
SELEthernetController

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: SELEthernetController

Introduction . 3
Supported Firmware Versions . 4
Enumerations . 4
Aliases . 4
Functions . 4
Classes . 6
Benchmarks. 22
Examples . 25
Release Notes . 35

SELEthernetController Instruction Manual Date Code 20180928

NOTE: See the ACSELERATOR RTAC

Library Extensions Instruction Manual

(LibraryExtensionsIM) for more

information about the concepts used

by the object-oriented extensions to

the IEC 61131-3 standard.

RTAC LIBRARY

SELEthernetController

Introduction

The SELEthernetController library provides the ability to stream data through TCP and
UDP ports. It provides client and server functionality for both TCP and UDP connections.

Various methods are used to initiate new read or write operations.

Special Considerations

ä Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:=” must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error
such as:

// "C0328: Assignment not allowed for type class_SocketObject"
mySocketObject := otherSocketObject;

// This is fine
someVariable := mySocketObject.value;
// As is this
pt_mySocketObject := ADR(mySocketObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT
members in function blocks, functions, or methods. Place them in the VAR_-
IN_OUT section or use pointers instead.

ä Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

ä Opening and closing large numbers of Ethernet connections can take significant time.
Take great care when using this library on a system with hard real-time requirements.

Date Code 20180928 Instruction Manual SELEthernetController

4 SELEthernetController

Functions

ä This library does not have the ability to open ports in the RTAC firewall to allow
inbound communication. This means that for the library to receive UDP packets or
act as a TCP server, those ports must be opened as Ethernet Incoming Access Points
in the AcRTAC project.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.6 and older can be used on RTAC firmware version R133 and higher.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_SocketState

Enumeration Description

LISTENING The server socket is ready to receive communication requests.
OPEN The socket is ready to send and receive UDP data.
CONNECTED The socket has an active client server TCP session.
CLOSED The socket will no longer allow communication.
ERROR The socket has encountered an error and needs reconfiguration.

Aliases

This section lists aliases that this library defines.

SESSION_HANDLE

Alias IEC 61131 Type

SESSION_HANDLE POINTER TO BYTE

Functions

This library provides the following functions.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 5

Functions

fun_StringToInaddr

Convert basic strings to the INADDR type this library uses. Strings provided to this function
must be in the format xxx.xxx.xxx.xxx, where xxx is a number between 0 and 255.

Inputs

Name IEC 61131 Type Description

ipAddrString STRING(15) The string to convert to an INADDR.

Outputs

Name IEC 61131 Type Description

ipAddr INADDR The converted INADDR.

Return Value

IEC 61131 Type Description

BOOL TRUE if the string could be converted.

Processing

The fun_StringToInaddr() function does the following:

ä Parses the provided string into four bytes.

ä Outputs those bytes ordered in an INADDR.

ä Returns false and outputs an IP address of 0.0.0.0 if the string could not be converted.

fun_InaddrToString

Converts an INADDR to a string in the format xxx.xxx.xxx.xxx, where xxx is a number
between 0 and 255.

Inputs

Name IEC 61131 Type Description

ipAddr INADDR The INADDR to convert to a string.

Return Value

IEC 61131 Type Description

STRING(15) The resulting IP address as a string.

Date Code 20180928 Instruction Manual SELEthernetController

6 SELEthernetController

Classes

Processing

The fun_InaddrToString() function does the following:

ä Parses the provided INADDR by its four bytes.

ä Returns a string in the format xxx.xxx.xxx.xxx, where xxx is a number between 0 and
255.

Classes

Classes are a particular implementation of a Function Block(FB). They provide methods
and properties, which a normal FB does not provide.

class_UdpSocket (Class)

This class provides a socket for sending and receiving using through use of the UDP protocol.
Once enabled, the class creates, binds, sends, and receives to the configured ports.

Initialization Inputs

Name IEC 61131 Type Description

maxPacketSize DINT The maximum packet size, in bytes, to obtain through
use of this socket. A value of zero or less results in the
class imposing no limit on inbound packet size.

Properties

Name IEC 61131 Type Access Description

State enum_SocketState R The state of this socket.
LocalPort UINT R The port number with which this socket

interfaces locally.
LocalIPAddr INADDR R The IP address with which this socket in-

terfaces locally.
pt_Error POINTER TO STRING R An error message describing any present

error condition.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

bootstrap_SetLocalIP (Method)

Perform a one-time setting of the local IP address and port this socket will use.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 7

Classes

Inputs

Name IEC 61131 Type Description

localPort UINT The port number through which this socket receives and
sends data through.

localIPAddr INADDR The IP address on the local box this socket uses. Use 0.0.0.0
to allow all local IP addresses.

Return Value

IEC 61131 Type Description

BOOL TRUE if the IP address and port number are set.

Processing

The bootstrap_SetLocalIP() method does the following:

ä Immediately returns FALSE if the port and IP address are already set.

ä Sets the IP address and port on the local machine for use by this socket.

Open (Method)

Configure the class_UdpSocket to allow communication.

Return Value

IEC 61131 Type Description

BOOL TRUE if the port is ready to send data.

Processing

The Open() method does the following:

ä Opens the port for sending and receiving communication.

ä Returns FALSE if the socket was unable to bind.

Close (Method)

Unconfigure the class_UdpSocket to disable communication.

Processing

The Close() method does the following:

ä Discards any unread messages.

ä Makes the socket unable to send or receive data.

ä Forces reopening of the socket before processing additional communication.

Date Code 20180928 Instruction Manual SELEthernetController

8 SELEthernetController

Classes

SendData (Method)

Send a block of data to the socket.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The data to send.
numBytes DINT The quantity of data in bytes.
destIPAddr INADDR The IP address to which data are sent.
destPort UINT The destination port to which data are sent.

Return Value

IEC 61131 Type Description

DINT The number of bytes sent.

Processing

The SendData() method does the following:

ä Sends data if Open() has been successfully called.

ä Validates access to the pointer provided.

ä Limits numBytes to a positive number.

ä Sends numBytes of data, starting at pt_data, to the socket.

ä Returns the number of bytes successfully sent.

SendQueuedData(Method)

Send a block of data to the socket from the front of a queue.

Inputs

Name IEC 61131 Type Description

destIPAddr INADDR The IP address to which data are sent.
destPort UINT The destination port to which data are sent.

Inputs/Outputs

Name IEC 61131 Type Description

queue class_ByteDeque The queued data to send.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 9

Classes

Return Value

IEC 61131 Type Description

DINT The number of bytes sent.

Processing

The SendQueuedData() method does the following:

ä Sends data if Open() has been successfully called.

ä Sends all data, starting at the front of queue, to the socket.

ä Returns the number of bytes successfully sent.

ä Removes bytes sent from the front of queue.

ReceiveFrom (Method)

Overwrites data with the first packet available to the socket.

Inputs/Outputs

Name IEC 61131 Type Description

data class_ByteVector The container to which the data are written.

Outputs

Name IEC 61131 Type Description

fromIpAddr INADDR The IP address from which the data came.
fromPort UINT The port from which the data came.

Return Value

IEC 61131 Type Description

DINT The number of bytes loaded.

Processing

The ReceiveFrom() method does the following:

ä Does nothing if the socket is not open or a new packet is not available.

ä Deletes any data found in data.

ä Places the first packet—as many as maxPacketSize bytes—from this socket in data.

ä Returns the number of bytes loaded into data.

Date Code 20180928 Instruction Manual SELEthernetController

10 SELEthernetController

Classes

ReceiveToQueueFrom (Method)

Overwrites data with the first packet available to the socket.

Inputs/Outputs

Name IEC 61131 Type Description

data class_ByteDeque The container to which the data are written.

Outputs

Name IEC 61131 Type Description

fromIpAddr INADDR The IP address from which the data came.
fromPort UINT The port from which the data came.

Return Value

IEC 61131 Type Description

DINT The number of bytes loaded.

Processing

The ReceiveToQueueFrom() method does the following:

ä Does nothing if the socket is not open or a new packet is not available.

ä Deletes any data found in data.

ä Places the first packet—as many as maxPacketSize bytes—from this socket in data.

ä Returns the number of bytes loaded into data.

class_TcpClient (Class)

This class provides a client socket for the TCP protocol. Once enabled, the class creates,
binds, and sends to the configured port. Because TCP is session-based communication, the
client should close the session upon completion of the communication to conserve server
resources.

Properties

Name IEC 61131 Type Access Description

State enum_SocketState R The state of this socket.
LocalPort UINT R The port number provided by the user for

use locally. A value of zero means an
OS-chosen port value will be used.

LocalIPAddr INADDR R The IP address with which this socket in-
terfaces locally.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 11

Classes

Properties

Name IEC 61131 Type Access Description

DestIPAddr INADDR R The IP address to which any triggered
message is sent.

DestPort UINT R The port number to which any triggered
message is sent.

pt_Error POINTER TO STRING R An error message describing any present
error condition.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

bootstrap_SetLocalIP (Method)

Perform a one-time setting of the local IP address and port this socket will use.

Inputs

Name IEC 61131 Type Description

localPort UINT The port number through which this socket receives and
sends data. If this value is zero then the OS will choose a
random outgoing port.

localIPAddr INADDR The IP address on the local box this socket uses. Use 0.0.0.0
to allow all local IP addresses.

Return Value

IEC 61131 Type Description

BOOL TRUE if the IP address and port number are set.

Processing

The bootstrap_SetLocalIP() method does the following:

ä Immediately returns FALSE if the port and IP address are already set.

ä Sets the IP address and port on the local machine for use by this socket.

SetIP (Method)

Set the IP address and port to be used on the next Open() request.

Date Code 20180928 Instruction Manual SELEthernetController

12 SELEthernetController

Classes

Inputs

Name IEC 61131 Type Description

destIPAddr INADDR The IP address to which data is sent.
destPort UINT The destination port to which data is sent.

Processing

The SetIP() method does the following:

ä Sets the IP address and port that will become the new destination the next time Open()
is called.

Open (Method)

Configure the class_TcpClient to allow communication.

Return Value

IEC 61131 Type Description

BOOL TRUE if the port is ready to send data.

Processing

The Open() method does the following:

ä Opens the port for sending and receiving communication, if SetIP() has been
successfully run.

ä Returns false if the socket was unable to connect.

Close (Method)

Unconfigure the class_TcpClient, to disable communication.

Inputs

Name IEC 61131 Type Description

forceClose BOOL Close the session without waiting for confirmation.

Processing

The Close() method does the following:

ä Discards any unread data.

ä Allows server to retain session until all data are read, if forceClose is FALSE.

ä Makes the socket unable to send data or receive replies.

ä Forces reopening of the socket before processing additional communication.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 13

Classes

SendData (Method)

Send a block of data to the socket.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The data to send.
numBytes DINT The quantity of data in bytes.

Return Value

IEC 61131 Type Description

DINT The number of bytes sent.

Processing

The SendData() method does the following:

ä Does nothing if the socket is not open.

ä Validates access to the pointer provided.

ä Limits numBytes to a positive number.

ä Sends all provided data to the socket.

ä Returns the number of bytes successfully sent.

SendQueuedData (Method)

Send a block of data to the socket from the front of a queue.

Inputs/Outputs

Name IEC 61131 Type Description

queue class_ByteDeque The data to send.

Return Value

IEC 61131 Type Description

DINT The number of bytes sent.

Processing

The SendQueuedData() method does the following:

ä Does nothing if the socket is not open.

ä Sends all provided data, starting at the front of queue, to the socket.

Date Code 20180928 Instruction Manual SELEthernetController

14 SELEthernetController

Classes

ä Returns the number of bytes successfully sent.

ä Removes bytes sent from the front of queue.

ReceiveData (Method)

Appends a block of data from the socket to data.

Inputs

Name IEC 61131 Type Description

numBytes DINT The number of bytes requested.

Inputs/Outputs

Name IEC 61131 Type Description

data class_ByteVector The container to which the data are written.

Return Value

IEC 61131 Type Description

DINT The number of bytes loaded.

Processing

The ReceiveData() method does the following:

ä Does nothing if the socket is not open.

ä Requests data from the socket until there are either no more or it reaches numBytes,
whichever happens first.

ä Appends all data retrieved to data.

ä Returns the number of bytes appended.

ReceiveToQueue (Method)

Pushes a block of data from the socket to the back of queue.

Inputs

Name IEC 61131 Type Description

numBytes DINT The number of bytes requested.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 15

Classes

Inputs/Outputs

Name IEC 61131 Type Description

queue class_ByteDeque The container to which the data are written.

Return Value

IEC 61131 Type Description

DINT The number of bytes loaded.

Processing

The ReceiveToQueue() method does the following:

ä Does nothing if the socket is not open.

ä Requests data from the socket until there are either no more or it reaches numBytes,
whichever happens first.

ä Pushes all data retrieved to the back of queue.

ä Returns the number of bytes pushed.

class_TcpServer (Class)

This class provides a listening socket for the TCP protocol. Once enabled the class creates,
binds, and receives on the configured port.

Initialization Inputs

Name IEC 61131 Type Description

maxSessions USINT The maximum number of concurrent sessions to allow on
this socket. This will be forced to at least one.

Properties

Name IEC 61131 Type Access Description

State enum_SocketState R The state of this socket.
LocalPort UINT R The port number with which this socket

interfaces locally.
LocalIPAddr INADDR R The IP address with which this socket

interfaces locally.
NumSessions USINT R The number of client sessions connected

to this server block.
SessionState enum_SocketState R The state of the selected session.

CLOSED if nothing is connected or
CONNECTED if data can still be read
from the socket.

DestIPAddr INADDR R The IP address to which any triggered
message is sent.

Date Code 20180928 Instruction Manual SELEthernetController

16 SELEthernetController

Classes

Properties

Name IEC 61131 Type Access Description

DestPort UINT R The port to which any triggered message
is sent.

pt_Error POINTER TO STRING R An error message describing any present
error condition.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

bootstrap_SetLocalIP (Method)

Perform a one-time setting of the local IP address and port this socket will use.

Inputs

Name IEC 61131 Type Description

localPort UINT The port number through which this socket receives and
sends data.

localIPAddr INADDR The IP address on the local box this socket uses. Use 0.0.0.0
to allow all local IP addresses.

Return Value

IEC 61131 Type Description

BOOL TRUE if the IP address and port number are set.

Processing

The bootstrap_SetLocalIP() method does the following:

ä Immediately returns FALSE if the port and IP address are already set.

ä Sets the IP address and port on the local machine used by this socket.

Open (Method)

Configure the class_TcpServer to allow for communication.

Return Value

IEC 61131 Type Description

BOOL TRUE if the port is ready to receive connections.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 17

Classes

Processing

The Open() method does the following:

ä Configures the server to receive client connections.

ä Returns FALSE if the socket was unable to bind.

Close (Method)

Unconfigure the class_TcpServer to disable communication.

Inputs

Name IEC 61131 Type Description

forceClose BOOL Close the session without waiting for confirmation.

Processing

The Close() method does the following:

ä Discards any unread data.

ä Closes all open client sessions: gracefully if forceClose is FALSE.

ä Makes the socket unable to send data or receive replies.

ä Forces reconfiguration of the socket before attempting additional communication.

AcceptNextSession (Method)

Accept the next new inbound data session. This does not change the active session.

Return Value

IEC 61131 Type Description

SESSION_HANDLE The descriptor to allow further communication through this session.

Processing

The AcceptNextSession() method does the following:

ä Does nothing if the socket is not open for listening.

ä Accepts the next outstanding client session to as many as maxSessions.

ä Updates NumSessions based on the sessions accepted.

ä Returns the value SysSocket.RTS_INVALID_HANDLE if there are no outstanding
sessions.

ä Returns the handle to the accepted session.

Date Code 20180928 Instruction Manual SELEthernetController

18 SELEthernetController

Classes

SetSession (Method)

Select the session from which the class reads data from and replies to based on a previously
received identifier.

Inputs

Name IEC 61131 Type Description

sessionID SESSION_HANDLE The identifier of the desired session as returned by
AcceptNextSession().

Return Value

IEC 61131 Type Description

BOOL TRUE if the session exists.

Processing

The SetSession() method does the following:

ä Selects the read and write session tied to sessionID.

ä Sets DestIPAddr and DestPort to the values for the selected session.

ä Returns false and sets DestIPAddr to 0.0.0.0, DestPort to 0, and SessionState
to closed if sessionID does not represent an active session.

GetSessionInfo (Method)

Get the IP address and port number related to a session handle.

Inputs

Name IEC 61131 Type Description

sessionID SESSION_HANDLE The identifier of a session as returned by
AcceptNextSession().

Outputs

Name IEC 61131 Type Description

sessionIPAddr INADDR The IP address attached to sessionID.
sessionPort UINT The port number attached to sessionID.

Processing

The GetSessionInfo() method does the following:

ä Outputs the IP address and port number tied to sessionID.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 19

Classes

ä Sets sessionIPAddr to 0.0.0.0 and sessionPort to 0, if sessionID does not represent
an active session.

CloseSession (Method)

Close the selected session and clear any pending data.

Inputs

Name IEC 61131 Type Description

forceClose BOOL Close the session without waiting for confirmation.

Processing

The CloseSession() method does the following:

ä Closes the active session.

ä Sets DestIPAddr and DestPort to zero.

ä Discards any unread data.

ä Allows client to retain session until all data are read, if forceClose is FALSE.

ä Decrements NumSessions.

SendData (Method)

Send a block of data to the socket.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The data to send.
numBytes DINT The quantity of data in bytes.

Return Value

IEC 61131 Type Description

DINT The number of bytes sent.

Processing

The SendData() method does the following:

ä Does nothing if no valid session has been selected.

ä Validates access to the pointer provided.

ä Limits numBytes to a positive number.

ä Sends all provided data to the socket.

Date Code 20180928 Instruction Manual SELEthernetController

20 SELEthernetController

Classes

ä Returns the number of bytes successfully sent.

SendQueuedData (Method)

Send a block of data to the socket from the front of a queue.

Inputs/Outputs

Name IEC 61131 Type Description

queue class_ByteDeque The data to send.

Return Value

IEC 61131 Type Description

DINT The number of bytes sent.

Processing

The SendQueuedData() method does the following:

ä Does nothing if the socket is not open.

ä Sends all provided data, starting at the front of the queue, to the socket.

ä Returns the number of bytes successfully sent.

ä Removes bytes sent from the front of queue.

ReceiveData (Method)

Receive a block of data from the active session.

Inputs

Name IEC 61131 Type Description

numBytes DINT The number of bytes requested.

Inputs/Outputs

Name IEC 61131 Type Description

data class_ByteVector The container to which the data are written.

Return Value

IEC 61131 Type Description

DINT The number of bytes loaded into data.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 21

Classes

Processing

The ReceiveData() method does the following:

ä Does nothing if no valid session has been selected.

ä Checks for available data in the selected session.

ä Requests data from the socket until there are no more or it reaches numBytes, whichever
happens first.

ä Appends all data retrieved to data.

ä Returns the number of bytes appended.

ReceiveToQueue (Method)

Pushes a block of data from the socket to the back of queue.

Inputs

Name IEC 61131 Type Description

numBytes DINT The number of bytes requested.

Inputs/Outputs

Name IEC 61131 Type Description

queue class_ByteDeque The container to which the data are written.

Return Value

IEC 61131 Type Description

DINT The number of bytes loaded.

Processing

The ReceiveToQueue() method does the following:

ä Does nothing if the socket is not open.

ä Requests data from the socket until there are no more or it reaches numBytes, whichever
happens first.

ä Pushes all data retrieved to the back of queue.

ä Returns the number of bytes pushed.

Date Code 20180928 Instruction Manual SELEthernetController

22 SELEthernetController

Benchmarks

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V0 firmware

ä SEL-3530

â R134-V0 firmware

ä SEL-3505

â R134-V0 firmware

Benchmark Test Descriptions

fun_StringToInaddr

The posted time is the average execution time of 100 consecutive calls for the string
“192.168.100.100”.

fun_InaddrToString

The posted time is the average execution time of 100 consecutive calls for the IP address
192.168.100.100.

class_UdpSocket.Open

The posted time is the average execution time of 100 successful method calls to open a
socket.

class_UdpSocket.Close

The posted time is the average execution time of 100 successful method calls to close a
socket.

class_UdpSocket.SendData

The posted time is the average execution time of 100 consecutive calls when sending 504
bytes of data, resulting in a 512-byte total packet size.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 23

Benchmarks

class_UdpSocket.SendQueuedData

The posted time is the average execution time of 100 consecutive calls when sending 504
bytes of data, resulting in a 512-byte total packet size.

class_UdpSocket.ReceiveFrom

The posted time is the average execution time of 100 consecutive calls when receiving 504
bytes of data, resulting in a 512-byte total packet size.

class_UdpSocket.ReceiveToQueueFrom

The posted time is the average execution time of 100 consecutive calls when receiving 504
bytes of data, resulting in a 512-byte total packet size.

class_TcpClient.SetIP

The posted time is the average execution time of 100 consecutive calls.

class_TcpClient.Open

The posted time is the average execution time of 100 successful method calls to open a
socket.

class_TcpClient.Close

The posted time is the average execution time of 100 successful method calls to close a
socket.

class_TcpClient.SendData

The posted time is the average execution time of 100 consecutive calls when sending 1400
bytes of data.

class_TcpClient.SendQueuedData

The posted time is the average execution time of 100 consecutive calls when sending 1400
bytes of data.

class_TcpClient.ReceiveData

The posted time is the average execution time of 100 consecutive calls when receiving 1400
bytes of data.

Date Code 20180928 Instruction Manual SELEthernetController

24 SELEthernetController

Benchmarks

class_TcpClient.ReceiveToQueue

The posted time is the average execution time of 100 consecutive calls when receiving 1400
bytes of data.

class_TcpServer.Open

The posted time is the average execution time of 100 successful method calls to open a
socket.

class_TcpServer.Close

The posted time is the average execution time of 100 successful method calls to close a
socket.

class_TcpServer.AcceptNextSession

The posted time is the average execution time of 100 successful method calls when there is
another session to accept.

class_TcpServer.SetSession

The posted time is the average execution time of 100 consecutive calls.

class_TcpServer.GetSessionInfo

The posted time is the average execution time of 100 consecutive calls.

class_TcpServer.CloseSession

The posted time is the average execution time of 100 successful method calls to close a
session.

class_TcpServer.SendData

The posted time is the average execution time of 100 consecutive calls when sending 1400
bytes of data.

class_TcpServer.SendQueuedData

The posted time is the average execution time of 100 consecutive calls when sending 1400
bytes of data.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 25

Examples

class_TcpServer.ReceiveData

The posted time is the average execution time of 100 consecutive calls when receiving 1400
bytes of data.

class_TcpServer.ReceiveToQueue

The posted time is the average execution time of 100 consecutive calls when receiving 1400
bytes of data.

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3555 SEL-3530 SEL-3505

fun_StringToInaddr 2 12 18
fun_InaddrToString 6 40 63
class_UdpSocket.Open 25 150 330
class_UdpSocket.Close 13 65 117
class_UdpSocket.SendData 26 150 380
class_UdpSocket.SendQueuedData 25 160 380
class_UdpSocket.ReceiveFrom 12 90 200
class_UdpSocket.ReceiveToQueueFrom 12 100 220
class_TcpClient.SetIP 1 1 1
class_TcpClient.Open 67 740 1200
class_TcpClient.Close 41 310 660
class_TcpClient.SendData 1 3 6
class_TcpClient.SendQueuedData 1 3 5
class_TcpClient.ReceiveData 8 80 110
class_TcpClient.ReceiveToQueue 7 80 110
class_TcpServer.Open 36 200 400
class_TcpServer.Close 20 100 140
class_TcpServer.AcceptNextSession 20 97 130
class_TcpServer.SetSession 2 4 6
class_TcpServer.GetSessionInfo 2 5 14
class_TcpServer.CloseSession 33 320 690
class_TcpServer.SendData 1 3 6
class_TcpServer.SendQueuedData 1 3 5
class_TcpServer.ReceiveData 9 80 110
class_TcpServer.ReceiveToQueue 8 75 110

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Date Code 20180928 Instruction Manual SELEthernetController

26 SELEthernetController

Examples

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Sending Data Out a UDP Socket

Objective

A user has an array of bytes formatted to place on the network and needs to send it to a
specific IP address and port via UDP.

Solution

The user can create the program shown in Code Snippet 1 to send the byte array out each
task cycle.

Code Snippet 1 prg_UdpOut

PROGRAM prg_UdpOut
VAR

// Configuration Information - Uses any available interface.
LocalIPAddress : STRING(15) := '0.0.0.0';
LocalPortNumber : UINT := 5000;
DestinationIPAddress : STRING(15) := '10.10.10.10';
DestinationPortNumber : UINT := 5000;

// Data to send each task cycle.
Data : ARRAY [1 .. 1000] OF BYTE;

// Socket to send data on.
UdpSocket : class_UdpSocket(maxPacketSize := 1024);

// Initialization variables.
SocketInitialized : BOOL := FALSE;
LocalIP : SELEthernetController.INADDR;
DestIP : SELEthernetController.INADDR;

END_VAR

IF NOT SocketInitialized THEN
fun_StringToInaddr(LocalIPAddress, ipAddr => LocalIP);
fun_StringToInaddr(DestinationIPAddress, ipAddr => DestIP);
UdpSocket.bootstrap_SetLocalIP(LocalPortNumber, LocalIP);
UdpSocket.Open();
SocketInitialized := TRUE;

ELSE
UdpSocket.SendData(ADR(Data[1]), SIZEOF(Data),

DestIP, DestinationPortNumber);
END_IF

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 27

Examples

Creating a UDP Server

Objective

A user would like the RTAC to be able to receive data from multiple clients over the UDP
protocol.

After some internal validation of a received packet, the server will reply with OK in ASCII
if the packet was correctly formatted.

Assumptions

This solution assumes that the AcRTAC project containing the provided code includes an
Access Point opening at the desired port and that the inbound packets are not larger than
1024 bytes.

Solution

The user can create the program shown in Code Snippet 2 to receive one inbound data packet
each task cycle.

Date Code 20180928 Instruction Manual SELEthernetController

28 SELEthernetController

Examples

Code Snippet 2 prg_UdpServer

PROGRAM prg_UdpServer
VAR

// Configuration Information - Uses any available interface.
LocalIPAddress : STRING(15) := '0.0.0.0';
LocalPortNumber : UINT := 1515;

// Storage for inbound and outbound messages.
DataIn : SELEthernetController.class_ByteVector;
DataOut : STRING(2) := 'OK';

// The socket and its initialization data.
UdpSocket : class_UdpSocket(maxPacketSize := 1024);
SocketInitialized : BOOL := FALSE;
LocalIP : SELEthernetController.INADDR;

// Workbench variables for storing current client information.
DestIP : SELEthernetController.INADDR;
DestPort : UINT;
PacketValid : BOOL;

END_VAR

IF NOT SocketInitialized THEN
fun_StringToInaddr(LocalIPAddress, ipAddr => LocalIP);
UdpSocket.bootstrap_SetLocalIP(LocalPortNumber, LocalIP);
UdpSocket.Open();
SocketInitialized := TRUE;

ELSE
IF 0 <> UdpSocket.ReceiveFrom(DataIn, fromIpAddr => DestIP, fromPort =>

DestPort) THEN
; // Set PacketValid based on the contents of DataIn.
IF PacketValid THEN

UdpSocket.SendData(ADR(DataOut), 2, DestIP, DestPort);
END_IF

END_IF
END_IF

Creating a TCP Client

Objective

A user would like the RTAC to be able to send data to a TCP server for modification.

Assumptions

For this use case, we assume that the server doubles any data that are sent to it.

Solution

The user can create the program defined in Code Snippet 3 to send packets to the remote
server and receive data in reply.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 29

Examples

Code Snippet 3 prg_TcpClient

PROGRAM prg_TcpClient
VAR

// Configuration Information - Uses any available interface.
LocalIPAddress : STRING(15) := '0.0.0.0';
LocalPortNumber : UINT := 2442;
DestinationIPAddress : STRING(15) := '10.10.10.10';
DestinationPortNumber : UINT := 2442;

// Storage for data being sent and received.
DataOut : ARRAY [1 .. 200] OF BYTE;
DataIn : SELEthernetController.class_ByteVector;

// The socket and its initialization state.
TcpClient : class_TcpClient;
SocketInitialized : BOOL := FALSE;

// IP address variables.
LocalIP : SELEthernetController.INADDR;
DestIP : SELEthernetController.INADDR;

// Flags used in manipulating the state of the function.
IsSending : BOOL;
DataSent : DINT;
DataReceived : DINT;

END_VAR

IF NOT SocketInitialized THEN
fun_StringToInaddr(LocalIPAddress, ipAddr => LocalIP);
fun_StringToInaddr(DestinationIPAddress, ipAddr => DestIP);
TcpClient.bootstrap_SetLocalIP(LocalPortNumber, LocalIP);
TcpClient.SetIP(DestIP, DestinationPortNumber);
TcpClient.Open();
SocketInitialized := TRUE;
IsSending := TRUE;

ELSE
IF IsSending THEN

DataSent := TcpClient.SendData(ADR(DataOut[1]), 200);
DataIn.Recycle();
IsSending := FALSE;
DataReceived := 0;

ELSE
// Here we request the total data expected minus anything
// already received and add it to anything already received.
// This allows the reception of data to cross multiple cycles.
DataReceived := DataReceived +

TcpClient.ReceiveData((DataSent * 2)
- DataReceived, DataIn);

IF DataReceived = (2 * DataSent) THEN
; // Do some work based the server's reply.
IsSending := TRUE;

END_IF
END_IF

END_IF

Date Code 20180928 Instruction Manual SELEthernetController

30 SELEthernetController

Examples

Parsing Network Traffic With a Deque

This example demonstrates using a deque for network communication.

Objective

Parse the data stream of information sent from a TCP server to the TCP client on the RTAC.
Increment a counter every time the characters “SEL” are seen in the stream.

Assumptions

This example assumes that there is a server to connect to and streams data through the
connection once the connection is established. It also assumes that the library Queue has
been inserted in the project.

Solution

The deque is used as storage for information received from a TCP socket. The received data
are then searched for the string ’SEL’ and a counter is incremented every time the string is
found. As it searches for the string, data are discarded from the front of the deque. This
implementation is shown in Code Snippet 4

Code Snippet 4 prg_SELSearch

PROGRAM prg_SELSearch
VAR

// Configuration Information - Uses any available interface.
LocalIPAddress : STRING(15) := '0.0.0.0';
LocalPortNumber : UINT := 2442;
DestinationIPAddress : STRING(15) := '10.10.10.10';
DestinationPortNumber : UINT := 2442;

// The socket and its initialization state.
TcpClient : class_TcpClient;
SocketInitialized : BOOL := FALSE;
// IP address variables.
LocalIP : SELEthernetController.INADDR;
DestIP : SELEthernetController.INADDR;
// Deque to hold received data.
DataIn : Queue.class_ByteDeque(0);
// The string to search for in the incoming data.
TargetString : STRING := 'SEL';
// A temporary string used to find the targetString.
Peek : STRING(3);
// A flag for breaking the search loop.
Searching : BOOL;
// Counter for the number of times the targetString is found.
Counter : UDINT := 0;

END_VAR

IF NOT SocketInitialized THEN
fun_StringToInaddr(LocalIPAddress, ipAddr => LocalIP);
fun_StringToInaddr(DestinationIPAddress, ipAddr => DestIP);
TcpClient.bootstrap_SetLocalIP(LocalPortNumber, LocalIP);

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 31

Examples

TcpClient.SetIP(DestIP, DestinationPortNumber);
TcpClient.Open();
SocketInitialized := TRUE;

ELSE
// Read new data from the socket.
IF 0 <> TcpClient.ReceiveToQueue(10_000, DataIn) THEN
searching := TRUE;

WHILE searching DO
// See if the string 'SEL' appears in the front of the deque.
IF 3 = DataIn.Front(ADR(peek), 3) THEN

IF peek = TargetString THEN
(* The string 'SEL' was found, increment the counter

and erase the string from the deque. *)
Counter := Counter + 1;
DataIn.EraseFront(3);

ELSE
(* The string wasn't found, erase the first character

and continue looking. *)
DataIn.EraseFront(1);

END_IF
ELSE

Searching := FALSE;
END_IF

END_WHILE
END_IF

END_IF

Configuring a Simple TCP Server With Sessions

Objective

Parse all input data from several clients looking for the string “Hello.” When the string is
found, that client receives a reply “WorldNR”.

The server handles accepting and tracking all sessions and iterates across them to allow
each time to process.

Assumptions

This example assumes that Port 10024 is open through use of an Access Point configured as
Ethernet Incoming and set to receive Raw TCP. It also assumes that the client can access
that port through any intermediary firewalls. It also assumes that the library Queue has
been inserted in the project.

All error checking has been omitted to facilitate the brevity of this implementation.

There must be a structure defined to hold session related data. Code Snippet 5 shows an
example for this implementation.

Date Code 20180928 Instruction Manual SELEthernetController

32 SELEthernetController

Examples

Code Snippet 5 Session Structure

TYPE struct_SessionInfo :
STRUCT

// There is a connected session stored here.
Active : BOOL := FALSE;
// The Handle for this session.
Handle : SESSION_HANDLE := SysSocket.RTS_INVALID_HANDLE;
// Deque containing incoming data ready for consumption.
ReceiveDeque : class_ByteDeque(0);
// Deque containing data ready to be sent to the telnet client.
SendDeque : class_ByteDeque(0);

END_STRUCT
END_TYPE

Solution

Instantiate a class_TcpServer and associated data control objects as seen in Code Snippet 6.
Allow this program to run every task scan.

Verification

To verify that this solution is functional, start running the server on the RTAC and then
attach with a raw TCP connection on port 10024. Any instance of the word “Hello” should
be followed immediately by the echo “World.”

Characters other than new-lines should eventually echo “Usage : Hello.”

The code as written should accept as many as five concurrent sessions with more allowed
after a given session disconnects.

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 33

Examples

Code Snippet 6 prg_SimpleServer

PROGRAM prg_SimpleServer
VAR CONSTANT

// The maximum number of sessions allowed for this server.
_c_NumSessions : USINT := 5;
// The maximum bytes to read per scan.
_c_NumBytes : DINT := 1024;

END_VAR
VAR

// Configuration Information
// Uses any available interface.
LocalIPAddress : STRING(15) := '0.0.0.0';
LocalPortNumber : UINT := 10024;
ListenIPAddr : INADDR;

SocketInitialized : BOOL := FALSE;
TcpServer : class_TcpServer(_c_NumSessions);

Sessions : ARRAY [1 .. _c_NumSessions] of struct_SessionInfo;

Peek : STRING(5);
Reply : STRING(7) := 'WorldRN';
Reply2 : STRING(15) := 'Usage : HelloRN';

tempSession : SESSION_HANDLE;
sendByteCount : DINT;
numSend : DINT;
i : UDINT;

END_VAR

IF NOT SocketInitialized THEN
IF SELEthernetController.fun_StringToInaddr(LocalIPAddress, ipAddr =>

ListenIPAddr) THEN
TcpServer.bootstrap_SetLocalIP(LocalPortNumber, ListenIPAddr);
IF TcpServer.Open() THEN

SocketInitialized := TRUE;
END_IF

END_IF
ELSE

// Clean up any session that is in error.
IF TcpServer.SessionState = ERROR THEN

TcpServer.CloseSession(TRUE);
END_IF

// Accept any new sessions if possible.
FOR i := 1 TO _c_NumSessions DO

IF NOT Sessions[i].Active THEN
// There is a session object available,
// see if there is a new session pending.
tempSession := TcpServer.AcceptNextSession();
IF tempSession <> SysSocket.RTS_INVALID_HANDLE THEN

Sessions[i].Handle := tempSession;
Sessions[i].Active := TRUE;
Sessions[i].SendDeque.Recycle();
Sessions[i].ReceiveDeque.Recycle();

ELSE
//There are no outstanding sessions. Stop asking.
EXIT;

Date Code 20180928 Instruction Manual SELEthernetController

34 SELEthernetController

Examples

END_IF
END_IF

END_FOR

// Cycle through all current sessions and process their data.
FOR i := 1 TO _c_NumSessions DO

IF Sessions[i].Active THEN
IF TcpServer.SetSession(Sessions[i].Handle) THEN

// Read any data from the socket.
TcpServer.ReceiveToQueue(_c_NumBytes,

Sessions[i].ReceiveDeque);

// Here is where meaningful work would be added.
WHILE Sessions[i].ReceiveDeque.Size >= 5 DO

// See if the string 'SEL' appears in the front of the
deque.

IF 5 = Sessions[i].ReceiveDeque.Front(ADR(Peek), 5) THEN
IF peek = 'Hello' THEN

Sessions[i].SendDeque.PushBack(ADR(Reply), 7);
Sessions[i].ReceiveDeque.EraseFront(5);

ELSIF peek[0] <> 10 and peek[0] <> 13 THEN
// The string wasn't found, erase the first
// character and continue looking.
Sessions[i].SendDeque.PushBack(ADR(Reply2), 15);
Sessions[i].ReceiveDeque.EraseFront(1);

ELSE
Sessions[i].ReceiveDeque.EraseFront(1);

END_IF
ELSE

EXIT;
END_IF

END_WHILE

TcpServer.SendQueuedData(Sessions[i].SendDeque);

// If the session closed while working with it, clean up.
IF TcpServer.SessionState = CLOSED THEN

Sessions[i].Handle := RTS_INVALID_HANDLE;
Sessions[i].Active := FALSE;

END_IF
ELSE

// If the session closed while doing other work, clean up.
Sessions[i].Handle := RTS_INVALID_HANDLE;
Sessions[i].Active := FALSE;

END_IF
END_IF

END_FOR
END_IF

SELEthernetController Instruction Manual Date Code 20180928

SELEthernetController 35

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.0.6 ä Allow the class to recover instead of closing the socket when at-

tempting to send large amounts of data all at once.
20160501

3.5.0.5 ä Added queues as input and output mechanisms for socket data. 20150511
ä Allow TCP client ports to connect to a server without binding to a

specific local port.
3.5.0.3 ä Made TCP sockets not throw error when outgoing data buffer is

full.
20141107

3.5.0.2 ä Initial release. 20141010

Date Code 20180928 Instruction Manual SELEthernetController

	Section 1: SELEthernetController
	Introduction
	Special Considerations

	Supported Firmware Versions
	Enumerations
	enum_SocketState

	Aliases
	SESSION_HANDLE

	Functions
	fun_StringToInaddr
	fun_InaddrToString

	Classes
	class_UdpSocket (Class)
	bootstrap_SetLocalIP (Method)
	Open (Method)
	Close (Method)
	SendData (Method)
	SendQueuedData(Method)
	ReceiveFrom (Method)
	ReceiveToQueueFrom (Method)

	class_TcpClient (Class)
	bootstrap_SetLocalIP (Method)
	SetIP (Method)
	Open (Method)
	Close (Method)
	SendData (Method)
	SendQueuedData (Method)
	ReceiveData (Method)
	ReceiveToQueue (Method)

	class_TcpServer (Class)
	bootstrap_SetLocalIP (Method)
	Open (Method)
	Close (Method)
	AcceptNextSession (Method)
	SetSession (Method)
	GetSessionInfo (Method)
	CloseSession (Method)
	SendData (Method)
	SendQueuedData (Method)
	ReceiveData (Method)
	ReceiveToQueue (Method)

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fun_StringToInaddr
	fun_InaddrToString
	class_UdpSocket.Open
	class_UdpSocket.Close
	class_UdpSocket.SendData
	class_UdpSocket.SendQueuedData
	class_UdpSocket.ReceiveFrom
	class_UdpSocket.ReceiveToQueueFrom
	class_TcpClient.SetIP
	class_TcpClient.Open
	class_TcpClient.Close
	class_TcpClient.SendData
	class_TcpClient.SendQueuedData
	class_TcpClient.ReceiveData
	class_TcpClient.ReceiveToQueue
	class_TcpServer.Open
	class_TcpServer.Close
	class_TcpServer.AcceptNextSession
	class_TcpServer.SetSession
	class_TcpServer.GetSessionInfo
	class_TcpServer.CloseSession
	class_TcpServer.SendData
	class_TcpServer.SendQueuedData
	class_TcpServer.ReceiveData
	class_TcpServer.ReceiveToQueue

	Benchmark Results

	Examples
	Sending Data Out a UDP Socket
	Objective
	Solution

	Creating a UDP Server
	Objective
	Assumptions
	Solution

	Creating a TCP Client
	Objective
	Assumptions
	Solution

	Parsing Network Traffic With a Deque
	Objective
	Assumptions
	Solution

	Configuring a Simple TCP Server With Sessions
	Objective
	Assumptions
	Solution
	Verification

	Release Notes

