PowerMetering
IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers



Table of Contents

Section1: PowerMetering

INtrodUCHON. . ... o e 3
Supported Firmware VEersions ............oovvviiiiiiiiiiiiiiiiiiieieaeeieeeaaaeeaaans 3
Function BIOCKS ......oiiiii e 3
Benchmarks. ... ..o 9
EXAMPIES .ttt 11
Retain Variables ..........oooiiiiii e 22
| NS (T R A\ (0] (1 23

PowerMetering Instruction Manual Date Code 20180927



RTAC LIBRARY

PowerMetering

Introduction

This library provides objects for performing common power metering functions. These
functions provide event times for minimum and maximum thresholds, accumulated energy
over time, demand over a configurable length of time, and KYZ/KY accumulators. Example
applications include use of these function blocks with Axion analog input, digital input,
and/or CT/PT (current transformer/potential transformer) modules.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.1.0 and older can be used on RTAC firmware version R132 and higher.

Function Blocks

fb_Maximum

Compare input value to stored maximum value, update output if greater, and record the
date/time of occurrence.

Initialization Inputs

Name IEC 61131 Type | Description

settingsChange | BOOL Flag to prevent setting outputs based on provided initial
values; a value of TRUE results in setting Maximum to
zero and the time stamp to the present time.

initial Value REAL Maximum value to use for initialization if set-
tingsChange is FALSE.

initialTime timestamp_t Time stamp value to use for initialization if set-
tingsChange is FALSE.

Date Code 20180927 Instruction Manual PowerMetering



4 | PowerMetering
Function Blocks

Inputs
Name IEC 61131 Type | Description
EN BOOL Flag to enable or disable maximum comparison.
AnalogQuantity | REAL Value to check against Maximum.
Reset BOOL Flag to reset Maximum and time stamp.
Outputs
Name IEC 61131 Type | Description

Maximum | REAL

Maximum value.

EventTime | timestamp_t

The moment at which Maximum was last updated.

Processing

» If settingsChange is FALSE, the function block initializes to the values passed in.

» If settingsChange is TRUE or after reset is deasserted, Maximum is set to zero and
will take on the next AnalogQuantity received.

» Compare the input AnalogQuantity to the stored Maximum value.

» If the input is greater than the stored value for two or more samples, update Maximum
and record the date and time of occurrence.

fb_Minimum

Compare input real value to stored minimum value, update output if greater, and record the
date/time of occurrence.

Initialization Inputs

Name IEC 61131 Type | Description

settingsChange BOOL Flag to prevent setting outputs based on provided
initial values; a value of TRUE results in setting
Minimum to zero and the time stamp to the present
time.

initial Value REAL Minimum value to use for initialization, if set-
tingsChange is FALSE.

initialTime timestamp_t Time stamp value to use for initialization, if set-

tingsChange is FALSE.

minimumThreshold | REAL

Lowest value this function block will record.

Inputs
Name IEC 61131 Type | Description
EN BOOL Flag to enable or disable minimum comparison.
AnalogQuantity | REAL Value to check against Minimum.
Reset BOOL Flag to reset Minimum and time stamp.

PowerMetering

Instruction Manual

Date Code 20180927



PowerMetering
Function Blocks

Outputs
Name IEC 61131 Type | Description
Minimum REAL Minimum value.
EventTime | timestamp_t The moment at which Minimum was last updated.
Processing
» If settingsChange is FALSE, the function block initializes to the values passed in.

>

If settingsChange is TRUE or after reset is deasserted, Minimum is set to zero and

will take on the next AnalogQuantity received.

Compare the input AnalogQuantity to the stored Minimum value.

If the input is less than the stored value and greater than minimumThreshold for two

or more samples, update Minimum and record the date and time of occurrence.

This function block will work with any values but is designed for use alongside

fb_Maximum with positive numbers.

fb_Energy

Collect energy input over time, accumulating positive and negative values in separate

registers.

Initialization Inputs

Name IEC 61131 Type | Description

settingsChange BOOL Flag to prevent setting outputs based on provided
initial values; a value of TRUE results in setting En-
ergyln and EnergyQOut to zero.

initial Valueln REAL Energyln value to use for initialization, if ser-
tingsChange is FALSE.

initial ValueOut REAL EnergyOut value to use for initialization, if set-
tingsChange is FALSE.

rolloverThreshold | REAL Rollover value for this function block.

Inputs

Name IEC 61131 Type | Description

EN BOOL Flag to enable or disable energy accumulation.

AnalogQuantity | REAL Value to use for accumulating energy.

Reset BOOL Flag to reset Energyln and EnergyOut.

Date Code 20180927 Instruction Manual

PowerMetering



6 | PowerMetering
Function Blocks

Outputs

Name IEC 61131 Type

Description

Energyln REAL

Accumulated energy in.

EnergyOut | REAL

Accumulated energy out.

Processing

» If settingsChange is FALSE, the function block initializes to the values passed in.

» If settingsChange is TRUE or after reset is deasserted, Energyln and EnergyOut are

set to zero.

» Maintain the accumulated IN/OUT energy. A negative power value is considered IN
energy while a positive power value is considered OUT energy. Receiving a positive

power value (OUT) will not affect the accumulated IN value and vice versa.

» Update no more frequently than once a second regardless of the RTE cycle time.

» Restart either output to zero when it exceeds rolloverThreshold.

fb_Demand

Calculates demand.

Initialization Inputs

Name IEC 61131 Type Description

settingsChange | BOOL Flag to prevent setting outputs based on provided
initial values; a value of TRUE results in setting De-
mand to zero.

initial Value REAL Demand value to use for initialization, if set-
tingsChange is FALSE.

demandType Demand_Enum The calculation method this function block will use;
either ROLLING or THERMAL.

timeConstant Time_Constant_Enum | The time constant this function block will use dur-
ing demand calculations, MINS, MIN10, MIN15,
MIN20, MIN30, MIN60.

Inputs

Name IEC 61131 Type | Description

EN BOOL Flag to enable or disable demand calculation.

AnalogQuantity | REAL Value to use for calculating demand.

Reset BOOL Flag to reset Demand.

PowerMetering

Instruction Manual

Date Code 20180927



Outputs
Name IEC 61131 Type | Description
Demand | REAL Demand value.
Processing

» If settingsChange is FALSE, the function block initializes to the values passed in.

YYYVvYYy

If settingsChange is TRUE or after reset is deasserted, Demand is set to zero.
Update no more frequently than once a second regardless of the RTE cycle time.
Thermal demand output updates with each call to the function block.

Thermal demand is a logarithmic average of the power used, with more-recent load
weighted more heavily than less-recent load. For a steady state transition, this block

outputs Demand of 90% of the change after timeConstant has passed.

\/

» Rolling demand averages input over periods of 5 minutes and outputs Demand as an

Rolling demand output only updates once every 5 minutes.

average of enough 5 minute averages to equal timeConstant.

fb_KYZ

Accumulate a count of transitions from only a Y of true to only a Z of true or back again.

Initialization Inputs

Name

IEC 61131 Type

Description

settingsChange | BOOL

Flag to prevent setting outputs based on provided initial
values; a value of TRUE results in setting CV and ROV
to zero.

initial CV BCR Initial accumulator state, if settingsChange is FALSE.

initiaROV UDINT Initial roll over value, if settingsChange is FALSE.

max Value UDINT The value of the accumulator at which roll over occurs
Inputs

Name | IEC 61131 Type | Description

EN BOOL Flag to enable or disable the KYZ accumulator.

Y SPS Terminal Y.

Z SPS Terminal Z.

Reset BOOL Flag to reset the state of the KYZ block.

Date Code 20180927

Instruction Manual

PowerMetering | 7
Function Blocks

PowerMetering



8 | PowerMetering
Function Blocks

Outputs

Name | IEC 61131 Type | Description

CvV

BCR The number of transitions from Y to Z or Z to Y.

ROV

UDINT The number of times CV has reset to zero.

Processing

>
>

If settingsChange is FALSE, the function block initializes to the values passed in.

If settingsChange is TRUE or after reset is deasserted, CV is set to the default state
and ROV is set to zero.

Monitor Y and Z when EN is TRUE and Reset is FALSE.
Define a countable state as Y and Z being in opposite states with qualities of good.

Define a countable transition as the present inputs being in a countable state and the
present state of the inputs is opposite to the previous counted state of the inputs.

Count only at times when both Y and Z report good quality (i.e., q.validity = good).

Set the C'V quality attribute based on the input with the least quality. (I.e., If input
Y.q.validity is invalid and Z.q.validity is good, then CV.q.validity is invalid.)

Override the quality of CV to invalid if the block is disabled or being reset.

Increment ROV and the accumulator to zero when the accumulator equals maxValue.
The practical implication is that maxValue declared at initialization is never reported,
but instead the accumulator rolls over to zero allowing the total count to be calculated
as CV + ROV * maxValue.

fb_KY

Accumulate a count of transitions of a single variable Y.

Initialization Inputs

Name IEC 61131 Type | Description

settingsChange | BOOL Flag to prevent setting outputs based on provided initial
values; a value of TRUE results in setting CV and ROV
to zero.

initial CV BCR Initial accumulator state, if settingsChange is FALSE.

initiaROV UDINT Initial roll over value, if settingsChange is FALSE.

max Value UDINT The value of the accumulator at which roll over occurs

Inputs
Name | IEC 61131 Type | Description
EN BOOL Flag to enable or disable the KY accumulator.
Y SPS Terminal Y.
Reset BOOL Flag to reset the state of the K'Y block.

PowerMetering Instruction Manual

Date Code 20180927



PowerMetering
Benchmarks

Outputs
Name | IEC 61131 Type | Description
CV BCR The number of transitions of Y.
ROV UDINT The number of times CV has reset to zero.
Processing
» If settingsChange is FALSE, the function block initializes to the values passed in.

>

YYVYVYYVYYy

If settingsChange is TRUE or after reset is deasserted, CV is set to the default state
and ROV is set to zero.

Monitor ¥ when EN is TRUE and Reset is FALSE.

Define a countable transition as the present input being opposite its previous value.
Count only at times when Y reports good quality (i.e., g.validity = good).

Set the CV quality attribute as the quality of the input.

Override the quality of CV to invalid if the block is disabled or being reset.

Increment ROV and the accumulator to zero when the accumulator equals maxValue.
The practical implication is that maxValue declared at initialization is never reported,
but instead the accumulator rolls over to zero allowing the total count to be calculated
as CV + ROV » maxValue.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

>

>

>

Date Code 20180927 Instruction Manual PowerMetering

SEL-3505
> R135-V1 firmware
SEL-3530
> R135-V2 firmware
SEL-3555
> Dual-core Intel i7-3555LE processor
> 4 GB ECC RAM
> R135-VO0 firmware



10

PowerMetering
Benchmarks

Benchmark Test Descriptions

fb_Maximum

The posted time is the average execution time of 100 calls in which a new maximum value
was observed. This constitutes the longest running time for this call.

fb_Minimum

The posted time is the average execution time of 100 calls in which a new minimum value
was observed. This constitutes the longest running time for this call.

fb_Energy

The posted time is the average execution time of 100 calls at the top of the second. This
constitutes the longest running time for this call.

fb_Demand (Thermal)

The posted time is the average execution time of 100 calls at the top of the second. This
constitutes the longest running time for this call.

fb_Demand (Rolling)

The posted time is the average execution time of 100 calls at a 5-minute boundary. This
constitutes the longest running time for this call.

fb_KYZ

The posted time is the average execution time of 100 calls where the block incremented.

This constitutes the longest running time for this call.

fb_KY

The posted time is the average execution time of 100 calls where the block incremented.

This constitutes the longest running time for this call.

Benchmark Results

Operation Tested Platform (time in pus)

SEL-3505 | SEL-3530 | SEL-3555
fb_Maximum 5 3 2
fb_Minimum 4 3 1
fo_Energy 4 3 1

PowerMetering Instruction Manual

Date Code 20180927



PowerMetering | 11
Examples

Operation Tested Platform (time in us)

SEL-3505 | SEL-3530 | SEL-3555
fb_Demand(Thermal) 5 3 1
fb_Demand(Rolling) 5 3 1
fo_KYZ 1 1 1
fb_KY 1 1 1

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Maximum

Objective

A user has an analog variable and wants to determine the greatest observed value of the
analog.

Assumptions

The following example provides code for two different situations. The first program assumes
there is no requirement for non-volatile variables while the second program assumes there
is a requirement that variables are retained through power loss.

Solution

The user can create a program as shown in Code Snippet 1. Note that this example does not
use retain variables.

Date Code 20180927 Instruction Manual PowerMetering



12

PowerMetering
Examples

Code Snippet 1 prg_Maximum_Example

PROGRAM prg_Maximum_Example

VAR
En : BOOL;
Value : REAL;
InitValue : REAL;
Reset : BOOL;
Maximum : REAL;

Max_Event : timestamp_t;

Max1 : fb_Maximum( settingsChange := TRUE,
initialValue := InitValue,
initialTime := Max_Event);

END_VAR

//Call the Maximum function with the desired value
Max1(EN:=En, AnalogQuantity:=Value, Reset:=Reset);

// Assign the outputs
Maximum Max1.Maximum;
Max_Event := Maxl.EventTime;

Solution With Retain Variables

Retain variables allow variable values to remain consistent through removal and restoration
of power and program downloads. The user can create a program as shown in Code Snippet 2.
RETAIN_UID must be initialized on the first run. See Retain Variables on page 22 for
more details on retain variables.

Code Snippet 2 prg_Maximum_Retain_Example

VAR_GLOBAL RETAIN
// If Event Time is not desired to be retained a REAL value can be used

Max1Retain : MV;
RETAIN_VERSION : DWORD;
END_VAR
VAR_GLOBAL
// Modify this when the retain value should not be used.
VERSION : DWORD:=1;
END_VAR

PROGRAM prg_Maximum_Example_Retain
VAR

En : BOOL;

Value : REAL;

Reset : BOOL;

Max1 : fb_Maximum( settingsChange := RETAIN_VERSION <> VERSION,
initialValue := MaxlRetain.instMag,
initialTime := MaxlRetain.t);

(xIf VERSION has been modified, Maximum value will be reset to zero,

*otherwise the retain values will be used. settingsChange should be
evaluated

xfrom constants or retain variables only. *)

END_VAR

PowerMetering Instruction Manual

Date Code 20180927



PowerMetering | 13
Examples

Code Snippet 2 prg_Maximum_Retain_Example (Continued)

//Update the retain variable first thing
RETAIN_VERSION := VERSION;

//Call the Maximum function with the desired value
Max1(EN:=En, AnalogQuantity:=Value, Reset:=Reset);

// Assign the outputs to the retain variables
MaxlRetain.instMag := Maxl.Maximum;
Max1Retain.t := Max1.EventTime;

Minimum

Objective

A user has an analog variable and wants to determine the smallest observed value of the
analog.

Assumptions

The following example provides code for two different situations. The first program assumes
there is no requirement for nonvolatile variables, and the second program assumes there is
a requirement that variables are retained through power loss.

Solution

The user can create a program as shown in Code Snippet 3. Note that this example does not
use retain variables.

Code Snippet 3 prg_Minimum_Example

PROGRAM prg_Minimum_Example
VAR

En : BOOL;

InitValue : REAL;

Value : REAL;

Reset : BOOL;

Minimum : REAL;

MinThreshold : REAL := 50000;

Min_Event : timestamp_t;

Minl : fb_Minimum( settingsChange := TRUE,
initialValue := InitValue,
initialTime := Min_Event,
minimumThreshold := MinThreshold);

END_VAR

Date Code 20180927 Instruction Manual PowerMetering



14 | PowerMetering
Examples

Code Snippet 3 prg_Minimum_Example (Continued)

//Call the Minimum function with the desired value
Min1(EN := En, AnalogQuantity := Value, Reset := Reset);

// Assign the outputs
Minimum := Minl.Minimum;
Min_Event

Minl.EventTime;

Solution With Retain Variables

Retain variables allow variable values to remain consistent through removal and restoration
of power and program downloads. The user can create a program as shown in Code Snippet 4.
RETAIN_UID must be initialized on the first run. See Retain Variables on page 22 for
more details on retain variables.

Code Snippet 4 prg_Minimum_Retain_Example

VAR_GLOBAL RETAIN
// 1If Event Time is not desired to be retained a REAL value can be used

MinlRetain : MV,
RETAIN_VERSION : DWORD;
END_VAR
VAR_GLOBAL
// Modify this when the retain value should not be used.
VERSION : DWORD := 1;
END_VAR

PROGRAM prg_Minimum_Example_Retain

VAR
En : BOOL;
Value : REAL;
Reset : BOOL;

MinThreshold : REAL := 50000;

Mini : fb_Minimum( settingsChange := RETAIN_VERSION <>
VERSION,
initialValue := MinlRetain.instMag,
initialTime := MinlRetain.t,

minimumThreshold := MinThreshold);
(*If VERSION has been modified, Minimum value will be reset to zero,
*otherwise the retain values will be used. settingsChange should be
evaluated
xfrom constants or retain variables only. *)
END_VAR

//Update the retain variable first thing
RETAIN_VERSION := VERSION;

//Call the Minimum function with the desired value
Min1(EN:=En, AnalogQuantity:=Value, Reset:=Reset);

// Assign the outputs to the retain variables
MinlRetain.instMag := Minl.Minimum;
MinlRetain.t := Minl.EventTime;

PowerMetering Instruction Manual Date Code 20180927



PowerMetering | 15
Examples

Energy
Objective

A user has a power quantity and wants to keep track of energy flow. Positive power value is
considered to be “out” and negative power is considered to be “in.”

Assumptions

The following example provides code for two different situations. The first program assumes
there is no requirement for nonvolatile variables while the second program assumes there is
a requirement that variables are retained through power loss.

Solution

The user can create a program as shown in Code Snippet 5. Note that this example does not
use retain variables.

Code Snippet 5 prg_Energy_Example

PROGRAM prg_Energy_Example
VAR

En : BOOL;

Value : REAL;

Reset : BOOL;

InitIn : REAL;

InitOut : REAL;

Threshold : REAL;

EnergyIn : REAL;

EnergyOut : REAL;

Energyl : fb_Energy( settingsChange := TRUE,
initialValueIn := Initln,
initialValueQOut := InitOut,
roll0OverThreshold := Threshold);

END_VAR

//Call the Energy function with the desired value
Energyl(EN := En, AnalogQuantity := Value, Reset := Reset);
// Assign the outputs

EnergyIn := Energyl.Energyln;

EnergyOut := Energyl.EnergyOut;

Solution With Retain Variables

Retain variables allow variable values to remain consistent through removal and restoration
of power and program downloads. The user can create a program as shown in Code Snippet 6.
RETAIN_UID must be initialized on the first run. See Retain Variables on page 22 for
more details on retain variables.

Date Code 20180927 Instruction Manual PowerMetering



16

PowerMetering
Examples

Code Snippet 6 prg_Energy_Retain_Example

VAR_GLOBAL RETAIN

Energyln : REAL;
EnergyOut : REAL;
RETAIN_VERSION : DWORD;
END_VAR
VAR_GLOBAL
// Modify this when the retain value should not be used.
VERSION : DWORD := 1;
END_VAR

PROGRAM prg_Energy_Example_Retain

VAR
En : BOOL;
Value : REAL;
Reset : BOOL;
Threshold : REAL;
Energy1l : fb_Energy( settingsChange := (RETAIN_VERSION <> VERSION),

initialValueIn := Energyln,
initialValueOut := EnergyOQut,

rollOverThreshold := Threshold);
(*If VERSION has been modified, the energy values will be reset to zero,
*otherwise the retain values will be used. settingsChange should be

evaluated
xfrom constants or retain variables only. *)
END_VAR

//Update the retain variable first thing
RETAIN_VERSION := VERSION;

//Call the Energy function with the desired value
Energyl(EN := En, AnalogQuantity := Value, Reset := Reset);

// Assign the outputs to the retain variables

EnergylIn := Energyl.Energyln;
EnergyOut := Energyl.EnergyOut;
Demand

Objective

A user wants to calculate demand on an analog quantity.

Assumptions

The following example provides code for two different situations. The first program assumes
there is no requirement for nonvolatile variables while the second program assumes there is

a requirement that variables are retained through power loss.

PowerMetering Instruction Manual

Date Code 20180927



PowerMetering | 17
Examples

Solution

The user can create a program as shown in Code Snippet 7. Note that this example does not
use retain variables.

Code Snippet 7 prg_Demand_Example

PROGRAM prg_Demand_Example
VAR
En : BOOL;
Value : REAL;
Reset : BOOL;
InitValue : REAL;
DemandTherm : REAL;
DemandRolling : REAL;
Demand1l : fb_Demand( settingsChange := TRUE,
initialValue := InitValue,
DemandType := THERMAL,
timeConstant := MIN10);
Demand?2 : fb_Demand( settingsChange := TRUE,
initialValue := InitValue,
DemandType := ROLLING,
timeConstant := MIN20);
END_VAR
//Call the Demand function with the desired values
Demand1(EN := En, AnalogQuantity := Value, Reset := Reset);
Demand2(EN := En, AnalogQuantity := Value, Reset := Reset);
// Assign the outputs
DemandTherm := Demandl.Demand;
DemandRolling := Demand2.Demand;

Solution With Retain Variables

Retain variables allow variable values to remain consistent through removal and restoration
of power and program downloads. The user can create a program as shown in Code Snippet 8.
RETAIN_UID must be initialized on the first run. See Retain Variables on page 22 for
more details on retain variables.

Code Snippet 8 prg_Demand_Retain_Example

VAR_GLOBAL RETAIN
DemandTherm : REAL;
DemandRolling : REAL;
RETAIN_VERSION : DWORD;
END_VAR
VAR_GLOBAL
// Modify this when the retain value should not be used.
VERSION : DWORD := 1;
END_VAR

Date Code 20180927 Instruction Manual PowerMetering



18 | PowerMetering
Examples

Code Snippet 8 prg_Demand_Retain_Example (Continued)

PROGRAM prg_Demand_Example_Retain

VAR
En : BOOL;
Value : REAL;
Reset : BOOL;

Demandl : fb_Demand( settingsChange := (RETAIN_VERSION <> VERSION),
initialValue := DemandTherm,
DemandType := THERMAL,
timeConstant := MIN10);

Demand2 : fb_Demand( settingsChange := (RETAIN_VERSION <> VERSION),

initialValue := DemandRolling,
DemandType := ROLLING,
timeConstant := MIN20);

(*If VERSION has been modified, the demand values will be reset to zero,

*otherwise the retain values will be used. settingsChange should be

evaluated
xfrom constants or retain variables only. *)
END_VAR

//Update the retain variable first thing
RETAIN_VERSION := VERSION;

//Call the Demand function with the desired value
Demand1(EN := En, AnalogQuantity := Value, Reset := Reset);
Demand2(EN := En, AnalogQuantity := Value, Reset := Reset);

// Assign the outputs to the retain variables
DemandTherm := Demandl.Demand;
DemandRolling := Demand2.Demand;

KYZ
Objective

A user has two inputs connected to the Y and Z terminal of a meter and wants to count the
number of transitions.

Assumptions

The following example provides code for two different situations. The first program assumes
there is no requirement for nonvolatile variables while the second program assumes there is
a requirement that variables are retained through power loss.

Solution

The user can create a program as shown in Code Snippet 9. Note that this example does not
use retain variables.

PowerMetering Instruction Manual Date Code 20180927



PowerMetering | 19
Examples

Code Snippet 9 prg_KYZ_Example

PROGRAM prg_KYZ_Example
VAR
//Terminal for Y and Z pulses
DI_Y_Terminal : SPS;
DI_Z_Terminal : SPS;
//Enabling and Rest Conditions
Enable : BOOL;
Reset : BOOL;
//Placeholder for DNP Tag
DNP_Counteril : BCR;
DNP_Counter2 : BCR;
//Additional Outputs
Roll0verl : UDINT;
Roll0Over2 : UDINT;
//The KYZ blocks ignore their initial values because settingsChange is
true.
KYZ_12bit : fb_KYZ( settingsChange := TRUE, initialCV :=
DNP_Counteri,
initialROV := 0, maxValue := 4095);
KYZ_32bit : fb_KYZ( settingsChange := TRUE, initialCV :=
DNP_Counter2,
initialROV := 0, maxValue := 4294967295);
END_VAR
//Call the function block every cycle and assign outputs
KYZ_12bit( EN := Enable, Y := DI_Y_Terminal, Z := DI_Z_Terminal, Reset :=
Reset,
CV => DNP_Counterl, ROV => RollOverl);
KYZ_32bit( EN := Enable, Y := DI_Y_Terminal, Z := DI_Z_Terminal, Reset :=
Reset,
CV => DNP_Counter2, ROV => RollOver2);

Solution With Retain Variables

Retain variables allow variable values to remain consistent through removal and restoration
of power and program downloads. The user can create a program as shown in Code
Snippet 10. RETAIN_UID must be initialized on the first run. See Retain Variables on
page 22 for more details on retain variables.

Code Snippet 10 prg_KYZ_Retain_Example

VAR_GLOBAL RETAIN
//Persistent storage for counter values
Counter : BCR;
Roll0Over : UDINT;
RETAIN_VERSION : DWORD;
END_VAR
VAR_GLOBAL
// Modify this when the retain value should not be used.
VERSION : DWORD := 1;
END_VAR

Date Code 20180927 Instruction Manual PowerMetering



20 | PowerMetering
Examples

Code Snippet 10 prg_KYZ_Retain_Example (Continued)

PROGRAM prg_KYZ_Retain_Example
VAR
//Block inputs
DI_Y_Terminal : SPS;
DI_Z_Terminal : SPS;
Enable : BOOL;
Reset : BOOL;

//Placeholder for DNP output tags
DNP_Counter : BCR;

KYZ_12bit : fb_KYZ( settingsChange := (RETAIN_VERSION <> VERSION),

initialCV := Counter, initialROV := RollOver,
maxValue := 4095);

(xIf VERSION has been modified, the counter values will be reset to zero,

*otherwise the retain values will be used. settingsChange should be

evaluated
xfrom constants or retain variables only. *)
END_VAR

//Update the retain variable first thing
RETAIN_VERSION := VERSION;

//Call the function block every cycle and assign outputs
KYZ_12bit( EN := Enable, Y := DI_Y_Terminal, Z := DI_Z_Terminal, Reset :=
Reset,
CV => Counter, ROV => RollOver);

//Copy output to outbound communication channels
DNP_Counter := Counter;

KY

Objective

A user has one input connected to the Y terminal of a meter and wants to count the number
of transitions.

Assumptions

The following example provides code for two different situations. The first program assumes
there is no requirement for nonvolatile variables while the second program assumes there is
a requirement that variables are retained through power loss.

Solution

The user can create a program as shown in Code Snippet 11. Note that this example does
not use retain variables.

PowerMetering Instruction Manual Date Code 20180927



PowerMetering | 21
Examples

Code Snippet 11 prg_KY_Example

PROGRAM prg_KY_Example
VAR

//Terminal for Y pulses
DI_Y_Terminal : SPS;

Enable : BOOL;
Reset : BOOL;

//Placeholder for DNP Tag

DNP_Counteril : BCR;
DNP_Counter?2 : BCR;
//Additional Outputs
RollOverl : UDINT;
Roll0ver2 : UDINT;

//The KY blocks ignore their initial values because settingsChange is
true.

KY_12bit : fb_KY( settingsChange := TRUE, initialCV :
DNP_Counterl,

initialROV := 0, maxValue := 4095);

KY_32bit : fb_KY( settingsChange := TRUE, initialCV :
DNP_Counter2,

initialROV := 0, maxValue := 4294967295);

END_VAR

//Call the function block every cycle and assign outputs
KY_12bit( EN := Enable, Y := DI_Y_Terminal, Reset := Reset,
CV => DNP_Counterl, ROV => RollOverl);

KY_32bit( EN := Enable, Y := DI_Y_Terminal, Reset := Reset,
CV => DNP_Counter2, ROV => RollOver2);

Solution With Retain Variables

Retain variables allow variable values to remain consistent through removal and restoration
of power and program downloads. The user can create a program as shown in Code
Snippet 12. RETAIN_UID must be initialized on the first run. See Retain Variables on
page 22 for more details on retain variables.

Code Snippet 12 prg_KY_Retain_Example

VAR_GLOBAL RETAIN
//Persistent storage for counter values
Counter : BCR;
Roll0ver : UDINT;
RETAIN_VERSION : DWORD;
END_VAR
VAR_GLOBAL
// Modify this when the retain value should not be used.
VERSION : DWORD := 1;
END_VAR

Date Code 20180927 Instruction Manual PowerMetering



22

PowerMetering
Retain Variables

Code Snippet 12 prg_KY_Retain_Example (Continued)

PROGRAM prg_KY_Retain_Example

VAR
//Terminal for Y pulses
DI_Y_Terminal : SPS;
//Enabling and Rest Conditions
Enable : BOOL;
Reset : BOOL;

//Placeholder for DNP output tags
DNP_Counter : BCR;

KY_12bit : fb_KY( settingsChange := (RETAIN_VERSION <> VERSION),

initialCV := Counter, initialROV := RollOver,
maxValue := 4095);

(xIf VERSION has been modified, the counter values will be reset to zero,

*otherwise the retain values will be used. settingsChange should be

evaluated
xfrom constants or retain variables only. *)
END_VAR

//Update the retain variable first thing
RETAIN_VERSION := VERSION;

//Call the function block every cycle and assign outputs
KY_12bit( EN := Enable, Y := DI_Y_Terminal, Reset := Reset,
CV => Counter, ROV => RollOver);

//Copy output to outbound communication channels
DNP_Counter := Counter;

Retain Variables

Note on Usage

Retain variables allow values to persist through removal and restoration of power, a reboot,
and some program downloads. To accomplish this, retain variables point to a specific
location in nonvolatile memory. This results in a situation where changing the definition
of any retain variable (e.g., creating or deleting variables or changing variable order), can
result in the variables pointing to a different location in memory, meaning an incorrect
value would be used in logic. Therefore, you should initialize all retain variables when you
change or add any retain variable declarations. Furthermore, it is best practice to keep all
retain variables in the same global variable list to avoid the opportunity of the lists being
reordered.

PowerMetering Instruction Manual

Date Code 20180927



Release Notes

PowerMetering | 23
Release Notes

Version | Summary of Revisions Date Code
3.5.2.0 | » Allows new versions of ACSELERATOR RTAC to compile projects 20180921
for previous firmware versions without SEL IEC types “Cannot

convert” messages.
» Must be used with R143 firmware or later.
3.5.1.0 | » Added fb_KYZ. 20160415
» Added fb_KY.
» Resolved an issue that could cause the fb_Demand block to discard
the initialValue after the first five minutes, resulting in the Demand
calculation being reset.
» Updated examples using retain values for clarity.
3.5.0.5 » Initial release. 20140714
Date Code 20180927 Instruction Manual PowerMetering



	Section 1: PowerMetering
	Introduction
	Supported Firmware Versions
	Function Blocks
	fb_Maximum
	fb_Minimum
	fb_Energy
	fb_Demand
	fb_KYZ
	fb_KY

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fb_Maximum
	fb_Minimum
	fb_Energy
	fb_Demand (Thermal)
	fb_Demand (Rolling)
	fb_KYZ
	fb_KY

	Benchmark Results

	Examples
	Maximum
	Objective
	Assumptions
	Solution
	Solution With Retain Variables

	Minimum
	Objective
	Assumptions
	Solution
	Solution With Retain Variables

	Energy
	Objective
	Assumptions
	Solution
	Solution With Retain Variables

	Demand
	Objective
	Assumptions
	Solution
	Solution With Retain Variables

	KYZ
	Objective
	Assumptions
	Solution
	Solution With Retain Variables

	KY
	Objective
	Assumptions
	Solution
	Solution With Retain Variables


	Retain Variables
	Note on Usage

	Release Notes


