SELServerSimulators
IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section1: SELServerSimulators

INtrodUCHON. o e 3
Supported Firmware VEersionsoovvviiiiiiiiiiiiiiiiiiieieaeeieeeaaaeeaaans 4
Enumerationsoooouuiiiii i 4
N5 1167 1 PN 4
It aCES ... 5
[0 T 9
EXaMPIES ..ottt 16
S [T R (0 1 21

SELServerSimulators Instruction Manual Date Code 20180925

RTAC LIBRARY

SELServerSimulators

Introduction

This library provides simulators for various SEL devices using the SEL Fast Meter protocol.
Since this library is primarily a testing and debugging tool, not all commands may be
supported for a particular device. There may also be variances in the responses generated
when compared to the real device.

See the ACSELERATOR RTAC Library Extensions Instruction Manual (LibraryExtension-

sIM) for an explanation of the concepts used by the object-oriented extensions to the
IEC 61131-3 standard.

Special Considerations

Classes in this library have memory allocated inside them. As such, they should only be
created in environments of permanent scope (e.g., Programs, Global Variable Lists, or
VAR_STAT sections).

Copying classes from this library causes unwanted behavior. This means the following:

1. The assignment operator “:=" must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error such
as:

// "C0328: Assignment not allowed for type class_Object"

myObject := otherObject;

// This is fine

someVariable := myObject.value;
// As is this

pt_myObject := ADR(myObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT members
in function blocks, functions, or methods. Place them in the VAR_IN_OUT section
or use pointers instead.

Date Code 20180925 Instruction Manual SELServerSimulators

4 | SELServerSimulators
Structures

Supported Devices

This library contains simulators for the following devices:

>» SEL-351

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Version 3.5.0.1 can be used on RTAC firmware version R132 and higher.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_PointType

This enumeration defines all possible point types for a relay.

Enumeration | Description

DIGITAL A digital (Boolean) point.

INT16 An analog point stored as a 16-bit integer value.
FLOAT32 An analog point stored as a 32-bit floating-point value.
FLOAT64 An analog point stored as a 64-bit floating-point value.
STRINGS0 A point stored as a string of as many as 80 characters.

Structures

Structures provide a means to group together several memory locations (variables), making
them easier to manage.

Because of the significant number of values in these structures, this document does not
provide a complete list of the values.

struct_SEL351_Analog

This structure defines the analog points available on an SEL-351. For example, this structure
might contain the following:

SELServerSimulators Instruction Manual Date Code 20180925

SELServerSimulators | 5
Interfaces

Name IEC 61131 Type Description

_FREQ | class_SELServerFloat32 | System frequency

_1A class_SELServerFloat32 | Phase A current magnitude
_IB class_SELServerFloat32 | Phase B current magnitude
_IC class_SELServerFloat32 | Phase C current magnitude

struct_SEL351_Binary

This structure defines the digital points available on an SEL-351.

struct_SEL351_Strings

This structure defines the string points available on an SEL-351.

Interfaces

| Session

This interface defines a set of methods for interacting with a client session. A session is a
generic object that allows for reading and writing of bytes.

Properties
Name | IEC 61131 Type | Access | Description
Active | BOOL R TRUE if the session is active and able to send and
receive bytes.
Echo BOOL R TRUE if the session is expecting ASCII characters

sent to the server to be echoed back.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Close (Method)

Closes the session to the client.

Inputs
Name IEC 61131 Type | Description
forceClose | BOOL Close the session without waiting for confirmation.

Date Code 20180925 Instruction Manual SELServerSimulators

6 | SELServerSimulators

Interfaces

ReadData (Method)

Read data from the client.

Inputs

Name

IEC 61131 Type

Description

pt_destination | POINTER TO BYTE

Pointer to where the incoming data are written.

numBytes

UDINT

The maximum number of bytes to read.

Return Value

IEC 61131 Type | Description
UDINT The number of bytes read from the session.
WriteData (Method)

Write data to the client.

Inputs
Name IEC 61131 Type Description
pt_source | POINTER TO BYTE | Pointer from where the outgoing data are read.
numBytes | UDINT The number of bytes to read from pt_source and write to
the session.

Return Value

IEC 61131

Type | Description

UDINT

The number of bytes written to the session.

|_SessionManager

This interface defines a set of methods for an object that is able to manage multiple I_-

SessionProvider objects and their sessions.

Properties
Name IEC 61131 Type | Access | Description
numSessions | UDINT R The total number of sessions managed by this

object.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

SELServerSimulators

Instruction Manual

Date Code 20180925

SELServerSimulators | 7
Interfaces

AddSessionProvider (Method)

Adds an I_SessionProvider to this session manager.

Inputs

Name IEC 61131 Type | Description
sessionProvider | I_SessionProvider | The object that is providing sessions to be managed.

Return Value

IEC 61131 Type | Description

BOOL TRUE if the session provider was successfully added to the session manager.
FALSE if an error occurred.

NextSession (Method)

Iterates over all I_Session objects referenced within the session manager and returns the
next session.

Return Value

IEC 61131 Type | Description
I_Session Reference to the next session object.

Run (Method)

This method processes all session activity and must be called once per scan.

|_SessionProvider

This interface defines a set of methods for an object that can provide I_Session objects to
an I_SessionManager object.

GetSessions (Method)

Provides pointers to all I_Session objects available from this provider.

Inputs/Outputs

Name IEC 61131 Type | Description

sessionVector | class_PointerVector | All I_Session references in the session provider are writ-
ten to this vector.

Date Code 20180925 Instruction Manual SELServerSimulators

8

SELServerSimulators
Interfaces

Run (Method)

This method processes all session activity and must be called once per scan.

| SELServerPoint

This interface defines common methods for all analog and digital points.

Properties
Name IEC 61131 Type | Access | Description
PointName STRING R The name of the point.
PointType enum_PointType R The type of the point.
stValAsString | STRING R The point value as a string.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

|_SELServerAnalogPoint

This interface defines common methods unique to analog points. This interface extends
I_SELServerPoint.

Properties
Name IEC 61131 Type | Access | Description
ChannelType BYTE R The channel type of the point.
ScaleFactorOffset | WORD R The scale factor offset of the point.
ScaleFactorType BYTE R The scale factor type of the point.
stValAsInt INT R The point value as an integer.
stValAsLreal LREAL R The point value as a long real.
stValAsReal REAL R The point value as a real.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

SELServerSimulators

Instruction Manual

Date Code 20180925

SELServerSimulators | 9
Classes

Classes

class_TelnetServer

This object implements a Telnet server. This server will create and manage an internal
object for each Telnet session. These internal objects implement I_Session and can be
accessed via the I_SessionProvider interface. This server is not intended to be used as a
generic Telnet server and should only be used within the context of this library.

This Telnet server automatically attempts to negotiate the following Telnet features:
» Binary Transmission
» Suppress Go Ahead
» Echo

No other Telnet features are supported.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1 _SessionProvider

Initialization Inputs

Name IEC 61131 Type | Description

listenIP STRING(15) The local IP address for the server to listen on. Set to
0.0.0.0 to listen on all available interfaces.

listenPort UINT The local port number on which the server listens.

numSessions | USINT The maximum number of Telnet sessions to support.

Destroy (Method)

This method deallocates all memory allocated by this object. This method must be called
before the object goes out of scope, otherwise a memory leak will result.

Return Value

IEC 61131 Type | Description
BOOL TRUE if all memory was successfully deallocated.

class_SELServerint16

This class defines an analog point represented as a 16-bit integer value.

Date Code 20180925 Instruction Manual SELServerSimulators

10

SELServerSimulators
Classes

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1_SELServerAnalogPoint

Properties

Name | IEC 61131 Type | Access | Description
stVal INT R/W The value of the point.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Initialize (Method)

This method initializes the point.

Inputs
Name IEC 61131 Type | Description
pointName STRING The name of the point.
initialStVal INT The initial stVal of the point.
scaleFactorType BYTE The scale factor type for the point.
scaleFactorOffset | WORD The scale factor offset for the point.

class_SELServerFloat32

This class defines an analog point represented as a 32-bit floating point value.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1_SELServerAnalogPoint

Properties

Name | IEC 61131 Type | Access | Description

stVal REAL R/W The value of the point.

SELServerSimulators Instruction Manual

Date Code 20180925

SELServerSimulators | 11
Classes

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Initialize (Method)

This method initializes the point.

Inputs
Name IEC 61131 Type | Description
pointName STRING The name of the point.
initialStVal REAL The initial stVal of the point.
scaleFactorType BYTE The scale factor type for the point.
scaleFactorOffset | WORD The scale factor offset for the point.

class_SELServerFloat64

This class defines an analog point represented as a 64-bit floating point value.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1_SELServerAnalogPoint

Properties

Name | IEC 61131 Type | Access | Description
stVal LREAL R/W The value of the point.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Initialize (Method)

This method initializes the point.

Date Code 20180925 Instruction Manual SELServerSimulators

12 | SELServerSimulators

Classes

Inputs
Name IEC 61131 Type | Description
pointName STRING The name of the point.
initialStVal LREAL The initial stVal of the point.
scaleFactorType BYTE The scale factor type for the point.
scaleFactorOffset | WORD The scale factor offset for the point.

class_SELServerDigital

This class defines a digital point.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1_SELServerPoint

Properties

Name | IEC 61131 Type | Access | Description
stVal BOOL R/W The value of the point.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Initialize (Method)

This method initializes the point.

Inputs
Name IEC 61131 Type | Description
pointName | STRING The name of the point.
initialStVal | INT The initial stVal of the point.
index UINT The index value for the digital point. This is used for deter-
mining the order of the Relay Word bits. The index is zero
for the MSB in Row 0, 8 for the MSB in Row 1, etc.

SELServerSimulators Instruction Manual Date Code 20180925

SELServerSimulators | 13
Classes

class_SELServerString

This class defines a point represented as a string.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1 _SELServerPoint

Properties

Name | IEC 61131 Type | Access | Description
stVal STRING R/W The value of the point.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Initialize (Method)

This method initializes the point.

Inputs
Name IEC 61131 Type | Description
pointName | STRING The name of the point.
initialStVal | STRING The initial stVal of the point.

class_SEL351ServerSimulator

This class implements a server simulating an SEL-351 relay with firmware version R515.
The following ASCII commands are supported:

>» 2AC >» CAL > CHI > 1D
>» ACC >» CAS > DNA > QUIT
> BNA >» CEV >» EXIT >» SNS

The following binary commands are supported:

» A546 >» A5C1 » A5CD » A5D2
> A5B9 >» A5C2 » AS5CE >» A5D3
» A5C0 » A5C3 >» A5DI1

Date Code 20180925 Instruction Manual SELServerSimulators

14 | SELServerSimulators
Classes

Some commands have optional parameters that may not be supported by the simulator.

Properties

Name IEC 61131 Type | Access | Description

RefNum | UINT R/W The reference number for the next event. This value
will be incremented by the simulator each time an
event is created.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Input

Inputs

Name | IEC 61131 Type Description

Analog | struct_SEL351_Analog | Analog points for an SEL-351.
Binary | struct_SEL351 Binary | Relay Word bits for an SEL-351.
Strings | struct_SEL351_String Strings for an SEL-351.

Outputs

Name | IEC 61131 Type | Description

ENO BOOL TRUE if the simulator is initialized and enabled. FALSE if
initialization failed or an error occurred during runtime.

bootstrap_AddSessionManager

This method assigns the session manager that will manage all I_Session objects for this
simulator. This method assumes that the session manager already contains all desired
sessions. Once a session manager is added here, more session providers should not be added
to the session manager.

Inputs

Name IEC 61131 Type | Description

sessionManager | I_SessionManager | The session manager containing I_Session objects for
the simulator.

SELServerSimulators Instruction Manual Date Code 20180925

SELServerSimulators | 15

Classes

CreateEvent (Method)
This method creates a new event within the simulator. When the event is created, it will be
automatically assigned the next available record number. The event created by this method
will contain four samples per cycle. The analog values, Relay Word bit values, and relay
settings will consist of internal hard-coded values and will not match the values already set
in the simulator.
Inputs

Name IEC 61131 Type | Description

refNum | UINT Reference number of the event

event STRING(8) Type of event

location | REAL Location of the fault

current | UINT Peak current detected during the fault

group USINT Group number

shot UINT Number of reclose events

targets STRING Target elements for the event
Return Value

IEC 61131 Type | Description

BOOL TRUE if the event was successfully created.
DeleteEvent (Method)
This method deletes an event from the simulator that was created with CreateEvent ().
Inputs

Name IEC 61131 Type | Description

recNum | UINT The record number for the event as provided by the CHI com-

mand.

Return Value

IEC 61131 Type | Description

BOOL TRUE if the event was successfully deleted. FALSE if the event did not

exist or an error occurred.
Destroy (Method)
This method deallocates all memory allocated by this object. This method must be called
before the object goes out of scope; otherwise, a memory leak will result.
Date Code 20180925 Instruction Manual SELServerSimulators

16

SELServerSimulators
Examples

Return Value

IEC 61131 Type | Description
BOOL TRUE if all memory was successfully deallocated.

Run (Method)

This method handles processing communication between the server and all connected clients.
This method must be called once per scan.

Processing

The Run () method does the following:
» Reads any pending requests from clients.

» If a valid command is received, the applicable response is generated and sent to the
client.

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Simulating an SEL-351

Objective

This example creates a simulator for an SEL-351 Relay on an RTAC. Changing analog and
digital values is also demonstrated.

Assumptions

This example assumes that an Access Point has been defined for TCP Port 23 on the RTAC.
This is necessary for the simulator to communicate via Telnet to other RTACs or to a user’s
interactive Telnet session.

SELServerSimulators Instruction Manual

Date Code 20180925

Solution

The program shown in Code Snippet 1 shows a minimal example of running a simulator
of the SEL-351. This example instantiates a Telnet server that can handle as many as ten
simultaneous connections. On the first scan, the system frequency of the simulator is set to
60 Hz and the daylight-saving time Relay Word bit is set to TRUE.

Code Snippet 1 prg_SEL351

PROGRAM prg_SEL351
VAR
// Create a Telnet server. The server will bind to any available IP
// address. The server will listen on port 23 and allow up to 10
// simultaneous connections.
TelnetServer : class_TelnetServer('0.0.0.0', 23, 10);
// Create the session manager for the simulator.
SessionManager : class_SessionManager();
// The SEL-351 simulator object.
Sel351 : class_SEL351ServerSimulator();
FirstScan : BOOL := TRUE;
END_VAR

IF FirstScan then
// Add the Telnet server as a session provider to the session manager.
SessionManager.AddSessionProvider (TelnetServer) ;
// Add the session manager to the SEL-351 simulator.
Sel351.bootstrap_AddSessionManager (SessionManager) ;
// Set the simulator frequency to 60 Hz.
Sel351.Analog._FREQ.stVal := 60;
// Set the daylight saving time Relay Word bit to true.
Sel351.Binary._DST.stVal := TRUE;
FirstScan := FALSE;

END_IF

// Process communication on each scan.
Sel351.Run();

Simulating Multiple SEL-351 Relays
Objective

This example creates two simulators for SEL-351 Relays on a single RTAC.

Assumptions

This example assumes that an Access Point has been defined for TCP Port 23 on the RTAC.
This is necessary for the simulators to communicate via Telnet to other RTACs or to a user’s
interactive Telnet session. For this example, it is necessary to use two network interfaces on
the RTAC, one with the IP address 192.168.0.100 and the other with 192.168.1.100.

Date Code 20180925 Instruction Manual

SELServerSimulators | 17

Examples

SELServerSimulators

18 | SELServerSimulators
Examples

Solution

The program shown in Code Snippet 2 shows an example of running two distinct SEL-351
simulators on the same RTAC. One simulator listens on the network interface with the IP ad-
dress 192.168.0.100 and the other listens on the second interface with address 192.168.1.100.

Code Snippet 2 prg_SEL351

PROGRAM prg_SEL351
VAR
// Create a Telnet server for each relay. Each server binds to a
specific
// IP address. Both servers listen on port 23 and allow up to 10
// simultaneous connections.
TelnetServerl : class_TelnetServer('192.168.0.100', 23, 10);
TelnetServer2 : class_TelnetServer('192.168.1.100', 23, 10);
// Create a session manager for each simulator.
SessionManagerl : class_SessionManager();
SessionManager2 : class_SessionManager();
// The SEL-351 simulator objects.
Sel351_1 : class_SEL351ServerSimulator();
Sel351_2 : class_SEL351ServerSimulator();
FirstScan : BOOL := TRUE;
END_VAR

IF FirstScan then

// Add a Telnet server as a session provider to the respective session
manager.

SessionManagerl.AddSessionProvider(TelnetServerl);
SessionManager2.AddSessionProvider (TelnetServer?2) ;
// Add the respective session manager to the SEL-351 simulator.
Sel351_1.bootstrap_AddSessionManager (SessionManagerl) ;
Sel351_2.bootstrap_AddSessionManager (SessionManager?2) ;
// Set the first simulator frequency to 60 Hz.
Sel351_1.Analog._FREQ.stVal := 60;
// Set the second simulator frequency to 50 Hz.
Sel351_2.Analog._FREQ.stVal := 50;
FirstScan := FALSE;

END_IF

// Process communication on each scan.
Sel351_1.Run();
Sel351_2.Run();

Simulating an SEL-351 on Multiple Ports
Objective

This example creates a simulator for an SEL-351 relay on an RTAC that listens on multiple
network ports.

SELServerSimulators Instruction Manual Date Code 20180925

Assumptions

This example assumes that an Access Point has been defined for TCP Ports 23 and 8023 on
the RTAC. This is necessary for the simulator to communicate via Telnet to other RTACs or
to a user’s interactive Telnet session.

Solution

The program shown in Code Snippet 3 shows an example of running a simulator of the
SEL-351 that listens on Ports 23 and 8023. This example instantiates two Telnet servers, one
on each port, that can handle as many as ten simultaneous connections each. Connections
to these simulators will be allowed on all network interfaces.

Code Snippet 3 prg_SEL351

PROGRAM prg_SEL351

VAR
// Create a Telnet server. The server will bind to any available IP
// address. The server will listen on port 23 and allow up to 10
// simultaneous connections. Connections will be accepted on all
interfaces
// due to the 0.0.0.0 IP address.
TelnetServerl : class_TelnetServer('0.0.0.0', 23, 10);
// Create another server to listen on port 8023.
TelnetServer2 : class_TelnetServer('0.0.0.0', 8023, 10);
// Create the session manager for the simulator.
SessionManager : class_SessionManager();
// The SEL-351 simulator object.
Sel351 : class_SEL351ServerSimulator();
FirstScan : BOOL := TRUE;
END_VAR

IF FirstScan then
// Add both Telnet servers as session providers to the session manager.
SessionManager.AddSessionProvider(TelnetServerl);
SessionManager.AddSessionProvider (TelnetServer2);
// Add the session manager to the SEL-351 simulator.
Sel351.bootstrap_AddSessionManager (sessionManager) ;
FirstScan := FALSE;

END_IF

// Process communication on each scan.
Sel351.Run();

Creating Events on an SEL-351 Simulator

Objective

This example creates a simulator and an event for an SEL-351 Relay on an RTAC. After
adding an event, it can be viewed by issuing a CHI or CEV command via Telnet.

Date Code 20180925 Instruction Manual

SELServerSimulators | 19
Examples

SELServerSimulators

20 | SELServerSimulators
Examples

Assumptions

This example assumes that an Access Point has been defined for TCP Port 23 on the RTAC.

This is necessary for the simulator to communicate via Telnet to other RTACs or to a user’s
interactive Telnet session.

Solution

The program shown in Code Snippet 4 shows a minimal example of running a simulator of
the SEL-351 and adding an event. This example instantiates a Telnet server that can handle
as many as ten simultaneous connections. On the first scan, an event is created. The event
date and time will be set to the present date and time of the RTAC system.

Code Snippet 4 prg_SEL351

PROGRAM prg_SEL351
VAR
// Create a Telnet server. The server will bind to any available IP
// address. The server will listen on port 23 and allow up to 10
// simultaneous connections.
TelnetServer : class_TelnetServer('0.0.0.0', 23, 10);
// Create the session manager for the simulator.
SessionManager : class_SessionManager();
// The SEL-351 simulator object.
Sel351 : class_SEL351ServerSimulator();
FirstScan : BOOL := TRUE;
END_VAR

IF FirstScan then
// Add the Telnet server as a session provider to the session manager.
SessionManager.AddSessionProvider(TelnetServer);
// Add the session manager to the SEL-351 simulator.
Sel351.bootstrap_AddSessionManager (SessionManager) ;
// Add an event to the simulator. The reference number is 1, type is

TRIG,

// location of zero, maximum current of zero, group 1, shot 1, and no
// targets. Other event values are set automatically.
Sel351.CreateEvent(1, 'TRIG', O, O, 1, 1, '');
FirstScan := FALSE;

END_IF

// Process communication on each scan.
Sel351.Run();

SELServerSimulators Instruction Manual

Date Code 20180925

Release Notes

SELServerSimulators | 21
Release Notes

Version | Summary of Revisions

Date Code

3.5.1.0 | » Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

» Must be used with R143 firmware or later.

20180921

3.5.0.1 » Initial release.

20150511

Date Code 20180925 Instruction Manual

SELServerSimulators

	Section 1: SELServerSimulators
	Introduction
	Special Considerations
	Supported Devices

	Supported Firmware Versions
	Enumerations
	enum_PointType

	Structures
	struct_SEL351_Analog
	struct_SEL351_Binary
	struct_SEL351_Strings

	Interfaces
	I_Session
	Close (Method)
	ReadData (Method)
	WriteData (Method)

	I_SessionManager
	AddSessionProvider (Method)
	NextSession (Method)
	Run (Method)

	I_SessionProvider
	GetSessions (Method)
	Run (Method)

	I_SELServerPoint
	I_SELServerAnalogPoint

	Classes
	class_TelnetServer
	Implemented Interfaces
	Destroy (Method)

	class_SELServerInt16
	Implemented Interfaces
	Initialize (Method)

	class_SELServerFloat32
	Implemented Interfaces
	Initialize (Method)

	class_SELServerFloat64
	Implemented Interfaces
	Initialize (Method)

	class_SELServerDigital
	Implemented Interfaces
	Initialize (Method)

	class_SELServerString
	Implemented Interfaces
	Initialize (Method)

	class_SEL351ServerSimulator
	Input
	bootstrap_AddSessionManager
	CreateEvent (Method)
	DeleteEvent (Method)
	Destroy (Method)
	Run (Method)

	Examples
	Simulating an SEL-351
	Objective
	Assumptions
	Solution

	Simulating Multiple SEL-351 Relays
	Objective
	Assumptions
	Solution

	Simulating an SEL-351 on Multiple Ports
	Objective
	Assumptions
	Solution

	Creating Events on an SEL-351 Simulator
	Objective
	Assumptions
	Solution

	Release Notes

