

filter I_Filter Interface pointer to filter that will be used on raw input.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the filter was successfully added to the object.

Processing

This routine takes the interface to the filter and confirms the pointer to it is real. If the
pointer to the filter is zero or the modal analysis object has already been initialized, it will
return FALSE as a failure.

GiveSample (Method)

This method gives a new sample as input to the modal analysis block. The sample rate
integrity of the signal must be verified by the user, as discussed in Sample Timing on page 3.

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

8 SVPplus (HORIZON®)

Classes

Inputs

Name IEC 61131 Type Description

sample REAL New sample.

Processing

This method takes the input sample and stores it within its internal buffer of samples. If
enough new samples have been given or the entire buffer of samples has been populated
for the first time, the method will trigger the calculation of new modes. This calculation is
done over many cycles in the run method.

Reset (Method)

Modal analysis is only effective on a continuous stream of evenly spaced samples. When a
gap in the stream has been detected, modal analysis must be reset. This causes it to discard
all previous samples. Additionally, a sample with unacceptably low quality is considered a
gap in the stream, and therefore, modal analysis must be reset.

Resetting modal analysis delays the next analysis as additional samples will need to be
gathered. A sample is considered bad if it does not meet the timing requirements defined in
Sample Timing on page 3 or if the quality of the sample is unacceptable.

Processing

This method will discard all saved samples and start with an empty buffer that needs to be
refilled for modal analysis to happen.

Run (Method)

This method must run once per cycle for each modal analysis object that exists. It is
responsible for processing modal analysis of the samples. It performs a part of an analysis,
if one is pending, each time it is called.

Return Value

IEC 61131 Type Description

UDINT Percentage of completion for modal analysis task from 0 to 100.

Processing

Once the output complete has reached 100, the analysis is complete and GetModes can be
called.

GetModes (Method)

Call this method to get the most recent modal analysis results. If no analysis has yet been
done, this method will return an array of structures whose values are all set to zero.

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

SVPplus (HORIZON®) 9

Benchmarks

The range of the signal-to-noise ratio can be anywhere from 0 to the maximum number of
UINT. Anything under a value of 80 is considered a poor value and the returned modes
should be ignored. Increasing the number of modes returned will improve this signal-to-
noise ratio.

Inputs

Name IEC 61131 Type Description

pt_modes POINTER TO struct_Mode Address of array to copy modes to as returned by the
ADR() function. This array must contain numModes
structures as specified in the Initialization Inputs of
the class.

Return Value

IEC 61131 Type Description

REAL Signal-to-noise ratio that determines quality of modes returned.

Processing

If no analysis has yet been done, this method will set all structures to zero. If the number of
modes for this object has been initialized with a number n that is less than the global value
g_p_numModes, then all structures past n will be set to zero.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3505

â R134 firmware

ä SEL-3530

â R134 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V1 firmware

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

10 SVPplus (HORIZON®)

Examples

Benchmark Test Descriptions

Because so much of the performance of this library is defined by the user, these benchmarks
attempt to give an overall feel for the cost of performing modal analysis in terms of number
of samples and number of modes requested. All results are presented as the number of
scans taken to perform the analysis where the ModalAnalysis object is given 5 ms of run
time each task cycle.

The following benchmarks are tested:

ä 4, 8, and 16 modes with 500 samples

ä 4 modes with 600 samples

ä 4, 8, and 16 modes with 5000 samples

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

4 Modes 500 Samples 27 16 2
8 Modes 500 Samples 114 64 6
16 Modes 500 Samples 462 253 21
4 Modes 600 Samples 34 17 3
4 Modes 5k Samples 155 93 2
8 Modes 5k Samples 460 276 23
16 Modes 5k Samples 1586 952 80

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Calculating Modes

Objective

The objective of this example is to calculate the modal frequencies and damping coefficients
of a synchrophasor frequency measurement for oscillation stability analysis at an update
rate of once per second. This example will cover the preconditioning of incoming time
stamps and how to call the ModalAnalysis methods in the appropriate sequence.

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

SVPplus (HORIZON®) 11

Examples

Assumptions

This example assumes the following are true:

ä The RTAC project incorporates both the SVPplus and Analog Conditioning libraries.

ä The RTAC is collecting synchrophasor measurements from one synchrophasor mea-
surement device, referenced here as a C37_118 RTAC client called PMU1.

ä The RTAC is performing no tasks other than those referred to in this example.

ä The nominal frequency of the power system is 60 Hz.

ä The synchrophasor message rate is 60 samples per second.

ä The RTAC Main Task cycle time, under which all programs are being run, is set to
8 ms.

ä The Deadband and Zero Deadband settings for the PMU1.FREQ tag are set to 0.

ä There are only four modes of interest in the system. Each is between 0.3 Hz and
10 Hz.

ä Data samples are filtered with a 10 Hz cutoff low-pass filter before being processed
with MA. The ArmaFilter class from the Analog Conditioning library is used to
implement this filter. This is also demonstrated in the example.

ä The global variable list and sample flagging programs shown in Code Snippet 1 and
Code Snippet 2, respectively, are included in the project.

Code Snippet 1 Global Variable List

VAR_GLOBAL CONSTANT
g_c_NumModes : UINT := 4;
//Using coefficients for a 10Hz cutoff low pass filter.
g_c_Acoeff : ARRAY[1..g_p_MaxFilterOrder] OF REAL :=

[-1.96299, 1.40000, -0.34641];
g_c_Bcoeff : ARRAY[0..g_p_MaxFilterOrder] OF REAL :=

[0.011325, 0.033975, 0.033975, 0.011325];
END_VAR

VAR_GLOBAL
g_SampleQuality, g_SampleUpdated, g_SampleTimeValid, g_SampleValid :

BOOL;
g_SNR : REAL;
g_ModeResults : ARRAY [1..g_c_NumModes] OF struct_Mode;
g_DampingAlarm : ARRAY [1 .. g_c_NumModes] OF BOOL;

END_VAR

Code Snippet 2 prg_SampleFlagging

PROGRAM prg_SampleFlagging
VAR

dTime : DINT; //current day and time of PMU1_C37_118
us, timeNow, timeLast, timeDiff : LREAL;

END_VAR

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

12 SVPplus (HORIZON®)

Examples

Code Snippet 2 prg_SampleFlagging (Continued)

//Establish the quality of the sample.
g_SampleQuality := NOT(DINT_TO_BOOL(PMU1_C37_118.FREQ.q.validity)) AND

NOT(PMU1_C37_118.FREQ.t.quality.clockNotSynchronized);
//Calculate the time difference between the current and previous samples.
dTime := DT_TO_DINT(PMU1_C37_118.FREQ.t.value.dateTime);
us := UDINT_TO_LREAL(PMU1_C37_118.FREQ.t.value.uSec) / 1000000;
timeNow := dTime + us;
timeDiff := (timeNow - timeLast)*1000; //Sample time difference in ms
timeLast := timeNow;
//Determine if the sample has updated.
IF (timeDiff > 0) THEN

g_SampleUpdated := TRUE;
ELSE

g_SampleUpdated := FALSE;
END_IF
//Validate the sample time difference against +-2.5 % of a 60Hz period.
IF (timeDiff > 17.08 OR timeDiff < 16.25) THEN

g_SampleTimeValid := FALSE;
ELSE

g_SampleTimeValid := TRUE;
END_IF
//Assign overall sample validity.
IF (g_SampleQuality AND g_SampleTimeValid) THEN

g_SampleValid := TRUE;
ELSE

g_SampleValid := FALSE;
END_IF

Solution

Having flagged the incoming samples for quality and continuity, the samples can be filtered
and processed with MA as shown in Code Snippet 3.

Code Snippet 3 prg_ModeCalc

PROGRAM prg_ModeCalc
VAR

modal : class_ModalAnalysis(numSamples := 600, sampleRate := 60,
percentUpdate := 10, stepTime := 4000,
numModes := g_c_NumModes);

inputSample : REAL;
filter : class_ArmaFilter(g_c_Acoeff, g_c_Bcoeff, 3, 4);
analysisComplete : R_TRIG;
doneLatch : BOOL;
init : BOOL := TRUE;

END_VAR

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

SVPplus (HORIZON®) 13

Examples

Code Snippet 3 prg_ModeCalc (Continued)

//Update inputSample.
inputSample := PMU1_C37_118.FREQ.instMag;
//Initialize: Load filter into the MA object.
IF init THEN

modal.bootstrap_SetFilter(filter);
init := FALSE;

END_IF

//Load the sample into MA only if it has updated and is valid.
IF(g_SampleUpdated) THEN

IF(g_SampleValid) THEN
modal.giveSample(inputSample - 60); //Factor out the 60Hz offset

ELSE
modal.reset();

END_IF;
END_IF;

(*If Run() method is at 100 % completion, populate g_ModeResults and
return SNR.

Use an edge trigger to guarantee that getModes() is only called once per
analysis.*)

doneLatch := modal.Run() = 100;
analysisComplete(CLK := doneLatch);
IF analysisComplete.Q THEN

g_SNR := modal.getModes(ADR(g_ModeResults));
END_IF

Analyzing Modes

Objective

The objective of this example is to demonstrate how the output of the ModalAnalysis class
can be processed to flag a necessary control action.

Assumptions

This example extends the previous example. Thus, it is assumed that the getModes()
method has been called successfully. It is further assumed that the program in this example
will accesses the global variable list defined in the previous example.

Solution

The code below shows a simple example which asserts a per-mode alarm bit if the given
mode meets the user-specified criteria. The signal-to-noise ratio output of the getModes()
method is used to validate the accuracy of the modal estimation.

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

14 SVPplus (HORIZON®)

Examples

Code Snippet 4 prg_ModeAnalyze

PROGRAM prg_ModeAnalyze
VAR

dmpThr : REAL; //Define damping ratio threshold here.
ampThr : REAL; //Define oscillation amplitude threshold here.
SNRFail : BOOL;
i : UINT;

END_VAR

IF g_SNR > 80 THEN
SNRFail := FALSE;
FOR i := 1 TO g_c_NumModes DO

IF g_ModeResults[i].DampingRatio < dmpThr
AND g_ModeResults[i].Amplitude > ampThr
AND g_ModeResults[i].Frequency > 0 //Factor out DC modes.

THEN
g_DampingAlarm[i] := TRUE;

ELSE
g_DampingAlarm[i] := FALSE;

END_IF
END_FOR

ELSE
SNRFail := TRUE;

END_IF

SVPplus (HORIZON®) Instruction Manual Date Code 20180925

SVPplus (HORIZON®) 15

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.0.3 ä Improved precision of entire algorithm. 20150718

ä Improved performance for large matrices.
ä Hid internal variables of all function blocks.

3.5.0.0 ä Initial release. 20141101

Date Code 20180925 Instruction Manual SVPplus (HORIZON®)

	Section 1: SVPplus (HORIZON®)
	Introduction
	Modal Analysis (MA)
	Sample Timing
	Use Cases
	Operation
	Modes
	Damping Ratio

	Modal Analysis

	Supported Firmware Versions
	Global Constants
	Structure Definitions
	struct_Mode

	Classes
	class_ModalAnalysis (Class)
	bootstrap_SetFilter (Method)
	GiveSample (Method)
	Reset (Method)
	Run (Method)
	GetModes (Method)

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	Benchmark Results

	Examples
	Calculating Modes
	Objective
	Assumptions
	Solution

	Analyzing Modes
	Objective
	Assumptions
	Solution

	Release Notes

