PacketEncoding

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section1: PacketEncoding

INtrodUCHON. o e 3
Supported Firmware VEersionsoovvviiiiiiiiiiiiiiiiiiieieaeeieeeaaaeeaaans 3
Enumerationsoooouuiiiii i 4
N5 1167 1 PN 5
FUNCHONS ..o e e e 5
[0 T 20
Benchmarks.o e 22
EXaMPIES .o 25
Release NS ..ottt e e 33

PacketEncoding Instruction Manual Date Code 20180924

RTAC LIBRARY

PacketEncoding

Introduction

The PacketEncoding library provides functions and classes to decode from and encode to
common data representations.

Various functions translate bytes of data to and from classes that facilitate storing information
NOTE: see the ACSELERATOR RTAC

in an easy-to—use manner. . X R
Library Extensions Instruction Manual
(LibraryExtensionsIM) for explanation
of the concepts used by the
object-oriented extensions to the

Special Considerations IEC 611313 standard.
Copying classes from this library causes unwanted behavior. This means the following:

1. The assignment operator “:=" must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error such
as:

// "C0328: Assignment not allowed for type class_VectorObject"

myVectorObject := otherVectorObject;

// This is fine

someVariable := myVectorObject.value;

// As is this

pt_myVectorObject := ADR(myVectorObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT members
in function blocks, functions, or methods. Place them in the VAR_IN_OUT section
or use pointers instead.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.4 and older can be used on RTAC firmware version R132 and higher.

Date Code 20180924 Instruction Manual PacketEncoding

4 | PacketEncoding
Enumerations

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_AsniClassType

Enumeration Value | Description

UNIVERSAL 0 The type is native to ASN.1.

APPLICATION 1 The type is only valid for one specific application.
CONTEXT_SPECIFIC 2 The meaning of this type depends on the context.
SPECIAL_PRIVATE 3 This type is defined in private specifications.

enum_AsniUniversalClassTags

Enumeration Value
EOC 00
BOOLEAN 01
INTEGER 02
BIT_STRING 03
OCTET_STRING 04
NULL 05
OBJECT_IDENTIFIER 06
OBJECT_DESCRIPTOR 07
EXTERNAL 08
REAL_FLOAT 09
ENUMERATED 10
EMBEDDED_PDV 11
UTF8_STRING 12
RELATIVE_OID 13
RESERVED _1 14
RESERVED_2 15
SEQUENCE 16
SET 17
NUMERIC_STRING 18
PRINTABLE_STRING 19
T61_STRING 20
VIDEOTEX_STRING 21
IA5_STRING 22
UTC_TIME 23
GENERALIZED_TIME 24
GRAPHIC_STRING 25
VISIBLE_STRING 26
GENERAL_STRING 27
UNIVERSAL_STRING 28
CHARACTER_STRING 29

PacketEncoding Instruction Manual Date Code 20180924

PacketEncoding | 5
Functions

Enumeration Value
BMP_STRING 30
LONG_FORM 31

Structures

Structures provide a means to group together several memory locations (variables), making
them easier to manage.

struct_Asnlindex
Name IEC 61131 Type Description
Class enum_Asn1ClassType The class as defined by the first two Identifier
bits.
Constructed BOOL True for constructed entries, False for primi-

tive entries.

TagNumber enum_AsnlUniversalClassTags | The type of the entry.

BytesInValue | UDINT The number of content bytes.

Index UDINT The starting location of the content bytes as a
byte offset from the beginning of the parsed
byte array.

Functions

This library provides the following functions.

fun_IndexAsniPacket

Walk the provided byte array and populate a class_AsnlIndexVector with the size, starting
index, and type of each first level entry in an ASN.1 packet as defined by the “Basic Encoding
Rules” (BER), the superset of encoding algorithms explained in the ASN.1 standard.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE | The packet to parse.

numBytes | UDINT The number of bytes in the provided packet.
Inputs/Outputs

Name IEC 61131 Type Description

parsedData | class_AsnlIndexVector | The vector for storing the list of data types and indices.

Date Code 20180924 Instruction Manual PacketEncoding

6 | PacketEncoding
Functions

Return Value

IEC 61131 Type | Description
BOOL TRUE if all data objects were indexed successfully.

Processing

The fun_IndexAsniPacket () function does the following:
» Validates pt_data for readability.
Clears all data from parsedData.

Locates the beginning of each first-level data entry in the packet.

yvyy

Stores the class, tag number, and length in bytes of each entry found as well as whether
the entry is primitive or constructed.

\

Stores the index zero for any objects of length zero.

» Stores the index of the first content byte of the entry as a byte offset from pt_data for
all other data types.

This is accomplished by traversing the entire byte array from the beginning to the end. Any
failure in parsing data results in an error and the function stops attempting to parse the
provided data. The algorithm in use takes the first byte and interprets it to find the type of
data being encoded. If the function finds a tag type of Ob11111 the next bytes are interpreted
as the type of the data. If more than 32 bits of data are used to encode the type, then this
method will return an error. The function interprets the next bytes as the length of the data.

Three length definitions are allowed:

1. A value less than 0x80 is a direct reference to the length. The function tags the next
byte as the index and skips to the end of the object as defined by its length.

2. A value of 0x80 indicates that the length is not predefined. This value is only allowed
for constructed types. The function tags the next byte as the index and immediately
terminates the object. The function parses subsequent objects for length and ignores
the content until it finds one End-of-Content object for each previously recorded
length 0x80. The length becomes the accumulation of all the sizes of the child
objects, including their headers.

3. A value between 0x81 and 0x84 indicates that one to four subsequent bytes define
the length of the object as an unsigned integer. The function stores those bytes as
the length and places the index directly after them. It then skips to the end of the
object as defined by its length and the next object begins.

Though values larger than 0x84 are legal, they define numbers of bytes larger than this
library can index and result in an error.

This process repeats for each object found until the end of the provided data. If the final
length sends the function beyond the end of the array or unclosed length 0x80 objects
remain, the function returns an error.

0101FF02038765430904A73546FF048180<128 Octets>

Becomes

0101FF BOOLEAN length 1 index 2
0203876543 INTEGER length 3 index 5
0904A73546FF REAL_FLOAT length 4 index 10

048180<128 Octets> OCTET_STRING length 128 index 17

PacketEncoding Instruction Manual Date Code 20180924

PacketEncoding | 7
Functions

fun_DecodeAsn1_Boolean

Decode a Boolean encoded in ASN.1 following the Basic Encoding Rules.

Inputs

Name | IEC 61131 Type | Description

data BYTE The byte to parse. This should be the byte at the index returned
by fun_IndexAsnlPacket ().

Inputs/Outputs

Name | IEC 61131 Type | Description
value BOOL The result of parsing the data.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful parsing of the Boolean.

Processing

The fun_DecodeAsnl_Boolean() function does the following:
1. Parses the provided byte into a Boolean.
2. Returns TRUE if the function encountered no errors during parsing.

This function recognizes any non-zero value as TRUE and only the value of zero as FALSE.

0b11001100 = TRUE
0b00000001 = TRUE

0b00000000 = FALSE

fun_DecodeAsn1_Integer

Decode an integer encoded in ASN.1 following the “Basic Encoding Rules.”

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE | The byte array to parse. This should be the address of the
Index returned by fun_IndexAsniPacket ().

numBytes | UDINT The number of bytes in the provided data. This
should be the BytesInValue returned by fun_-
IndexAsniPacket ().

Date Code 20180924 Instruction Manual PacketEncoding

8 | PacketEncoding
Functions

Inputs/Outputs

Name | IEC 61131 Type | Description
value DINT The result of parsing the data.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful parsing of the integer.

Processing

The fun_DecodeAsnl_Integer () function does the following:
1. Validates pt_data for readability.
2. Parses the bytes provided into an integer.
3. Returns FALSE if rollover prevents the function from returning the exact value.
4. Returns TRUE if the function encounters no errors during parsing.

This function expects the provided bytes to be an integer represented in two’s complement
notation using the least number of bytes possible. It only parses numbers represented by
four or fewer bytes.

0x80 = -128
0xFF80 results in an error because it uses more bytes than necessary.

Ox7F7F = 32639
0x007F7F results in an error because it uses more bytes than necessary.

fun_DecodeAsn1_Enumerated

Decode an enumeration encoded in ASN.1 following the “Basic Encoding Rules.”

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE | The byte array to parse. This should be the address of then
Index returned by fun_IndexAsniPacket ().

numBytes | UDINT The number of bytes in the provided data. This
should be the BytesInValue returned by fun_-
IndexAsniPacket ().

Inputs/Outputs

Name | IEC 61131 Type | Description
value DINT The result of parsing the data.

PacketEncoding Instruction Manual Date Code 20180924

PacketEncoding | 9
Functions

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful parsing of the enumeration.

Processing

The fun_DecodeAsnl_Enumerated() function does the following:
1. Validates pt_data for readability.
2. Parses the bytes provided into an integer.
3. Returns FALSE if rollover prevents returning the exact value.
4. Returns TRUE if the function encountered no errors during parsing.

This function expects the provided bytes to be an integer represented in two’s complement
notation using the least number of bytes possible. It only parses numbers represented by
four or fewer bytes.

0x80 = -128
0xFF80 results in an error because it uses more bytes than necessary.

Ox7F7F = 32639
0x007F7F results in an error because it uses more bytes than necessary.

fun_DecodeAsn1_Object_Identifier

Decode an Object Identifier (OID) encoded in ASN.1 following the “Basic Encoding Rules”

to a list of UDINTSs.
Inputs
Name IEC 61131 Type Description

pt_data POINTER TO BYTE | The byte array to parse. This should be the address of the
index returned by fun_IndexAsniPacket ().

numBytes | UDINT The number of bytes in the provided data. This
should be the BytesInValue returned by fun_-
IndexAsnlPacket ().

Inputs/Outputs

Name | IEC 61131 Type | Description
value class_DwordVector | The vector for storing the list of OID entries.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful parsing of the OID.

Date Code 20180924 Instruction Manual PacketEncoding

10 | PacketEncoding
Functions

Processing

The fun_DecodeAsnl_0Object_Identifier () function does the following:
1. Validates pt_data for readability.
2. Clears all data from value.
3. Parses the bytes provided into an OID.
4. Returns FALSE if rollover prevents the function from returning exact values.
5. Returns TRUE if the function encountered no errors during parsing.

This function expects the provided bytes to appear as a sequence of unsigned integers
represented in the fewest bytes possible. Any byte with the value 1 as its most significant
bit indicates that the next byte is part of the same integer value. A value of one in the most
significant bit of the final byte of the referenced data indicates the OID would extend beyond
numBytes and the function returns FALSE. If any unsigned integer begins with 0x80, the
number is represented by more bytes than required and the function returns FALSE. The
function also returns FALSE if any unsigned integer requires more than 32 bits to contain
its value.

After finding the first unsigned integer, the function parses it into two distinct values. For
this example, consider val to be the first unsigned integer found. If val is between 0 and
39, the OID begins with 0.val. If val is between 40 and 79, the OID begins with 1.(val-40).
Finally, if val is greater than 79 the OID begins with 2.(val-80).

0x2B0601040181F84F01952A0D040100
Broken into parts
0x2B 0x06 0x01 0x04 0x01 Ox81F84F 0x01 0x952A 0xOD 0x04 0x01

0x00
Extra formatting stripped
0x2B => 40 & 3 => 1.3
0x81F84F => 0Ob1_111_1000_100_1111 => 31823
0x952A => 0b1_0101_010_1010 => 2730

1.3.6.1.4.1.31823.1.2730.13.4.1.0

fun_DecodeAsn1_Real

Decode a floating point number encoded as ASN.1 in base 2, 8, or 16 according to the
“Basic Encoding Rules.”

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE | The byte array to parse. This should be the address of the
index returned by fun_IndexAsniPacket ().

numBytes | UDINT The number of bytes in the provided data. This should be
the BytesInValue returned by fun_IndexAsniPacket ().

PacketEncoding Instruction Manual Date Code 20180924

Inputs/Outputs

Name | IEC 61131 Type | Description

value

REAL The decoded floating point number.

Return Value

IEC 61131 Type | Description

BOOL TRUE for successful parsing of the number.

Processing

The fun_DecodeAsnl_Real () function does the following:

1.
2.
3.
4,

Validates pt_data for readability.
Validates the format and base found in pt_data.
Parses the bytes provided into a real.

Returns TRUE if the function encounters no errors during parsing.

The ASN.1 standard allows reals to be encoded through the use of both binary values and
character-based encodings. This function only decodes reals that are encoded as binary
values in base 2, 8, or 16.

The decoding of a real happens in eight steps:

1.

This function checks for any special values (see Special Bit Patterns for Reals for
details).

If numBytes is two, this function returns FALSE because there are no valid real
encodings of length two.

This function checks the first byte to ensure it can be parsed. Bit 8 must be one. Bit
7 stores the sign of the value. Bits 65 represent the base of the number (B): 0b00 is
base 2, 0b01 is base 8, 0b10 is base 16, and Ob11 is invalid. Bits 4-3 are interpreted
as an unsigned number defining a power of two by which to shift the result (F). Bits
2-1 help delineate the length of the exponent in bytes. A value of 0b00 means one
byte of exponent, 0b01 two bytes, Ob10 three bytes, and Ob11 means the next byte
defines the length as a value from 0-255.

Because ASN.1 states the exponent must be represented in the fewest bytes pos-
sible, this function rounds any value with an exponent of three or more bytes to
positive/negative zero or infinity because it cannot represent numbers that large or
small.

The exponent is parsed as a two’s complement number (E) and saved.

The function interprets as many as the first four of the remaining bytes as an unsigned
integer.

Each byte greater than four results in the addition of eight to F, truncating the
mantissa (M) to a size this function can handle.

Finally, the function calculates the result as (M » 2F » BE), then adds the appropriate
sign.

Date Code 20180924 Instruction Manual

PacketEncoding | 11
Functions

PacketEncoding

12 | PacketEncoding
Functions

0xD40C4567 M = 17767 E
Ox8DFF7F01030307 M = 16974599 E

0x8DFF7F01030307AD M = 16974599 E =

Special Bit Patterns for Reals
Length | Bit Pattern Value
0 N/A +0.0
0b01000011 -0.0
0b01000000 | +Infinity
0b01000001 | —Infinity
0b01000010 NaN

1
1
1
1

fun_SerializeAsn1_Boolean

Place the provided Boolean value as the next entry in an ASN.1 BER message.

Inputs

Name | IEC 61131 Type | Description

value BOOL The value to use as the payload of this Boolean.
Inputs/Outputs

Name IEC 61131 Type | Description
message | class_ByteVector The message to which value is appended.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful appending of the Boolean.

Processing

The fun_SerializeAsnl_Boolean() function does the following:
1. Serializes value and appends it as the next entry in message.
2. Returns TRUE if value was added to message.

This function appends 0x010100 for false and 0x010101 for true.

fun_SerializeAsn1_Integer

Place the integer value provided as the next entry in an ASN.1 BER message.

PacketEncoding Instruction Manual

Date Code 20180924

PacketEncoding | 13
Functions

Inputs

Name | IEC 61131 Type | Description

value DINT The value to use as the payload of this integer.
Inputs/Outputs

Name IEC 61131 Type | Description
message | class_ByteVector The message to which value is appended.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful appending of the integer.

Processing

The fun_SerializeAsnl_Integer () function does the following:
1. Serializes value and appends it as the next entry in message.
2. Returns TRUE if value was added to message.

This function determines the fewest number of bytes necessary to encode the provided
integer by checking the most significant byte and the next bit for all ones or all zeros and
dropping the byte from the number. This process can be repeated as many as three times.
After this process completes, it appends the following to the message: 0x02, the number of
significant bytes, and the bytes themselves.

-1 0x0201FF
1 0x020101

134217728 0x02040F000000
-134217728 0x0204F8000000

fun_SerializeAsn1_Enumerated

Place the integer value provided as the next entry in an ASN.1 BER message.

Inputs

Name | IEC 61131 Type | Description
value DINT The value to use as the payload of this enumeration.

Date Code 20180924 Instruction Manual PacketEncoding

14 | PacketEncoding
Functions

Inputs/Outputs

Name IEC 61131 Type | Description
message | class_ByteVector The message to which value is appended.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful appending of the enumeration.

Processing

The fun_SerializeAsnl_Enumerated() function does the following:
1. Serializes value and appends it as the next entry in message.
2. Returns TRUE if value was added to message.

This function determines the fewest number of bytes necessary to encode the provided
integer by checking the most significant byte and the next bit for all ones or all zeros and
dropping the byte from the number. This process can be repeated as many as three times.
After this process completes, it appends the following to the message: 0x02, the number of
significant bytes, and the bytes themselves.

-1 0x0201FF
1 0x020101

134217728 0x02040F000000
-134217728 0x0204F8000000

fun_SerializeAsn1_Real

Place the real provided as the next entry in an ASN.1 BER message.

Inputs

Name | IEC 61131 Type | Description

value REAL The value to use as the payload of this real.
Inputs/Outputs

Name IEC 61131 Type | Description

message | class_ByteVector The message to which value is appended.

PacketEncoding Instruction Manual Date Code 20180924

Return Value

IEC 61131 Type | Description

BOOL TRUE for successful appending of the real.

Processing

The fun_SerializeAsnl_Real () function does the following:

1. Serializes value as a base 2 floating point number and appends it as the next entry in

message.

2. Returns true if value was added to message.

This function serializes every real as a base 2 binary encoded real. First, it checks for any
special value encodings as listed in Special Bit Patterns for Reals. If this real is not a special
case, this method breaks the real into its constituent parts. This process consists of four

steps:

1. The sign is pulled from Bit 32, the exponent from Bits 31 to 24, and the mantissa

from Bits 23 to 1.

2. If the exponent is zero, the mantissa is saved as is. Otherwise the function prepends

a one to the mantissa as the 24th bit.

3. If the exponent is zero, a value of one is added to it. Then the function subtracts 127
subtracted from the exponent to turn it into a two’s complement, signed number; the
function also subtracts 23 from it to remove the decimal point from the mantissa.

4. The function generates a descriptive byte where Bit 8 is one, Bit 7 is one for negative
and zero for positive, Bits 6-2 are zero, and Bit 1 is one for an exponent requiring a
two byte representation and zero for an exponent requiring one byte.

This function then appends 0x09; a length of 0x00, 0x01, 0x05 or 0x06; the descriptive

byte; the exponent; and the mantissa to message.

2.25 0x090580EA900000
-2.25 0x0905COEA900000

1.25E-38 0x090681FF6B881CEA
1.25E-41 0x090681FF6B0022D8

fun_SerializeAsn1_Object_Identifier

Place the OID provided as the next entry in an ASN.1 BER message.

Inputs/Outputs

Name IEC 61131 Type

Description

value class_DwordVector

The OID to append to message.

message | class_ByteVector

The message to which value is appended.

Date Code 20180924

Instruction Manual

PacketEncoding | 15
Functions

PacketEncoding

16

PacketEncoding
Functions

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful appending of the OID.

Processing

The fun_SerializeAsnl_0Object_Identifier () function does the following:
1. Serializes all dwords in value to construct the next entry in message.
2. Returns FALSE if value cannot be serialized.
3. Returns TRUE if value was added to message.

This function starts by adding the first two OID sub entries together ((40 « OIDI) + OID2).
Using that result as the first sub entry, it builds a list where each OID sub entry is reduced
to the minimum number of seven-bit segments needed to represent it as an unsigned value.
The function prepends a one to each seven-bit segment except the least significant seven-bit
segment of every sub entry, which the function prepends with a zero. Once all sub entries
have been encoded, the function appends the following to message: 0x06, the number of
bytes representing the sub entries encoded in the same manner as the sub entries themselves,
and the sub entry list.

1.3.6.1.4.1.31823.1.2730.13.4.4.213268340
Insert Extra formatting

0ID Enumeration => 0x06

1.3 =>40 & 3 => 0x2B
.6.1.4.1 => 0x06010401
.31823 => 0x7C4F => 0x81F84F
1 => 0x01

.2730 => 0x0AAA => 0x952A
.13.4.4 => 0x0D0404
.213268340 => 0xCB63774 => OxE5D8EE74
length => 18 => 0x12
Construct as Enumeration, Length, SubEntry list
0x06122B0601040181F84F01952A0D0404E5D8EET4

fun_SerializeAsn1_Bit_String

Place the bit string provided as the next entry in an ASN.1 BER message.

Inputs
Name IEC 61131 Type Description
pt_data POINTER TO BYTE | The bit string to insert.
numBytes | UDINT The number of bytes in the string.
ignoreBits | USINT The number of bits of invalid data terminating the string.
(Range: 0-7)

PacketEncoding Instruction Manual

Date Code 20180924

Inputs/Outputs

Name

IEC 61131 Type

Description

message

class_ByteVector

The message to which the bit string is appended.

Return Value

IEC 61131 Type

Description

BOOL

TRUE for successful appending of the bit string.

Processing

The fun_SerializeAsnl_Bit_String() function does the following:

1. Validates pt_data for read access.

2. Limits ignoreBits to a maximum of seven.

3. Appends an entry containing all bytes prescribed to message, masking the last

ignoreBits bits of the last byte by replacing then with zero.

4. Returns true if the entire bit string was added to message.

This function appends 0x03, numBytes plus one for the ignoreBits information as the length,
ignoreBits, and the data found at pr_data to message, zeroing the final ignoreBits bits.

fun_BeginAsniConstructed_Bit_String

Place the codes necessary to begin a constructed bit string in an ASN.1 BER message.

For each call to this method the user must call fun_AppendAsn1_Eoc () before the message
can be considered complete. Only bit strings should be appended to message until the call

to fun_AppendAsnl_Eoc().

Inputs/Outputs

Name

IEC 61131 Type

Description

message

class_ByteVector

The message to which the entry is appended.

Return Value

IEC 61131 Type

Description

BOOL

TRUE for successful appending of the entry.

Processing

The fun_BeginAsnlConstructed_Bit_String() function:

1. Appends the beginning of a constructed bit string to message, (0x2380).

2. Returns TRUE if the entry was added to message.

Date Code 20180924

Instruction Manual

PacketEncoding | 17
Functions

PacketEncoding

18

PacketEncoding
Functions

fun_AppendAsn1_Eoc

Place the codes necessary to end a variable length entry in an ASN.1 BER message.

To ensure proper packet construction, the user must call this function once for each variable
length entry begun.

Inputs/Outputs

Name IEC 61131 Type | Description

message | class_ByteVector The message to which the entry is appended.

Return Value

IEC 61131 Type | Description
BOOL TRUE for successful appending of the EOC.

Processing

The fun_AppendAsnl_Eoc () function does the following:
1. Appends the End-of-Content entry to message, 0x0000).
2. Returns TRUE if the EOC was added to message.

fun_EncodeBase64_MIME

Encodes a byte vector into base64-MIME format. See base64 and MIME descriptions in
RFC 2045 for complete definition of these encodings and their usage. A common example
is encoding the bytes of a file to be sent as email attachments.

Inputs/Outputs
Name IEC 61131 Type | Description
source class_ByteVector The raw byte data to encode.
encoded | class_ByteVector The encoded output of source.

Return Value

IEC 61131 Type | Description

BOOL TRUE if data was successfully encoded; returns FALSE only if source was
empty.

PacketEncoding Instruction Manual

Date Code 20180924

PacketEncoding | 19
Functions

Processing

The fun_EncodeBase64_MIME() function does the following:

1. Encodes the raw-bytes of source, writing the base64-MIME encoded output to
encoded. Note that source will not be modified as a result of calling this function.

2. Returns TRUE if input was encoded successfully; returns FALSE only if source was
empty.

This function encodes a raw byte vector in base64-MIME. The output encoded will be
approximately 133% the size of source.

source := Drink plenty of Ovaltine
encoded := RHJpbmsgcGxlbnR5IGOMIES2YWx0aW51

fun_DecodeBase64_MIME

Decodes a byte vector encoded in base64-MIME format. See base64 and MIME descriptions
in RFC 2045 for complete definition of these encodings and their usage.

Inputs/Outputs

Name IEC 61131 Type | Description
source class_ByteVector The base64-MIME encoded data to decode.
decoded | class_ByteVector The decoded output of source.

Return Value

IEC 61131 Type | Description

BOOL TRUE if data was successfully decoded without any corruption detected.
Returns FALSE if source contains only invalid characters or if the number
of valid characters in source is not a multiple of four.

Processing

The fun_DecodeBase64_MIME() function does the following:

1. Decodes the base64-MIME encoded input of source, placing output in decoded.
Invalid, non-base64 characters in source are ignored. Note that source will not be
modified as a result of calling this function.

2. Processes valid base64 characters in groups of four. It fails only if terminal characters
are incorrectly placed or if the number of valid characters is not a multiple of four.

3. Stops processing after the first group of four characters containing a terminal char-
acter.

4. If source is empty, then the function will return TRUE.

This function decodes a base64-MIME encoded string. The size of decoded will be approx-
imately 75% of source.

Date Code 20180924 Instruction Manual PacketEncoding

20

PacketEncoding
Classes

source := RHJpbmsgcGxlbnR5IGOMIES2YWx0aW51
decoded := Drink plenty of Ovaltine

Classes

Classes are a particular implementation of a Function Block(FB). They provide Methods
and Properties, which a normal FB does not provide.

class_AsnlindexVector (Class)

This class provides a DynamicVector structured specifically to store indexing information
about a byte array encoded in ASN.1.

Implemented Interfaces
An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must

exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1 Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | struct_AsnlIndex The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description

BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

PacketEncoding Instruction Manual

NOTE: For more information on the
I_Vector interface, see the
DynamicVectors library

documentation.

Date Code 20180924

PacketEncoding | 21
Classes

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value struct_AsnlIndex The new element value.

Return Value

IEC 61131 Type | Description

BOOL TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and the method returns FALSE.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | struct_AsnlIndex A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

Return Value

IEC 61131 Type | Description

BOOL TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs

Name IEC 61131 Type | Description

element | struct_AsnlIndex The element to copy to the end of the vector.

Date Code 20180924 Instruction Manual PacketEncoding

22 | PacketEncoding
Benchmarks

Return Value

IEC 61131 Type | Description

BOOL TRUE if the element is successfully added to the vector. FALSE if an error
occurs.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.
» SEL-3505
> R134 firmware
» SEL-3530
> R134 firmware
» SEL-3555
> Dual-core Intel i7-3555LE processor
> 4 GB ECC RAM
> R134-V1 firmware

Benchmark Test Descriptions

fun_IndexAsniPacket

The posted time is the average execution time of 100 consecutive calls. The byte string
parsed is loaded with two Boolean values and three integer values.

fun_DecodeAsn1_Boolean

The posted time is the average execution time of 100 consecutive calls.

fun_DecodeAsnl_Integer

The posted time is the average execution time of 100 consecutive calls.

fun_DecodeAsn1_Enumerated

The posted time is the average execution time of 100 consecutive calls.

PacketEncoding Instruction Manual Date Code 20180924

PacketEncoding | 23
Benchmarks

fun_DecodeAsn1_Object_ldentifier

The posted time is the average execution time of 100 consecutive calls. The encoded object
identifier that is decoded has a value of (1, 17, 19).

fun_DecodeAsn1_Real

The posted time is the average execution time of 100 consecutive calls.

fun_SerializeAsn1_Boolean

The posted time is the average execution time of 100 consecutive calls.

fun_SerializeAsn1_Integer

The posted time is the average execution time of 100 consecutive calls.

fun_SerializeAsn1_Enumerated

The posted time is the average execution time of 100 consecutive calls.

fun_SerializeAsn1_Real

The posted time is the average execution time of 100 consecutive calls.

fun_SerializeAsn1_Object_ldentifier

The posted time is the average execution time of 100 consecutive calls. The object identifier
encoded has a value of (1, 17, 19).

fun_SerializeAsn1_Bit_String

The posted time is the average execution time of 100 consecutive calls. The bit string
encoded has a ASCII value of “Hello World”.

fun_BeginAsniConstructed_Bit_String

The posted time is the average execution time of 100 consecutive calls.

fun_AppendAsn1_Eoc

The posted time is the average execution time of 100 consecutive calls.

Date Code 20180924 Instruction Manual PacketEncoding

24 | PacketEncoding

Benchmarks

fun_EncodeBase64_MIME - No Memory Allocation

The posted time is the average execution time of 100 consecutive calls when encoding a
sequence of 100 random bytes. For this benchmark, the encoded vector is sized such that
no memory allocation is required during the benchmark run.

fun_EncodeBase64_MIME - Internal Memory Allocation

The posted time is the average execution time of 100 consecutive calls when encoding a
sequence of 100 random bytes. For this benchmark, the encoded vector is empty with no
memory allocated, thus requiring memory allocations during the benchmark run.

fun_DecodeBase64_MIME - No Memory Allocation

The posted time is the average execution time of 100 consecutive calls when decoding a
sequence of 100 randomly encoded bytes. Note that because the output is 100 bytes, the
input vector is more than 100 bytes. For this benchmark, the decoded vector is sized such
that no memory allocation is required during the benchmark run.

fun_DecodeBase64_MIME - Internal Memory Allocation.

The posted time is the average execution time of 100 consecutive calls when decoding a
sequence of 100 randomly encoded bytes. Note that because the output is 100 bytes, the
input vector is more than 100 bytes. For this benchmark, the encoded vector is empty with
no memory allocated, thus requiring memory allocations during the benchmark run.

Benchmark Results

Operation Tested Platform (time in us)
SEL-3505 | SEL-3530 | SEL-3555
fun_IndexAsn1Packet 30 15 1
fun_DecodeAsn1_Boolean 1 1 1
fun_DecodeAsn1_Integer 3 2 1
fun_DecodeAsn1_Enumerated 2 1
fun_DecodeAsn1_Object_Identifier 19 8 1
fun_DecodeAsn1_Real 10 5 1
fun_SerializeAsnl_Boolean 2 1
fun_SerializeAsn1_Integer 8 4 1
fun_SerializeAsnl_Enumerated 8 5 1
fun_SerializeAsnl_Real 3 1
fun_SerializeAsn1_Object_Identifier 159 42 4
fun_SerializeAsn1_Bit_String 18 9 1
fun_BeginAsn1Constructed_Bit_String 8 3 1
fun_AppendAsnl_Eoc 6 1
fun_EncodeBase64_MIME - No Allocation 432 234 25
fun_EncodeBase64_MIME - Allocation 637 291 28

PacketEncoding

Instruction Manual

Date Code 20180924

PacketEncoding | 25
Examples

Platform (time in pus)
SEL-3505 | SEL-3530 | SEL-3555
fun_DecodeBase64_MIME - No Allocation 430 240 21
fun_DecodeBase64_MIME - Allocation 699 307 25

Operation Tested

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Decoding an ASN.1 Packet for All Integer Values

Objective

A user has a system that sends packets of data containing a mixture of integer values and
octet string descriptions. She needs to use the integers to make decisions but has no need
of the strings on this RTAC. This solution parses the packet and collects the four integer
values it contains.

Assumptions

This example shows the parsing of a static byte array. To truly use this functionality, the
user would need to populate that array after collecting the data from the network.

Solution

The user can create the program found in Code Snippet I to parse the byte array.

Date Code 20180924 Instruction Manual PacketEncoding

26

PacketEncoding
Examples

Code Snippet 1 prg_ParseBytesForintegers

PROGRAM prg_ParseBytesForIntegers

PacketBytes : ARRAY [0 .. 99] OF BYTE :=
[
(*The string Valuelx)
16#04, 16#06, 16#56, 16#61, 16#6C, 16#75, 16#65, 16#31,
(*The integer 10_000%)
16#02, 16#02, 16#27, 16#10,
(*The string Value2x)
16#04, 16#06, 16#56, 16#61, 16#6C, 16#75, 16#65, 16#32,
(*The integer -50_000%)
16#02, 16#03, 16#FF, 16#3C, 16#BO,
(¥The string Value3x)
16#04, 16#06, 16#56, 16#61, 16#6C, 16#75, 16#65, 16#33,
(¥The integer 15%)
16#02, 16#01, 16#0F,
(*The string Value4dx)
16#04, 16#06, 16#56, 16#61, 16#6C, 16#75, 16#65, 16#34,
(¥The integer 1_500_000_000%)
16#02, 16#04, 16#59, 16#68, 16#2F, 16#00,
(*This is the end of the meaningful data. The array here is bigger
than
required as a reminder that this may need to be populated with
different values that take more or less space.*)
50(0)1;
// The number of bytes of valid data. This will come from the network
socket.
ValidByteCount : UDINT := 50;

// Containers for parsed data.
IndexList : class_AsnlIndexVector;
IndexObject : struct_AsnlIndex;

// Iterator counts.
ListPosition : UDINT;
ObjectCount : UDINT;

//The result array.
IntArray : ARRAY [0 .. 3] OF DINT;

// Flags for any errors that might be encountered.
Parsed : BOOL;

CorrectCount : BOOL;

ValidInts : ARRAY [0 .. 3] OF BOOL;

END_VAR

PacketEncoding Instruction Manual

Date Code 20180924

PacketEncoding | 27
Examples

Code Snippet 1 prg_ParseBytesForintegers (Continued)

// Reset the ValidInts array in case there are less Integers this pass.
FOR ObjectCount := 0 TO 3 DO
ValidInts[ObjectCount] := FALSE;
END_FOR
// First parse the current packet for its indexes.
Parsed := fun_IndexAsnlPacket (ADR(PacketBytes), ValidByteCount, IndexList);
IF Parsed THEN
// If that worked walk the indices and parse each integer found.
ObjectCount := O;
ListPosition := 0;
WHILE ListPosition < IndexList.Size DO
IndexList.GetAt(ListPosition, element => IndexObject);
IF IndexObject.Class = UNIVERSAL AND IndexObject.AsniClass =
INTEGER THEN
// Make sure we are inside the bounds of our array.
IF ObjectCount > 3 THEN
// Set an error flag to indicate too many integers found.
CorrectCount := FALSE;
EXIT;
END_IF
ValidInts[ObjectCount] := fun_DecodeAsnl_Integer(
// Begin at the Index found.
ADR (PacketBytes[IndexObject.Index]),
// Walk the number of bytes specified.
IndexObject.BytesInValue,
// Place the result in the storage array.
IntArray[0ObjectCount]);
ObjectCount := ObjectCount + 1;
END_IF
ListPosition := ListPosition + 1;
END_WHILE
IF ObjectCount <> 4 THEN
// Set an error flag if too few integers found.
CorrectCount := FALSE;
END_IF
END_IF

Decoding an OID Found Three Layers Deep in an ASN.1
Packet

Objective

A user receives a package with an OID nested three layers deep inside. He needs to decode
that OID before making a work decision.

Assumptions

This example shows the parsing of a static byte array. To truly use this functionality the user
would need to populate that array after collecting the data from the network.

Date Code 20180924 Instruction Manual PacketEncoding

28 | PacketEncoding
Examples

Solution
The user can create the program found in Code Snippet 2 to parse the byte array.

Code Snippet 2 prg_ParseThreeTiers
PROGRAM prg_ParseThreeTiers

VAR
PacketBytes : ARRAY [0 .. 99] OF BYTE :=
[
(*Constructed sequencex)
16#30, 16#13,
(*Constructed sequencex)
16#30, 16#11,
(*0ID 1.3.6.1.4.1.31823.1.2730.13.4.1.0%)
16#06, 16#0F, 16#2B, 16#06, 16#01, 16#04, 16#01, 16#81, 16#F8,
16#4F, 16#01, 16#95, 16#2A, 16#0D, 16#04, 16#01, 16#00,
(*This is the end of the meaningful data
The array here is bigger than required as a reminder that
This may need to be populated with different values that take
more or less space. *)
79(0)1;
// The number of bytes of valid data. This will come from the network
socket.

ValidByteCount : UDINT := 21;

// Containers for each tier.
Tieri1Objects : class_AsnlIndexVector;
Tier20bjects : class_AsnlIndexVector;
Tier30bjects : class_AsnlIndexVector;
IndexObjectTl : struct_AsnlIndex;
IndexObjectT2 : struct_AsnlIndex;
IndexObjectT3 : struct_AsnllIndex;

// Flags to allow for separation of logic
ParsedL1 : BOOL;
ParsedL2 : BOOL;
ParsedL3 : BOOL;
Valid0id : BOOL;

// Container for the 0ID
0id : PacketEncodings.class_DwordVector;
END_VAR

PacketEncoding Instruction Manual Date Code 20180924

PacketEncoding | 29
Examples

Code Snippet 2 prg_ParseThreeTiers (Continued)

// Reset from last scan
ParsedL2 := FALSE;
ParsedL3 := FALSE;
ValidOid := FALSE;

// Parse the first tier.
ParsedLl := fun_IndexAsnlPacket (ADR(PacketBytes), ValidByteCount,
Tier1Objects);
IF ParsedLl THEN
IF TierlObjects.GetAt(0, element => IndexObjectT1) THEN
IF IndexObjectT1l.Constructed THEN
ParsedlL2 := fun_IndexAsniPacket (
// The new starting index is the original offset plus the
// index identified in the previous level.
ADR (PacketBytes [IndexObjectTl.Index]),
// Only parse the bytes prescribed by the previous
object.
IndexObjectTl.BytesInValue, Tier20bjects);
END_IF
END_IF
END_IF
IF parsedL2 THEN
IF Tier20bjects.GetAt(0, element => IndexObjectT2) THEN
IF IndexObjectT2.Constructed THEN
ParsedL3 := fun_IndexAsniPacket(
// The new starting index is the original offset plus the
// offset of the first tier object plus
// index identified in the previous level.
ADR (PacketBytes[IndexObjectTl.Index +
Index0ObjectT2.Index]),
// Only parse the bytes prescribed by the previous
object.
IndexObjectT2.BytesInValue, Tier30Objects);
END_IF
END_IF
END_IF
IF ParsedL3 THEN
IF Tier30bjects.GetAt(0, element => IndexObjectT3) THEN
IF IndexObjectT3.Class = UNIVERSAL AND
IndexObjectT3.Asnl1Class = OBJECT_IDENTIFIER THEN
Valid0id := fun_DecodeAsnl_Object_Identifier(
// Here the starting index is based on all three tiers.
ADR(PacketBytes[IndexObjectT1.Index
+ IndexObjectT2.Index
+ IndexObjectT3.Index]),
IndexObjectT3.BytesInValue,
0id);

END_IF
END_IF
END_IF
IF ValidOid THEN
; // Do any necessary work based on the O0ID here.
END_IF

Date Code 20180924 Instruction Manual PacketEncoding

30

PacketEncoding
Examples

Encoding Data as an ASN.1 Packet
Objective

A user needs to package some integer and real data points. She also needs to intersperse the
data with Boolean flags based on the validity of the data.

Once the data are packaged the user needs to send the information to Port 1000 of a listening
server.

Assumptions

The RTAC also has access to the SELEthernetControllers library. The listening server must
know the format of the incoming data.

Solution

The user can create the program found in Code Snippet 3 to build the data package.

Code Snippet 3 prg_EncodeOutboundData

PROGRAM prg_EncodeOutboundData

VAR
// The storage for the outbound packet.
Packet : PacketEncodings.class_ByteVector;

// The integers to encode.
MyInts : ARRAY [1 .. 3] OF DINT := [-70, 45, 9000];
MyIntsValid : ARRAY [1 .. 3] OF BOOL := [FALSE, TRUE, TRUE];

// The reals to encode.
MyReals : ARRAY [1 .. 3] OF REAL := [1045.99, 45.2, 7];
MyRealsValid : ARRAY [1 .. 3] OF BOOL := [TRUE, FALSE, TRUE];

// Infrastructure required to place the packet on the wire.
MySocket : class_TcpClient;

LocalIP : SELEthernetController.INADDR := (ulAddr := 0);
DestinationIP : SELEthernetController.INADDR;
SocketInitialized : BOOL;

// Counting variable.
i : UDINT;
END_VAR

PacketEncoding Instruction Manual

Date Code 20180924

PacketEncoding | 31
Examples

Code Snippet 3 prg_EncodeOutboundData (Continued)

// Make sure the socket is configured correctly.

IF NOT SocketInitialized THEN
MySocket.bootstrap_SetLocalIP(1000, locallIP);
fun_StringToInaddr('10.10.10.10', ipAddr => DestinationIP);
MySocket.SetIP(destinationIP, 1000) ;

MySocket.0Open() ;
SocketInitialized := TRUE;
END_IF

// Build the packet.

Packet.Recycle();

FOR i := 1 TO 3 DO
fun_SerializeAsnl_Integer(myInts[i], Packet);
fun_SerializeAsnl_Boolean(myIntsValid[i], Packet);

END_FOR

FOR i := 1 TO 3 DO
fun_SerializeAsnl_Real (myReals[i], Packet);
fun_SerializeAsnl_Boolean(myRealsValid[i], Packet);

END_FOR

// Send the data.
MySocket.SendData(Packet.pt_Data, UDINT_TO_DINT(Packet.Size));

Encoding Raw Binary Data in Base64-MIME

Objective

A user needs to encode and store some binary data from the file system in base64-MIME
encoding. For illustrative purposes, the user saves their data to a file.

Assumptions

The RTAC has access to the DynamicVectors and Filelo libraries.
Solution

The user can create the program found in Code Snippet 4 to encode their data in base64-MIME
and store the encoded data to the local file system.

Date Code 20180924 Instruction Manual PacketEncoding

32

PacketEncoding
Examples

Code Snippet 4 prg_Base64_Example

PROGRAM prg_Base64_Example
VAR_INPUT

alarm : BOOL;

END_VAR

VAR

//State flags for file io operations
complete : BOOL := FALSE;
firstRead : BOOL := TRUE;

writeFile : BOOL := FALSE;

error : BOOL;

errorString : STRING(255);

//Location of the binary data the user wishes to encode
dataFile : STRING(255) := 'binaryData.data';
//Temporary location for the raw binary data

rawData : class_ByteVector;

//Temporary location for the encoded data

encodedData : class_ByteVector;

//File io objects

fileReader : class_FileReader();

fileWriter : class_Filewriter('encodedData.txt');

END_VAR

IF alarm THEN

IF NOT complete THEN

IF firstRead THEN
fileReader.ReadFile(dataFile);
firstRead := FALSE;

ELSIF fileReader.BytesInBuffer > O THEN
rawData.Recycle();
fileReader.AppendToVector (0,rawData) ;
//encode the raw data in base64-MIME

PacketEncodings.fun_EncodeBase64_MIME(source := rawData, encoded

:= encodedData) ;
writeFile := TRUE;
END_IF

IF writeFile THEN
fileWriter.AppendVector(encodedData) ;
writeFile := FALSE;
complete := TRUE;

END_IF

//log any errors
IF fileReader.Error THEN
error := TRUE;
errorString := fileReader.ErrorDesc;
END_IF
IF fileWriter.Error THEN
error := TRUE;
errorString := fileWriter.ErrorDesc;
END_IF
END_IF

END_IF

//called each scan to complete the read/write ops
fileReader.Run();
fileWriter.Run();

PacketEncoding Instruction Manual

Date Code 20180924

Release Notes

PacketEncoding | 33
Release Notes

Version | Summary of Revisions Date Code
3.5.1.0 | » Allows new versions of ACSELERATOR RTAC to compile projects 20180921
for previous firmware versions without SEL IEC types “Cannot
convert” messages.
» Replaced the deprecated “POINTER_TO_ANY” type with
POINTER_TO_BYTE”.
» Must be used with R143 firmware or later.
3.5.04 » Added base64-MIME encoding and decoding functionality. 20150722
35.03 » Initial release. 20141010
Date Code 20180924 Instruction Manual PacketEncoding

	Section 1: PacketEncoding
	Introduction
	Special Considerations

	Supported Firmware Versions
	Enumerations
	enum_Asn1ClassType
	enum_Asn1UniversalClassTags

	Structures
	struct_Asn1Index

	Functions
	fun_IndexAsn1Packet
	fun_DecodeAsn1_Boolean
	fun_DecodeAsn1_Integer
	fun_DecodeAsn1_Enumerated
	fun_DecodeAsn1_Object_Identifier
	fun_DecodeAsn1_Real
	fun_SerializeAsn1_Boolean
	fun_SerializeAsn1_Integer
	fun_SerializeAsn1_Enumerated
	fun_SerializeAsn1_Real
	fun_SerializeAsn1_Object_Identifier
	fun_SerializeAsn1_Bit_String
	fun_BeginAsn1Constructed_Bit_String
	fun_AppendAsn1_Eoc
	fun_EncodeBase64_MIME
	fun_DecodeBase64_MIME

	Classes
	class_Asn1IndexVector (Class)
	Implemented Interfaces
	GetAt (Method)
	SetAt (Method)
	Pop (Method)
	Push (Method)

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fun_IndexAsn1Packet
	fun_DecodeAsn1_Boolean
	fun_DecodeAsn1_Integer
	fun_DecodeAsn1_Enumerated
	fun_DecodeAsn1_Object_Identifier
	fun_DecodeAsn1_Real
	fun_SerializeAsn1_Boolean
	fun_SerializeAsn1_Integer
	fun_SerializeAsn1_Enumerated
	fun_SerializeAsn1_Real
	fun_SerializeAsn1_Object_Identifier
	fun_SerializeAsn1_Bit_String
	fun_BeginAsn1Constructed_Bit_String
	fun_AppendAsn1_Eoc
	fun_EncodeBase64_MIME - No Memory Allocation
	fun_EncodeBase64_MIME - Internal Memory Allocation
	fun_DecodeBase64_MIME - No Memory Allocation
	fun_DecodeBase64_MIME - Internal Memory Allocation.

	Benchmark Results

	Examples
	Decoding an ASN.1 Packet for All Integer Values
	Objective
	Assumptions
	Solution

	Decoding an OID Found Three Layers Deep in an ASN.1 Packet
	Objective
	Assumptions
	Solution

	Encoding Data as an ASN.1 Packet
	Objective
	Assumptions
	Solution

	Encoding Raw Binary Data in Base64-MIME
	Objective
	Assumptions
	Solution

	Release Notes

