
Queue

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers



Table of Contents

Section 1: Queue

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Supported Firmware Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Global Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Queue Instruction Manual Date Code 20180920



RTAC LIBRARY

Queue

Introduction

See the ACSELERATOR RTAC Library Extensions Instruction Manual (LibraryExtension-
sIM) for an explanation of the concepts used by the object-oriented extensions to the
IEC 61131-3 standard.

Queues

A queue is a fundamental data structure in computer science, and is implemented within
this library as an object.

The term “queue” is often used interchangeably with the term “First-In-First-Out” (FIFO),
which is a more descriptive name. The queue is often used as a buffer, allowing information
to be queued up to be processed in the same order that it was received in, but at a different
rate. This library defines the front of a queue as the oldest element pushed into the queue
and the back of the queue is the newest element pushed into the queue.

This is easily visualized and remembered by using the common image of customers standing
in a line, also known as a queue. The customer that has been in line the longest is at the
front of the queue, and people awaiting service are added to the back of the queue.

All queues in this library assume that all elements within the queue are the same size.

Double-Ended Queues (Deques)

This library provides a a double-ended queue implementation (a deque). A deque can do
anything that a standard queue can do, but can have items added or removed from either the
front or the back.

With a deque, the library assembly can move priority information to the front of a queue,
or balance several parallel queues by removing items from the back of one queue and
reassigning them to the back of other queues. These are operations that cannot be performed
on a pure queue.

The deque implementation used in this library also ensures that all the data within the queue
are kept in contiguous memory, which is not guaranteed in all queue implementations.

Date Code 20180920 Instruction Manual Queue



4 Queue

Interfaces

Special Considerations

Classes in this library have memory allocated inside them. As such, they should only be
created in environments of permanent scope (e.g., Programs, Global Variable Lists, or
VAR_STAT sections).

Copying classes from this library causes unwanted behavior. This means the following:

1. The assignment operator “:=” must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error such
as:

// "C0328: Assignment not allowed for type class_QueueObject"
myQueueObject := otherQueueObject;

// This is fine
someVariable := myQueueObject.value;
// As is this
pt_myQueueObject := ADR(myQueueObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT members
in function blocks, functions, or methods. Place them in the VAR_IN_OUT section
or use pointers instead.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.0 and older can be used on RTAC firmware version R132 and higher.

Global Parameters

The library applies the following values as maximums; they can be modified when the
library is included in a project.

Name IEC 61131 Type Value Description

g_p_DefaultQueueSize UDINT 32 The default number of elements that a
queue can hold.

Interfaces

This library provides the following interface.

Queue Instruction Manual Date Code 20180920



Queue 5

Interfaces

I_Queue (Interface)

This interface is implemented by any class that provides a queue data type.

Properties

Name IEC 61131 Type Access Description

ElementSize UDINT R The number of bytes required for each element
in the queue.

MaxSize UDINT R The number of elements this queue can hold be-
fore a reallocation for additional memory is re-
quired.

Size UDINT R The number of elements in the queue.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Clear (Method)

Deallocates all memory associated with the queue. Call this method only if the queue is
instantiated with limited scope (i.e., if it is instantiated as a local variable of a function or
method).

Return Value

IEC 61131 Type Description

BOOL TRUE if the queue successfully deallocates its internal memory. FALSE if
an error occurs.

EraseFront (Method)

This method deletes the specified number of elements from the front of the queue.

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the front of the queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the queue.

Date Code 20180920 Instruction Manual Queue



6 Queue

Interfaces

Processing

ä Removes as many as numToErase elements from the front of the queue.

ä If the Size of the queue is less than numToErase, only Size elements are removed from
the queue.

Front (Method)

This method copies the specified number of elements from the front of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the front of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the front of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

PopFront (Method)

This method copies the specified number of elements from the front of the queue to the
provided pointer location and deletes them from the queue.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the front of the
queue.

Queue Instruction Manual Date Code 20180920



Queue 7

Interfaces

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the queue.
Zero if the queue was not modified.

Processing

ä Copies as many as numToPop elements from the front of the queue to pt_destination.

ä If the Size of the queue is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the queue.

ä If pt_destination is invalid or the elements cannot be copied, the queue is not modified
and zero is returned.

PushBack (Method)

This method copies elements from the specified pointer location and pushes them onto the
back of the queue.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the queue. Zero if an error
occurred and the queue was not modified.

Processing

ä If the queue is not large enough to contain the new elements, additional memory is
allocated to enlarge the queue.

ä Copies the elements from pt_source and pushes them onto the back of the queue.

ä If pt_source is invalid or numToPush is zero, the queue is not modified and zero is
returned.

Date Code 20180920 Instruction Manual Queue



8 Queue

Classes

Recycle (Method)

This method removes all elements from the queue without modifying the memory allocated
to the queue.

Return Value

IEC 61131 Type Description

BOOL TRUE if the queue successfully removes all elements. FALSE if an error
occurs.

Processing

All elements are removed from the queue.

ä After recycling, the Size of the queue is zero.

ä The MaxSize is unchanged after a call to Recycle().

ä This method neither allocates nor frees any memory.

Classes

class_Deque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque can handle objects of arbitrary size, so long as the number of bytes
required for each element is the same.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

elementSize UDINT The number of bytes required for each element that this
deque can hold. If zero, defaults to one.

numElements UDINT The number of elements to allocate initially. If zero, g_p_-
DefaultQueueSize is used.

Queue Instruction Manual Date Code 20180920



Queue 9

Classes

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



10 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

Queue Instruction Manual Date Code 20180920



Queue 11

Classes

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



12 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_ByteDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type BYTE.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 13

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackByte (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element BYTE A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



14 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontByte (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element BYTE A copy of the element at the front of the deque. If the return value
is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 15

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackByte (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element BYTE A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontByte (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element BYTE A copy of the element at the front of the deque. If the return value
is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



16 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackByte (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element BYTE The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 17

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontByte (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element BYTE The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



18 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_DwordDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type DWORD.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 19

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackDword (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element DWORD A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



20 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontDword (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element DWORD A copy of the element at the front of the deque. If the return value
is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 21

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackDword (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element DWORD A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontDword (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element DWORD A copy of the element at the front of the deque. If the return value
is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



22 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackDword (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element DWORD The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 23

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontDword (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element DWORD The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



24 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_LwordDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type DWORD.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 25

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackLword (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element LWORD A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



26 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontLword (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element LWORD A copy of the element at the front of the deque. If the return value
is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 27

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackLword (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element LWORD A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontLword (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element LWORD A copy of the element at the front of the deque. If the return value
is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



28 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackLword (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element LWORD The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 29

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontLword (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element LWORD The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



30 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_LrealDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type LREAL.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 31

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackLreal (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element LREAL A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



32 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontLreal (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element LREAL A copy of the element at the front of the deque. If the return value
is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 33

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackLreal (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element LREAL A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontLreal (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element LREAL A copy of the element at the front of the deque. If the return value
is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



34 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackLreal (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element LREAL The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 35

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontLreal (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element LREAL The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



36 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_PointerDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type POINTER TO ANY.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 37

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackPointer (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element POINTER TO BYTE A copy of the element at the back of the deque. If the return
value is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



38 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontPointer (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element POINTER TO BYTE A copy of the element at the front of the deque. If the return
value is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 39

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackPointer (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element POINTER TO BYTE A copy of the element at the back of the deque. If the return
value is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontPointer (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element POINTER TO BYTE A copy of the element at the front of the deque. If the return
value is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



40 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackPointer (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element POINTER TO BYTE The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 41

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontPointer (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element POINTER TO BYTE The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



42 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_RealDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type REAL.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 43

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackReal (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element REAL A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



44 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontReal (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element REAL A copy of the element at the front of the deque. If the return value
is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 45

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackReal (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element REAL A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontReal (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element REAL A copy of the element at the front of the deque. If the return value
is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



46 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackReal (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element REAL The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 47

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontReal (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element REAL The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



48 Queue

Classes

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

class_WordDeque

This class implements a double-ended queue that internally handles dynamic allocation of
memory. This deque operates only on elements of type WORD.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Queue

Initialization Inputs

Name IEC 61131 Type Description

size UDINT The number of elements to allocate initially. If zero, use g_p_-
DefaultQueueSize.

Properties

Name IEC 61131 Type Access Description

pt_Data UDINT R A pointer to the first element in the deque. This im-
plementation of deque ensures that all elements are
in contiguous memory. The pointer value returned by
this method is only valid until the next operation is
performed on the deque, since any modification to the
contents of this object can cause the storage location
to move.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Queue Instruction Manual Date Code 20180920



Queue 49

Classes

Back (Method)

This method copies the specified number of elements from the back of the queue to the
provided pointer location. The queue is not modified.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToCopy UDINT The number of elements to copy from the back of the
queue.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied.

Processing

ä Copies as many as numToCopy elements from the back of the queue to pt_destination.

ä If the Size of the queue is less than numToCopy, only Size elements are copied to
pt_destination.

ä If pt_destination is invalid or the elements cannot be copied, zero is returned.

BackWord (Method)

This method provides the element at the back of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element WORD A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

EraseBack (Method)

This method deletes the specified number of elements from the back of the deque.

Date Code 20180920 Instruction Manual Queue



50 Queue

Classes

Inputs

Name IEC 61131 Type Description

numToErase UDINT The number of elements to erase from the back of the deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully removed from the back of the deque.

Processing

ä Removes as many as numToErase elements from the back of the deque.

ä If the Size of the deque is less than numToErase, then only Size elements are removed
from the deque.

FrontWord (Method)

This method provides the element at the front of the deque without modifying the deque.

Outputs

Name IEC 61131 Type Description

element WORD A copy of the element at the front of the deque. If the return value
is false, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied. FALSE if the size is zero or an
error occurs.

PopBack (Method)

This method copies the specified number of elements from the back of the deque to the
provided pointer location and deletes them from the deque.

Inputs

Name IEC 61131 Type Description

pt_destination POINTER TO BYTE A pointer to the destination to which the elements are
copied.

numToPop UDINT The number of elements to pop off the back of the
deque.

Queue Instruction Manual Date Code 20180920



Queue 51

Classes

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully copied and removed from the deque.
Zero if the deque was not modified.

Processing

ä Copies as many as numToPop elements from the back of the deque to pt_destination.

ä If the Size of the deque is less than numToPop, only Size elements are copied to
pt_destination.

ä Removes the copied elements from the deque.

ä If pt_destination is invalid or the elements cannot be copied, the deque is not modified
and zero is returned.

PopBackWord (Method)

This method provides a copy of the element at the back of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element WORD A copy of the element at the back of the deque. If the return value
is FALSE, this value is undefined.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PopFrontWord (Method)

This method provides a copy of the element at the front of the deque and removes that
element from the deque.

Outputs

Name IEC 61131 Type Description

element WORD A copy of the element at the front of the deque. If the return value
is FALSE, this value is undefined.

Date Code 20180920 Instruction Manual Queue



52 Queue

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully copied and removed from the deque.
FALSE if the size is zero or an error occurs.

PushBackWord (Method)

This method appends a copy of the provided element to the back of the deque.

Inputs

Name IEC 61131 Type Description

element WORD The element to append to the back of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

PushFront (Method)

This method copies elements from the specified pointer location and pushes them onto the
front of the deque.

Inputs

Name IEC 61131 Type Description

pt_source POINTER TO BYTE A pointer to the source from which the elements are
copied.

numToPush UDINT The number of elements to push onto the front of the
deque.

Return Value

IEC 61131 Type Description

UDINT The number of elements successfully pushed onto the deque. Zero if an error
occurred and the deque was not modified.

Queue Instruction Manual Date Code 20180920



Queue 53

Classes

Processing

ä If the deque is not large enough to contain the new elements, additional memory is
allocated to enlarge the deque.

ä Copies the elements from the specified pointer and pushes them onto the front of the
deque.

ä If pt_source is invalid or numToPush is zero, the deque is not modified and zero is
returned.

PushFrontWord (Method)

This method appends a copy of the provided element to the front of the deque.

Inputs

Name IEC 61131 Type Description

element WORD The element to append to the front of the deque.

Return Value

IEC 61131 Type Description

BOOL TRUE if the element is successfully added to the deque. FALSE if an error
occurs.

Processing

If pushing element to the deque requires more memory than is currently available in the
deque, the library allocates additional memory.

Resize (Method)

This method resizes the deque so that it can hold the specified number of elements. If
reducing the size of the deque to less than Size, elements are deleted from the back of the
deque.

Inputs

Name IEC 61131 Type Description

newMaxSize UDINT The new maximum number of elements the deque can hold
before a memory allocation is required.

Return Value

IEC 61131 Type Description

BOOL TRUE if the deque was resized. FALSE if an error occurred and the deque
was not modified.

Date Code 20180920 Instruction Manual Queue



54 Queue

Benchmarks

Processing

ä If newMaxSize is zero, all elements in the deque are deleted. This is the same
functionality as the Clear() method.

ä If newMaxSize is equal to MaxSize, the deque is not modified.

ä If newMaxSize is smaller than Size, elements are removed from the back of the deque
in order to resize the deque.

ä If newMaxSize is greater than or equal to Size, the deque is resized and retains all
existing elements.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134 firmware

ä SEL-3530

â R134 firmware

ä SEL-3505

â R134 firmware

Benchmark Test Descriptions

Benchmarks are only performed on the Typed queues as the performance of the generic
queues will depend entirely on the size of an individual element of the created queue. Tests
postfixed with _TYPE_ will call the typed version of the method dealing with only a single
element.

Back_TYPE_

The posted time is the average execution time of 100 calls when the Back_TYPE_() method
copies one element from a deque containing 100 elements.

Back - 100 Elements

The posted time is the average execution time of 100 calls when the Back() method copies
100 elements from a deque containing 100 elements.

Queue Instruction Manual Date Code 20180920



Queue 55

Benchmarks

Clear

The posted time is the average execution time of 100 calls when clearing a deque containing
100 elements.

EraseBack - 1 Element

The posted time is the average execution time of 100 calls when the EraseBack method
removes one element from a deque containing 100 elements.

EraseBack - 100 Elements

The posted time is the average execution time of 100 calls when the EraseBack() method
removes 100 elements from a deque containing 100 elements.

EraseFront - 1 Element

The posted time is the average execution time of 100 calls when the EraseFront() method
removes one element from a deque containing 100 elements.

EraseFront - 100 Elements

The posted time is the average execution time of 100 calls when the EraseFront() method
removes 100 elements from a deque containing 100 elements.

Front_TYPE_

The posted time is the average execution time of 100 calls when the Front_TYPE_() method
copies one element from a deque containing 100 elements.

Front - 100 Elements

The posted time is the average execution time of 100 calls when the Front() method copies
100 elements from a deque containing 100 elements.

PopBack_TYPE_

The posted time is the average execution time of 100 calls when popping one element from
a deque containing 100 elements.

PopBack - 100 Elements

The posted time is the average execution time of 100 calls when popping 100 elements from
the deque in a single method call. The deque is constructed such that it has at least one
resize caused by pushing prior to starting the pop measurement.

Date Code 20180920 Instruction Manual Queue



56 Queue

Benchmarks

PopFront_TYPE_

The posted time is the average execution time of 100 calls when popping one element from
a deque containing 100 elements.

PopFront - 100 Elements

The posted time is the average execution time of 100 calls when popping 100 elements from
the deque in a single method call. The deque is constructed such that it has at least one
resize caused by pushing prior to starting the pop measurement.

PushBack_TYPE_

The posted time is the average execution time of 100 calls when pushing an element onto a
deque without causing a resize.

PushBack - 100 Elements

The posted time is the average execution time of 100 calls when pushing 100 elements onto
a deque and causing a resize.

PushFront_TYPE_

The posted time is the average execution time of 100 calls when pushing an element onto a
deque without causing a resize.

PushFront - 100 Elements

The posted time is the average execution time of 100 calls when pushing 100 elements onto
a deque and causing a resize.

Recycle

The posted time is the average execution time of 100 calls when recycling a deque containing
100 elements.

Resize - Enlarging

The posted time is the average execution time of 100 calls when resizing a full deque from
32 elements to 64 elements.

Resize - Shrinking

The posted time is the average execution time of 100 calls when resizing a full deque from
64 elements to 32 elements.

Queue Instruction Manual Date Code 20180920



Queue 57

Benchmarks

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3555 SEL-3530 SEL-3505

Back - Byte 1 7 53
Back - Dword 1 5 16
Back - LReal 1 6 17
Back - Lword 1 4 23
Back - Pointer 1 5 26
Back - Real 1 6 28
Back - Word 1 6 19
Back 100 - Byte 1 3 16
Back 100 - Dword 1 3 8
Back 100 - LReal 1 6 10
Back 100 - Lword 1 4 14
Back 100 - Pointer 1 3 13
Back 100 - Real 1 5 14
Back 100 - Word 1 3 9
Clear - Byte 3 24 57
Clear - Dword 2 15 69
Clear - LReal 2 33 55
Clear - Lword 2 15 61
Clear - Pointer 2 16 61
Clear - Real 2 24 60
Clear - Word 2 17 58
EraseBack 1 - Byte 1 2 3
EraseBack 1 - Dword 1 2 3
EraseBack 1 - LReal 1 2 3
EraseBack 1 - Lword 1 2 2
EraseBack 1 - Pointer 1 2 3
EraseBack 1 - Real 1 2 2
EraseBack 1 - Word 1 1 2
EraseBack 100 - Byte 1 1 1
EraseBack 100 - Dword 1 1 1
EraseBack 100 - LReal 1 1 2
EraseBack 100 - Lword 1 1 2
EraseBack 100 - Pointer 1 1 1
EraseBack 100 - Real 1 1 1
EraseBack 100 - Word 1 1 1
EraseFront 1 - Byte 1 3 12
EraseFront 1 - Dword 1 2 10
EraseFront 1 - LReal 1 5 7
EraseFront 1 - Lword 1 4 10
EraseFront 1 - Pointer 1 3 10
EraseFront 1 - Real 1 4 13
EraseFront 1 - Word 1 3 8
EraseFront 100 - Byte 1 2 2
EraseFront 100 - Dword 1 1 6
EraseFront 100 - LReal 1 2 2
EraseFront 100 - Lword 1 2 3

Date Code 20180920 Instruction Manual Queue



58 Queue

Benchmarks

Platform (time in µs)
Operation Tested

SEL-3555 SEL-3530 SEL-3505

EraseFront 100 - Pointer 1 2 4
EraseFront 100 - Real 1 2 4
EraseFront 100 - Word 1 1 5
Front - Byte 1 10 11
Front - Dword 1 4 12
Front - LReal 1 6 16
Front - Lword 1 4 14
Front - Pointer 1 4 13
Front - Real 1 6 13
Front - Word 1 4 12
Front 100 - Byte 1 4 4
Front 100 - Dword 1 3 6
Front 100 - LReal 1 5 11
Front 100 - Lword 1 4 9
Front 100 - Pointer 1 3 7
Front 100 - Real 1 3 6
Front 100 - Word 1 3 5
PopBack - Byte 1 4 6
PopBack - Dword 1 3 15
PopBack - LReal 1 7 7
PopBack - Lword 1 3 7
PopBack - Pointer 1 4 9
PopBack - Real 1 5 10
PopBack - Word 1 4 19
PopBack 100 - Byte 1 3 4
PopBack 100 - Dword 1 4 16
PopBack 100 - LReal 1 9 7
PopBack 100 - Lword 1 4 8
PopBack 100 - Pointer 1 4 7
PopBack 100 - Real 1 5 7
PopBack 100 - Word 1 3 13
PopFront - Byte 1 5 8
PopFront - Dword 1 5 10
PopFront - LReal 1 7 16
PopFront - Lword 1 6 13
PopFront - Pointer 1 5 11
PopFront - Real 1 6 11
PopFront - Word 1 5 8
PopFront 100 - Byte 1 3 5
PopFront 100 - Dword 1 4 6
PopFront 100 - LReal 1 5 10
PopFront 100 - Lword 1 4 8
PopFront 100 - Pointer 1 4 7
PopFront 100 - Real 1 4 7
PopFront 100 - Word 1 3 5
PushBack - Byte 1 4 6
PushBack - Dword 1 3 7
PushBack - LReal 1 4 7

Queue Instruction Manual Date Code 20180920



Queue 59

Benchmarks

Platform (time in µs)
Operation Tested

SEL-3555 SEL-3530 SEL-3505

PushBack - Lword 1 3 6
PushBack - Pointer 1 3 6
PushBack - Real 1 3 6
PushBack - Word 1 3 5
PushBack 100 - Byte 4 86 84
PushBack 100 - Dword 4 29 89
PushBack 100 - LReal 4 40 106
PushBack 100 - Lword 4 29 98
PushBack 100 - Pointer 4 29 89
PushBack 100 - Real 4 63 88
PushBack 100 - Word 4 29 85
PushFront - Byte 1 5 15
PushFront - Dword 1 5 19
PushFront - LReal 1 8 11
PushFront - Lword 1 6 16
PushFront - Pointer 1 5 20
PushFront - Real 1 8 19
PushFront - Word 1 5 15
PushFront 100 - Byte 6 49 137
PushFront 100 - Dword 4 34 117
PushFront 100 - LReal 4 40 165
PushFront 100 - Lword 4 32 152
PushFront 100 - Pointer 4 40 123
PushFront 100 - Real 4 32 124
PushFront 100 - Word 4 61 104
Recycle - Byte 1 1 2
Recycle - Dword 1 1 2
Recycle - LReal 1 1 2
Recycle - Lword 1 1 2
Recycle - Pointer 1 1 2
Recycle - Real 1 1 2
Recycle - Word 1 1 1
Resize Down - Byte 3 30 103
Resize Down - Dword 3 22 124
Resize Down - LReal 3 44 80
Resize Down - Lword 3 23 78
Resize Down - Pointer 3 22 89
Resize Down - Real 3 31 92
Resize Down - Word 3 22 153
Resize Up - Byte 3 24 117
Resize Up - Dword 3 22 102
Resize Up - LReal 3 34 84
Resize Up - Lword 3 23 125
Resize Up - Pointer 3 22 133
Resize Up - Real 3 28 133
Resize Up - Word 3 22 79

Date Code 20180920 Instruction Manual Queue



60 Queue

Examples

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Simple Deque Operation

This example demonstrates basic operation of a deque.

Objective

This example comprises the following steps:

Step 1. Add a series of UINT values to a UINT deque; the first as a single value, and
the second from an array of values.

Step 2. Remove one value from the front.

Step 3. Remove a group of five values from the front.

Step 4. Remove one value from the back.

Step 5. Push four values onto the front.

Step 6. Remove six values from the back.

Step 7. Remove the remaining value individually from the front until the deque is
empty again.

Sequence of Operations

The operations that make up the solution are outlined here in detail. After each operation,
the expected state of the deque is shown. The notation used in this example assumes the
front of the deque is on the left and the back is on the right.

1. The deque begins empty
Front [ ] Back

2. The first value pushed to the back of the deque is 0.

Front [0] Back

3. An array of values, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], is pushed onto the back of the deque.

Front [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Back

4. Five values are popped off of the front of the deque and into an array.

Front [5, 6, 7, 8, 9, 10] Back

The resulting array contains [0, 1, 2, 3, 4].

Queue Instruction Manual Date Code 20180920



Queue 61

Examples

5. The value at the back, 10, is then popped off.

Front [5, 6, 7, 8, 9] Back

6. An array with four values, [11, 12, 13, 14], are then pushed onto the front.

Front [11, 12, 13, 14, 5, 6, 7, 8, 9] Back

7. Six values are then popped off the back into an array.

Front [11, 12, 13] Back

The resulting array that was popped off contains [14, 5, 6, 7, 8, 9].

8. The values 11, 12, and 13 are then obtained by popping the remaining values off the
front of the deque one at a time, leaving it empty again.

Front [ ] Back

Solution

The implementation of this example is shown in Code Snippet 1.

Code Snippet 1 prg_BasicDeque

PROGRAM prg_BasicDeque
VAR CONSTANT

c_NumPushStep3 : UDINT := 10;
c_NumPopStep4 : UDINT := 5;
c_NumPushStep6 : UDINT := 4;
c_NumPopStep7 : UDINT := 6;

END_VAR
VAR

Run : BOOL := TRUE; // Used to force the steps to only run once.
Ok : BOOL := FALSE; // Is true if the operation completed
MyDeque : class_WordDeque(numElements := 0); // Uses default internal

allocation

(* Arrays to push*)
Step3ArrayToPush : ARRAY[1..c_NumPushStep3] OF UINT :=

[1,2,3,4,5,6,7,8,9,10];
Step6ArrayToPush : ARRAY[1..c_NumPushStep6] OF UINT := [11,12,13,14];

(* Results *)
Step4ArrayPopped : ARRAY[1..c_NumPopStep4] OF UINT; // Expect :

[0,1,2,3,4]
Step5Popped : UINT; // Expect : 10
Step7ArrayPopped : ARRAY[1..c_NumPopStep7] OF UINT; // Expect :

[14,5,6,7,8,9]
Step8val1, Step8val2, Step8val3 : UINT; // Expect: 11, 12, 13

END_VAR

Date Code 20180920 Instruction Manual Queue



62 Queue

Examples

Code Snippet 1 prg_BasicDeque (Continued)

IF Run THEN
(*Step 1: The queue begins empty.*)
Ok := TRUE;
(*Step 2: Push 0 into back of deque. Ok if push returns TRUE.*)
Ok := Ok AND MyDeque.PushBackWord(0);
(*Step 3: Push array to back of deque. Ok if the number popped is as

requested.*)
Ok := Ok AND (c_NumPushStep3 =

MyDeque.PushBack(ADR(Step3ArrayToPush),c_NumPushStep3));
(*Step 4: Pop 5 values from front. Ok if number popped is as

requested.*)
Ok := Ok AND (c_NumPopStep4 =

MyDeque.PopFront(ADR(Step4ArrayPopped),c_NumPopStep4));
(*Step 5: Pop one number of the back of the queue.*)
Ok := Ok AND MyDeque.PopBackWord(element => Step5Popped);
(*Step 6: Add 4 new values to the front. Ok if push adds number

requested.*)
Ok := Ok AND (c_NumPushStep6 =

MyDeque.PushFront(ADR(Step6ArrayToPush),c_NumPushStep6));
(*Step 7: Pop 6 values from the back to an array. Ok if number popped

is as requested.*)
Ok := Ok AND (c_NumPopStep7 =

MyDeque.PopBack(ADR(Step7ArrayPopped),c_NumPopStep7));
(*Step 8 : Pop the last 3 values from the front. Each operation OK if

it returns TRUE.*)
Ok := Ok AND MyDeque.PopFrontWord(element => Step8val1);
Ok := Ok AND MyDeque.PopFrontWord(element => Step8val2);
Ok := Ok AND MyDeque.PopFrontWord(element => Step8val3);
Run := FALSE; // Only run 1 time.

END_IF

Queue Instruction Manual Date Code 20180920



Queue 63

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Replaced the deprecated POINTER_TO_ANY type with
POINTER_TO_BYTE.

ä Must be used with R143 firmware or later.
3.5.0.0 ä Initial release. 20150511

Date Code 20180920 Instruction Manual Queue


	Section 1: Queue
	Introduction
	Queues
	Double-Ended Queues (Deques)
	Special Considerations

	Supported Firmware Versions
	Global Parameters
	Interfaces
	I_Queue (Interface)
	Clear (Method)
	EraseFront (Method)
	Front (Method)
	PopFront (Method)
	PushBack (Method)
	Recycle (Method)


	Classes
	class_Deque
	Implemented Interfaces
	Back (Method)
	EraseBack (Method)
	PopBack (Method)
	PushFront (Method)
	Resize (Method)

	class_ByteDeque
	Implemented Interfaces
	Back (Method)
	BackByte (Method)
	EraseBack (Method)
	FrontByte (Method)
	PopBack (Method)
	PopBackByte (Method)
	PopFrontByte (Method)
	PushBackByte (Method)
	PushFront (Method)
	PushFrontByte (Method)
	Resize (Method)

	class_DwordDeque
	Implemented Interfaces
	Back (Method)
	BackDword (Method)
	EraseBack (Method)
	FrontDword (Method)
	PopBack (Method)
	PopBackDword (Method)
	PopFrontDword (Method)
	PushBackDword (Method)
	PushFront (Method)
	PushFrontDword (Method)
	Resize (Method)

	class_LwordDeque
	Implemented Interfaces
	Back (Method)
	BackLword (Method)
	EraseBack (Method)
	FrontLword (Method)
	PopBack (Method)
	PopBackLword (Method)
	PopFrontLword (Method)
	PushBackLword (Method)
	PushFront (Method)
	PushFrontLword (Method)
	Resize (Method)

	class_LrealDeque
	Implemented Interfaces
	Back (Method)
	BackLreal (Method)
	EraseBack (Method)
	FrontLreal (Method)
	PopBack (Method)
	PopBackLreal (Method)
	PopFrontLreal (Method)
	PushBackLreal (Method)
	PushFront (Method)
	PushFrontLreal (Method)
	Resize (Method)

	class_PointerDeque
	Implemented Interfaces
	Back (Method)
	BackPointer (Method)
	EraseBack (Method)
	FrontPointer (Method)
	PopBack (Method)
	PopBackPointer (Method)
	PopFrontPointer (Method)
	PushBackPointer (Method)
	PushFront (Method)
	PushFrontPointer (Method)
	Resize (Method)

	class_RealDeque
	Implemented Interfaces
	Back (Method)
	BackReal (Method)
	EraseBack (Method)
	FrontReal (Method)
	PopBack (Method)
	PopBackReal (Method)
	PopFrontReal (Method)
	PushBackReal (Method)
	PushFront (Method)
	PushFrontReal (Method)
	Resize (Method)

	class_WordDeque
	Implemented Interfaces
	Back (Method)
	BackWord (Method)
	EraseBack (Method)
	FrontWord (Method)
	PopBack (Method)
	PopBackWord (Method)
	PopFrontWord (Method)
	PushBackWord (Method)
	PushFront (Method)
	PushFrontWord (Method)
	Resize (Method)


	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	Back_TYPE_
	Back - 100 Elements
	Clear
	EraseBack - 1 Element
	EraseBack - 100 Elements
	EraseFront - 1 Element
	EraseFront - 100 Elements
	Front_TYPE_
	Front - 100 Elements
	PopBack_TYPE_
	PopBack - 100 Elements
	PopFront_TYPE_
	PopFront - 100 Elements
	PushBack_TYPE_
	PushBack - 100 Elements
	PushFront_TYPE_
	PushFront - 100 Elements
	Recycle
	Resize - Enlarging
	Resize - Shrinking

	Benchmark Results

	Examples
	Simple Deque Operation
	Objective
	Sequence of Operations
	Solution


	Release Notes


