
MathMatrix

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: MathMatrix

Introduction . 3
Supported Firmware Versions . 4
Enumerations . 4
Functions . 5
Classes . 13
Benchmarks. 50
Examples . 53
Release Notes . 60

MathMatrix Instruction Manual Date Code 20180926

NOTE: Because of the cost of

checking the system time, the time is

not validated at each step in the

algorithm but rather after multiple

steps have been completed.

RTAC LIBRARY

MathMatrix

Introduction

The MathMatrix library allows for the creation of matrices of complex numbers. There are
multiple desired workflows that exist when working with matrices and the library provides
several options for working with them.

The library is designed to facilitate two basic types of matrix operations: operations that
modify an existing matrix and operations that take one or more matrices as arguments
and place the result in a different matrix. Operations that affect only the active matrix are
completed using the methods on class_Matrix objects. Operations that affect two or more
matrices are performed by external functions or special matrix manipulation classes.

The library also allows for operations of varying levels of required immediacy. For work
on large or highly variant sized matrices that can be completed over multiple task cycles,
it provides matrix manipulation classes that are loaded with operator and result matrices,
stimulated to run to completion, and given a fixed number of steps or a fixed time slice.
For operations that must complete immediately, ideally on fixed sized matrices so the
computation time can be evaluated to validate timing requirements, functions provided by
the library accomplish the same work while guaranteeing the completion of the algorithm
before returning.

This library is dependent on the capabilities defined in the MathComplex library for all
operations (see the MathComplex library documentation for more information on the
operation of this library).

Special Considerations

ä Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:=” must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error
such as:

// "C0328: Assignment not allowed for type
class_MathMatrixObject"

myMathMatrixObject := otherMathMatrixObject;

Date Code 20180926 Instruction Manual MathMatrix

4 MathMatrix

Enumerations

// This is fine
someVariable := myMathMatrixObject.value;
// As is this
pt_myMathMatrixObject := ADR(myMathMatrixObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT
members in function blocks, functions, or methods. Place them in the VAR_-
IN_OUT section or use pointers instead.

ä Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

ä Though this library provides the capability to dynamically resize, create, and destroy
matrices, memory operations can be long running and care should be taken to avoid
unnecessary use of this type of operation on a time-critical task.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.1 and older can be used on RTAC firmware version R132 and higher.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_MatrixState

Enumeration Description

NOT_INITIALIZED This matrix has no memory assigned to it, call SetSize() to
initialize.

NO_OPERATION The matrix is not locked to any operation.
MATRIX_SCALE The matrix is being scaled by one value.
EXTERNAL_OPERATION The matrix is being operated on by an external class.
MATRIX_ROW_STEP_MULT The matrix is multiplying a row by a scalar.
MATRIX_ROW_STEP_DIV The matrix is dividing a row by a scalar.
MATRIX_ROW_STEP_ADD The matrix is adding two rows together.
MATRIX_ROW_STEP_SUB The matrix is subtracting one row from another.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 5

Functions

Functions

fun_DeleteMatrix (Function)

The user should call this after completing work on a matrix received through fun_-
NewMatrix() before the matrix goes out of scope. It releases all system resources.

Inputs/Outputs

Name IEC 61131 Type Description

pt_matrix POINTER TO class_Matrix The matrix to be deleted. This pointer must be re-
ceived through fun_NewMatrix.

Return Value

IEC 61131 Type Description

BOOL TRUE if the memory is successfully deallocated.

Processing

This function frees all system resources owned by this matrix. After completion of the
function, pt_matrix is NULL(0).

fun_MatrixAdd (Function)

This function adds two matrices and places the result in a third. The entire operation will
complete before the function returns.

Inputs/Outputs

Name IEC 61131 Type Description

matrix1 class_Matrix The first addend.
matrix2 class_Matrix The second addend.
result class_Matrix The sum of the two matrices.

Return Value

IEC 61131 Type Description

BOOL The matrix addition completed successfully.

Date Code 20180926 Instruction Manual MathMatrix

6 MathMatrix

Functions

Processing

This function sets the return value to TRUE if all conditions for performing the addition are
met as follows:

ä matrix1 and matrix2 are initialized.

ä All three matrices are not busy performing a stepwise operation.

ä result is a separate matrix from both matrix1 and matrix2.

ä matrix1 and matrix2 have the same dimensions.

ä If necessary, result is successfully resized.

It then performs the addition.

fun_MatrixCopyColumn (Function)

This function copies one column from one matrix to a column in a second matrix. The
entire operation will complete before the function returns.

Inputs

Name IEC 61131 Type Description

fromColumn UINT The column index of the column being copied from.
toColumn UINT The column index of the column being copied to.

Inputs/Outputs

Name IEC 61131 Type Description

fromMatrix class_Matrix The matrix being copied from.
toMatrix class_Matrix The matrix being copied to.

Return Value

IEC 61131 Type Description

BOOL The column copy completed successfully.

Processing

This function sets the return value to TRUE if all conditions for performing the copy are
met as follows:

ä Both matrices are initialized.

ä Both matrices are not busy performing a stepwise operation.

ä Both matrices have the same number of rows.

ä The column indices provided are within the size of the matrices referenced.

It then performs the copy.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 7

Functions

fun_MatrixDeterminant (Function)

This function calculates the determinant of a square matrix. The entire operation will
complete before the function returns.

If the purpose behind calculating the determinant is a check before inverting a matrix or
as part of the process of solving a system of equations this class is not the most optimal to
use. In these cases it is better to use the fun_MatrixInvert or the fun_MatrixGaussianElim
object instead as the overhead for all three is similar.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix to calculate the determinant of. This matrix is
left unchanged.

workspace class_Matrix Memory to do the calculation in. If this is the same size
as original, no memory allocation will occur in finding the
determinant.

Outputs

Name IEC 61131 Type Description

determinant struct_ComplexRect The determinant of the matrix. Zero if the matrix is not
invertible.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation was attempted.

Processing

1. This function sets the return value to TRUE if all conditions for performing the
calculation are met as follows:

ä original is initialized.

ä original is a square matrix.

ä workspace is a separate matrix from original.

ä Neither matrix is busy performing some other operation.

ä If necessary, workspace is successfully resized.

2. Copies the contents of original into workspace.

3. Reduces workspace to an identity matrix using elementary row operations.

4. Calculates the determinant from the row operations performed.

5. If at any time the row operations cannot reduce workspace further and it is still not
an identity matrix, the operation is terminated and determinant is set to zero.

Date Code 20180926 Instruction Manual MathMatrix

8 MathMatrix

Functions

fun_MatrixGaussianElim (Function)

This function simplifies a matrix to a diagonal ones matrix with trailing columns using
Gaussian elimination. The contents of coefficients are destroyed and the contents of solutions
are modified by this function. The entire operation will complete before the function returns.

Inputs/Outputs

Name IEC 61131 Type Description

coefficients class_Matrix The coefficients of the variables being solved for.
solutions class_Matrix The right hand side of the system of equations.

Outputs

Name IEC 61131 Type Description

error BOOL This algorithm cannot solve this system of equations.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the Gaussian elimination was attempted and the matrices
could have been modified.

Processing

ä This function sets the return value to TRUE if all conditions for performing the
calculation are met as follows:

â Both matrices are initialized.

â Both matrices are not busy performing a stepwise operation.

â coefficients is a separate matrix from solutions.

â coefficients has at least as many columns as rows.

â solutions has the same number of rows as coefficients.

ä Reduces the first Rows • Rows of coefficients to an identity matrix using elementary
row operations.

ä Performs the same row operations on solutions.

ä If at any time the row operations cannot reduce coefficients further and there is still
not an identity matrix on the left the operation is terminated and error is set.

ä The contents of coefficients are destroyed and the contents of solutions are modified
by this method.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 9

Functions

Output Combination Meanings

Error Return Description

FALSE FALSE This should never occur.
FALSE TRUE The Gaussian elimination completed successfully.
TRUE FALSE The matrix state prevented the Gaussian elimination request.
TRUE TRUE The matrix is not invertible and cannot be reduced by this Gaussian elimi-

nation algorithm.

fun_MatrixInvert (Function)

This function creates the inverse of a square matrix. original is destroyed in the process so
if the data are still desired, they must be copied before the function is called. The entire
operation will complete before the function returns.

One common use case for inverting a matrix is to solve a system of equations. In this library
that use case is discouraged unless solving the same system for many solutions as Gaussian
elimination performs the same functionality with less overhead.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix to invert.
result class_Matrix The inverted matrix.

Outputs

Name IEC 61131 Type Description

error BOOL The inversion could not be attempted or original cannot be in-
verted.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if inversion was attempted and the matrices could have been
modified.

Processing

1. This function sets the return value to TRUE if all conditions for performing the
calculation are met as follows:

ä original is initialized.

ä Both matrices are not busy performing a stepwise operation.

ä result is a separate matrix from original.

ä original is a square matrix.

Date Code 20180926 Instruction Manual MathMatrix

10 MathMatrix

Functions

ä If necessary, result is successfully resized.

2. Sets result to an identity matrix.

3. Reduces original to an identity matrix using elementary row operations.

4. Performs the same row operations on result to create the inverse.

5. If at any time the row operations cannot reduce original further and it is still not an
identity matrix, the operation is terminated and error is set.

Output Combination Meanings

Error Return Description

FALSE FALSE This should never occur.
FALSE TRUE The inversion completed successfully.
TRUE FALSE The matrix state prevented the inversion request.
TRUE TRUE The matrix is not invertible.

fun_MatrixMultiply (Function)

This function multiplies two matrices and places the result in a third. The entire operation
will complete before the function returns.

Inputs/Outputs

Name IEC 61131 Type Description

matrix1 class_Matrix The multiplier.
matrix2 class_Matrix The multiplicand.
result class_Matrix The product of the two matrices.

Return Value

IEC 61131 Type Description

BOOL The matrix multiplication completed successfully.

Processing

This function sets the return value to TRUE if all conditions for performing the calculation
are met as follows:

ä matrix1 and matrix2 are initialized.

ä All three matrices are not busy performing a stepwise operation.

ä result is a separate matrix from both matrix1 and matrix2.

ä The column count of matrix1 equals the row count of matrix2.

If necessary, it sets the size of result. It then performs the multiplication.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 11

Functions

fun_MatrixSubtract (Function)

This function subtracts one matrix from another and places the result in a third. The entire
operation will complete before the function returns.

Inputs/Outputs

Name IEC 61131 Type Description

matrix1 class_Matrix The minuend.
matrix2 class_Matrix The subtrahend.
result class_Matrix The difference of the two matrices.

Return Value

IEC 61131 Type Description

BOOL The matrix subtraction completed successfully.

Processing

This function verifies that the subtraction can be performed:

1. matrix1 and matrix2 are initialized.

2. All three matrices are not busy performing a stepwise operation.

3. result is a separate matrix from both matrix1 and matrix2.

4. matrix1 and matrix2 have the same dimensions.

If necessary, the function resizes result. It then performs the subtraction.

fun_MatrixTranspose (Function)

This function places the transpose of a matrix into a result. The entire operation will
complete before the function returns.

Inputs

Name IEC 61131 Type Description

conjugate BOOL The result of this operation will be the Hermitian Transpose.
Before each element is placed in result, it will be conjugated.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix whose transpose is calculated.
result class_Matrix The transpose of the original matrix.

Date Code 20180926 Instruction Manual MathMatrix

12 MathMatrix

Functions

Return Value

IEC 61131 Type Description

BOOL The matrix transpose completed successfully.

Processing

This function verifies that the transpose can be performed:

1. original is initialized.

2. Both matrices are not busy performing a stepwise operation.

3. result is a separate matrix from original.

If necessary the function resizes result. It then performs the transpose. If conjugate is
TRUE, conjugate each element in result.

fun_Matrix_ATA (Function)

This function performs an optimization of the operation (ATA) transposing an input matrix
and multiplying it by itself. The entire operation will complete before the function returns.

Inputs

Name IEC 61131 Type Description

conjugate BOOL The result of this operation will be calculated using the Her-
mitian Transpose. Before the transpose step is complete, each
element will be conjugated.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix A.
result class_Matrix The matrix for the result.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation completed successfully.

Processing

This function verifies that the operation can be performed:

1. original is initialized.

2. Both matrices are not busy performing a stepwise operation.

3. result is a separate matrix from original.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 13

Classes

If necessary, the function resizes result. It then performs the operation ATA. If conjugate is
TRUE, conjugate each element in the transpose before using it in the multiply.

fun_NewMatrix (Function)

Request a new matrix from the system with all required resources. Matrices received through
this function must be freed through the fun_DeleteMatrix() function before they leave
scope.

Inputs

Name IEC 61131 Type Description

rows UINT The number of rows in the new matrix.
cols UINT The number of columns in the new matrix.

Return Value

IEC 61131 Type Description

POINTER TO class_Matrix The address of the new class_Matrix.

Processing

This function allocates system resources for a rows by cols matrix of struct_ComplexRect
objects.

Classes

This library provides the following classes as extensions of the IEC 61131 function block.

class_Matrix (Class)

This is the fundamental class for this library. It allows for the storage of struct_ComplexRect
objects ordered by row and column. It manages all required system resources internally.

Initialization Inputs

Name IEC 61131 Type Description

rowCount UINT The number of rows this matrix begins with.
colCount UINT The number of columns this matrix begins with.

Date Code 20180926 Instruction Manual MathMatrix

14 MathMatrix

Classes

Outputs

Name IEC 61131 Type Description

pt_Data POINTER TO POINTER TO Pointer to an array of pointers (one for each
struct_ComplexRect row). Allows accessing the matrix with [row][col]

syntax. Indexing starts at zero. This pointer should
be re-read before access after any resize operation.

Rows UINT The number of rows in the matrix.
Cols UINT The number of columns in the matrix.
State enum_MatrixState The active matrix operation.

Clear (Method)

This method returns all system resources internal to this matrix and sets its size to zero rows
by zero columns. In addition it clears all locks on the matrix and resets all internal state
machines.

This should typically be used only to free the system resources held by this matrix before it
goes out of scope.

MatrixRowAdd (Method)

This method adds one row to another inside this matrix, replacing the content of the second
row (Matrix[toRow] = Matrix[toRow] + Matrix[fromRow] • scalar). The entire operation
will complete before the method returns.

Inputs

Name IEC 61131 Type Description

fromRow UINT The first addend.
toRow UINT The second addend and the location of the result.
scalar struct_ComplexRect A constant that is multiplied against the value of each entry

in fromRow before adding it to the entry in toRow.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method performed the addition.

Processing

1. Validates that the matrix is initialized and not in the middle of a stepwise operation.

2. Validates that the provided row indices exist.

3. If the checks pass, multiplies fromRow by scalar and adds the result to toRow.

4. fromRow remains unchanged.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 15

Classes

MatrixRowDivide (Method)

This method divides each element in rowIndex by scalar and stores the results back in
rowIndex (Matrix[rowIndex] = Matrix[rowIndex] / scalar). The entire operation will
complete before the method returns.

Inputs

Name IEC 61131 Type Description

rowIndex UINT The row to be modified.
scalar struct_ComplexRect A constant used as the divisor against the value of each entry

in rowIndex.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method performed the division.

Processing

1. Validates that the matrix is initialized and not in the middle of a stepwise operation.

2. Validates the row index provided exists.

3. If the checks pass, divides each entry in rowIndex by scalar.

MatrixRowMultiply (Method)

This method multiplies each element in rowIndex by scalar and stores the results back
in rowIndex (Matrix[rowIndex] = Matrix[rowIndex] • scalar). The entire operation will
complete before the method returns.

Inputs

Name IEC 61131 Type Description

rowIndex UINT The row to be modified.
scalar struct_ComplexRect A constant used as the multiplier against the value of each

entry in rowIndex.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method performed the multiplication.

Date Code 20180926 Instruction Manual MathMatrix

16 MathMatrix

Classes

Processing

1. Validates that the matrix is initialized and not in the middle of a stepwise operation.

2. Validates the row index provided exists.

3. If the checks pass, multiplies each entry in rowIndex by scalar.

MatrixRowSubtract (Method)

This method subtracts one row from another inside this matrix, replacing the content of
the second row (Matrix[toRow] = Matrix[toRow] – Matrix[fromRow] • scalar). The entire
operation will complete before the method returns.

Inputs

Name IEC 61131 Type Description

fromRow UINT The subtrahend.
toRow UINT The minuend and the location of the result.
scalar struct_ComplexRect A constant that is multiplied against the value of each entry

in fromRow before subtracting it from the entry in toRow.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method performed the subtraction.

Processing

1. Validates that the matrix is initialized and not in the middle of a stepwise operation.

2. Validates the row indices provided exist.

3. If the checks pass, multiplies fromRow by scalar and subtracts the result from toRow.

4. fromRow remains unchanged.

MatrixScale (Method)

Multiplies each element in this matrix by a scalar. The entire operation will complete before
the method returns.

Inputs

Name IEC 61131 Type Description

scalar struct_ComplexRect A constant that is multiplied against the value of each entry this
matrix.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 17

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method scaled the matrix.

Processing

1. Validates that the matrix is initialized and not in the middle of a stepwise operation.

2. If the checks pass, multiplies each element in the matrix by scalar, placing the result
in the same location.

MatrixStepRowAdd (Method)

This method adds one row to another inside this matrix, replacing the content of the second
row (Matrix[toRow] = Matrix[toRow] + Matrix[fromRow] • scalar).

The operation will perform the next steps operations of the complete addition. This design
allows for the completion of the algorithm over the course of multiple task cycles for matrices
large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the addition.

Processing

1. Validates that the matrix is initialized and has begun a stepwise addition.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply fromRow by scalar and add the result to toRow.

3. fromRow remains unchanged.

4. Performs, at most, the next steps operations toward completing the addition algo-
rithm.

5. Decrements steps by the number of operations consumed.

6. Returns TRUE and unlocks the matrix if the addition completed.

7. Returns FALSE if the addition was not attempted or steps was exhausted before the
algorithm completed.

Date Code 20180926 Instruction Manual MathMatrix

18 MathMatrix

Classes

MatrixStepRowDivide (Method)

This method divides each element in toRow by scalar and stores the results back in toRow
(Matrix[toRow] = Matrix[toRow] / scalar).

The operation will perform the next steps operations of the complete division. This design
allows for the completion of the algorithm over the course of multiple task cycles for matrices
large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the division.

Processing

1. Validates that the matrix is initialized and has begun a stepwise division.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to divide each element in toRow by scalar.

3. Performs, at most, the next steps operations toward completing the division algo-
rithm.

4. Decrements steps by the number of operations consumed.

5. Returns TRUE and unlocks the matrix if the division completed.

6. Returns FALSE if the division was not attempted or steps was exhausted before the
algorithm completed.

MatrixStepRowMultiply (Method)

This method multiplies each element in toRow by scalar and stores the results back in toRow
(Matrix[toRow] = Matrix[toRow] • scalar).

The operation will perform the next steps operations of the complete multiplication. This
design allows for the completion of the algorithm over the course of multiple task cycles for
matrices large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of operations to attempt this task cycle.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 19

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the multiplication.

Processing

1. Validates that the matrix is initialized and has begun a stepwise multiplication.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply each entry in toRow by scalar.

3. Performs, at most, the next steps operations toward completing the multiplication
algorithm.

4. Decrements steps by the number of operations consumed.

5. Returns TRUE and unlocks the matrix if the multiplication completed.

6. Returns FALSE if the multiplication was not attempted or steps was exhausted before
the algorithm completed.

MatrixStepRowSubtract (Method)

This method subtracts one row from another inside this matrix, replacing the content of the
second row (Matrix[toRow] = Matrix[toRow] – Matrix[fromRow] • scalar).

The operation will perform the next steps operations of the complete subtraction. This
design allows for the completion of the algorithm over the course of multiple task cycles for
matrices large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the subtraction.

Processing

1. Validates that the matrix is initialized and has begun a stepwise subtraction.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply fromRow by scalar and subtract the result from toRow.

3. fromRow remains unchanged.

4. Performs, at most, the next steps operations toward completing the subtraction
algorithm.

5. Decrements steps by the number of operations consumed.

Date Code 20180926 Instruction Manual MathMatrix

20 MathMatrix

Classes

6. Returns TRUE and unlocks the matrix if the subtraction completed.

7. Returns FALSE if the subtraction was not attempted or steps was exhausted before
the algorithm completed.

MatrixStepScale (Method)

Multiplies each element in this matrix by a scalar.

The operation will perform the next steps operations of the complete scaling operation. This
design allows for the completion of the algorithm over the course of multiple task cycles for
matrices large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the scaling operation.

Processing

1. Validates that the matrix is initialized and has begun a stepwise scaling operation.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply each element in the matrix by scalar.

3. Performs, at most, the next steps operations toward completing the scaling algorithm.

4. Decrements steps by the number of operations consumed.

5. Returns TRUE and unlocks the matrix if the scaling operation completed.

6. Returns FALSE if the scaling operation was not attempted or steps was exhausted
before the algorithm completed.

MatrixTimedRowAdd (Method)

This method adds one row to another inside this matrix, replacing the content of the second
row (Matrix[toRow] = Matrix[toRow] + Matrix[fromRow] • scalar).

The operation will perform work for the next duration microseconds toward completion
of the addition. This design allows for the completion of the algorithm over the course of
multiple task cycles for matrices large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 21

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the addition.

Processing

1. Validates that the matrix is initialized and has begun a stepwise addition.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply fromRow by scalar and add the result to toRow.

3. fromRow remains unchanged.

4. Performs work toward completing the addition algorithm, in groups of steps, until
duration microseconds is exceeded.

5. Decrements duration by the microseconds consumed.

6. Returns TRUE and unlocks the matrix if the addition completed.

7. Returns FALSE if the addition was not attempted or duration was exhausted before
the algorithm completed.

MatrixTimedRowDivide (Method)

This method divides each element in toRow by scalar and stores the results back in toRow
(Matrix[toRow] = Matrix[toRow] / scalar).

The operation will perform work for the next duration microseconds toward the complete
division. This design allows for the completion of the algorithm over the course of multiple
task cycles for matrices large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the division.

Processing

1. Validates that the matrix is initialized and has begun a stepwise division.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to divide each element in toRow by scalar.

3. Performs work toward completing the division algorithm, in groups of steps, until
duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

Date Code 20180926 Instruction Manual MathMatrix

22 MathMatrix

Classes

5. Returns TRUE and unlocks the matrix if the division completed.

6. Returns FALSE if the division was not attempted or duration was exhausted before
the algorithm completed.

MatrixTimedRowMultiply (Method)

This method multiplies each element in toRow by scalar and stores the results back in toRow
(Matrix[toRow] = Matrix[toRow] • scalar).

The operation will perform work for the next duration microseconds toward the complete
multiplication. This design allows for the completion of the algorithm over the course of
multiple task cycles for matrices large enough for completion time to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the multiplication.

Processing

1. Validates that the matrix is initialized and has begun a stepwise multiplication.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply each entry in toRow by scalar.

3. Performs work toward completing the multiplication algorithm, in groups of steps,
until duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

5. Returns TRUE and unlocks the matrix if the multiplication completed.

6. Returns FALSE if the multiplication was not attempted or duration was exhausted
before the algorithm completed.

MatrixTimedRowSubtract (Method)

This method subtracts one row from another inside this matrix, replacing the content of the
second row (Matrix[toRow] = Matrix[toRow] – Matrix[fromRow] • scalar).

The operation will perform work for the next duration microseconds toward the complete
subtraction. This design allows for the completion of the algorithm over the course of
multiple task cycles for matrices large enough for completion time to be a concern.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 23

Classes

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the subtraction.

Processing

1. Validates that the matrix is initialized and has begun a stepwise subtraction.

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply fromRow by scalar and subtract the result from toRow.

3. fromRow remains unchanged.

4. Performs work toward completing the subtraction algorithm, in groups of steps,
until duration microseconds is exceeded.

5. Decrements duration by the microseconds consumed.

6. Returns TRUE and unlocks the matrix if the subtraction completed.

7. Returns FALSE if the subtraction was not attempted or duration was exhausted
before the algorithm completed.

MatrixTimedScale (Method)

Multiplies each element in this matrix by a scalar.

The operation will perform work for the next duration microseconds toward the complete
scaling operation. This design allows for the completion of the algorithm over the course of
multiple task cycles for matrices large enough for completion duration to be a concern.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method completed the scaling operation.

Processing

1. Validates that the matrix is initialized and has begun a stepwise scaling operation.

Date Code 20180926 Instruction Manual MathMatrix

24 MathMatrix

Classes

2. If the checks pass, this method uses the values provided in StartMatrixOperation()
to multiply each element in the matrix by scalar.

3. Performs work toward completing the scaling algorithm, in groups of steps, until
duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

5. Returns TRUE and unlocks the matrix if the scaling operation completed.

6. Returns FALSE if the scaling operation was not attempted or duration was exhausted
before the algorithm completed.

RowSwap (Method)

This method exchanges the position of two rows in a given matrix.

Inputs

Name IEC 61131 Type Description

row1 UINT The first row to swap.
row2 UINT The second row to swap.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method performed the row swap.

Processing

1. Validates that the matrix is initialized and not performing any stepwise operation.

2. If the checks pass, swaps the positions of row1 and row2.

3. Returns TRUE if the swap succeeded.

4. Returns FALSE if the swap failed.

SetSize (Method)

This method changes the storage capacity of the matrix modifying Rows and Cols.

Inputs

Name IEC 61131 Type Description

rowCount UINT The new number of rows.
colCount UINT The new number of columns.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 25

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method resized the matrix.

Processing

1. Validates that the matrix is not performing any stepwise operation.

2. If either rowCount or colCount is zero, sets Rows and Cols to zero and frees all
system resources.

3. If both rowCount equals Rows and colCount equals Cols, leaves the matrix un-
changed.

4. If rowCount is greater than Rows, adds zeroed rows to the bottom of the matrix.

5. If rowCount is less than Rows, removes rows from the bottom of the matrix.

6. If colCount is greater than Cols, adds zeros to the end of each row.

7. If colCount is less than Cols, truncates each row to the new count.

8. Returns TRUE if the matrix is the newly requested size.

9. Returns FALSE if the matrix is not the newly requested size.

10. If the resize fails, the matrix retains all old values.

StartMatrixOperation (Method)

This method must be called to configure any stepwise or timed operation on only this matrix.
It accepts and stores the values used during the operation.

Inputs

Name IEC 61131 Type Description

operation enum_MatrixState The stepwise operation to begin.
fromRow UINT The row to use in the modification. Used only in addition

and subtraction.
toRow UINT The row to be modified.
scalar struct_ComplexRect The constant value to be used during the operation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the method locked the matrix to the requested operation.

Processing

1. Validates that the matrix is initialized and not performing any stepwise operation.

Date Code 20180926 Instruction Manual MathMatrix

26 MathMatrix

Classes

2. Validates row indices required for the operation requested. For addition and subtrac-
tion, both indices must be within the matrix. For multiplication and division, only
toRow is validated. For scaling operations, no row index is validated

3. Stores scalar for use during the operation.

4. Locks the matrix to prevent other operations from occurring.

5. Returns TRUE if the operation is primed.

6. Returns FALSE if anything prevents the operation from being primed.

class_MatrixAdd (Class)

This class handles the locking handshakes and the state required to add two class_Matrix
objects over the course of multiple scans.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to perform a new addition (result = matrix1 + matrix2). It
must be called before each addition of two matrices to be performed.

Inputs/Outputs

Name IEC 61131 Type Description

matrix1 class_Matrix The first addend.
matrix2 class_Matrix The second addend.
result class_Matrix The sum of matrix1 and matrix2.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the addition operation is now ready.

Processing

1. Returns FALSE if either matrix1 or matrix2 is not initialized.

2. Returns FALSE if result is not a separate matrix from both matrix1 and matrix2.

3. Returns FALSE if any of the three matrices is busy doing any stepwise operation.

4. Returns FALSE if the dimensions of matrix1 do not match those of matrix2.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 27

Classes

5. Returns FALSE if result cannot be made to be the same dimensions as the other two
matrices.

6. Returns FALSE if it cannot lock all matrices involved in the operation.

7. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

8. The contents of result are destroyed by this method.

ProcessSteps (Method)

This method performs the addition algorithm on three already locked-in matrices.

The operation will perform the next steps sub-operations of the complete addition algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the addition completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Adds each element in matrix1 to its corresponding element in matrix2 and stores
the sum in result.

3. Decrements steps by the number of operations performed.

4. Returns TRUE if the addition algorithm completed before steps was exhausted.

5. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

ProcessTimed (Method)

This method performs the addition algorithm on three already locked-in matrices.

The operation will perform work for the next duration microseconds toward the complete
addition algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Date Code 20180926 Instruction Manual MathMatrix

28 MathMatrix

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the addition completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Adds each element in matrix1 to its corresponding element in matrix2 and stores
the sum in result.

3. Performs work toward completing the addition algorithm, in groups of steps, until
duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

5. Returns TRUE if the addition algorithm completed before duration was exhausted.

6. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_MatrixCopyColumn (Class)

This class handles the locking handshakes and the state required to copy a column from one
class_Matrix object to another over the course of multiple scans.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to perform a new column copy. It must be called before each
column copy to be performed.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 29

Classes

Inputs

Name IEC 61131 Type Description

fromColumn UINT The index of the column to copy from.
toColumn UINT The index of the column to copy to.

Inputs/Outputs

Name IEC 61131 Type Description

fromMatrix class_Matrix The matrix to be copied from.
toMatrix class_Matrix The matrix to be copied to.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the copy operation is now ready.

Processing

1. Returns FALSE if either fromMatrix or toMatrix is not initialized.

2. Returns FALSE if either of the matrices is busy doing any stepwise operation.

3. Returns FALSE if Rows of matrix1 does not match Rows of matrix2.

4. Returns FALSE if either index provided is outside of the corresponding matrix.

5. Returns FALSE if it cannot lock all matrices involved in the operation.

6. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

ProcessSteps (Method)

This method performs the copy algorithm on two already locked-in matrices.

The operation will perform the next steps sub-operations of the complete copy.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the copy completed.

Date Code 20180926 Instruction Manual MathMatrix

30 MathMatrix

Classes

Processing

1. Validates that LockMatrices() has been successfully called.

2. Copies each element in column fromColumn of fromMatrix to its corresponding
element in column toColumn of toMatrix.

3. Decrements steps by the number of sub-operations performed.

4. Returns TRUE if the copy algorithm completed before steps was exhausted.

5. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

ProcessTimed (Method)

This method performs the copy algorithm on two already locked-in matrices.

The operation will perform work for the next duration microseconds toward the complete
copy.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the copy completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Copies each element in column fromColumn of fromMatrix to its corresponding
element in column toColumn of toMatrix.

3. Performs work toward completing the copy algorithm, in groups of steps, until
duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

5. Returns TRUE if the copy algorithm completed before duration was exhausted.

6. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 31

Classes

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_MatrixDeterminant (Class)

This class handles the locking handshakes and the state required to calculate the determinant
of a matrix over the course of multiple scans.

If the purpose behind calculating the determinant is a check before inverting a matrix or as
part of the process of solving a system of equations this class is not the most optimal to use.
In these cases it is better to use the class_MatrixInvert or the class_MatrixGaussianElim
object instead as the overhead for all three is similar.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to calculate the determinant of a new matrix. It must be called
before each operation to be performed.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix to calculate the determinant of. This matrix is
left unchanged.

workspace class_Matrix Memory to do the calculation in. If this is the same size
as original, no memory allocation will occur in finding the
determinant.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation is now ready.

Processing

1. Returns FALSE if original is not initialized.

2. Returns FALSE if workspace is not a separate matrix from original.

3. Returns FALSE if either of the matrices is busy doing any stepwise operation.

4. Returns FALSE if original is not a square matrix.

Date Code 20180926 Instruction Manual MathMatrix

32 MathMatrix

Classes

5. Returns FALSE if workspace cannot be resized to the correct dimensions.

6. Returns FALSE if it cannot lock all matrices involved in the operation.

7. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

8. The contents of workspace are destroyed by this method.

ProcessSteps (Method)

This method computes the determinant of an already locked-in matrix.

The operation will perform the next steps sub-operations of the complete task.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Outputs

Name IEC 61131 Type Description

determinant struct_ComplexRect The determinant of the matrix. Zero if the calculation is
incomplete or the matrix is not invertible.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Decrements steps by the number of sub-operations performed.

3. Returns TRUE and outputs the calculated determinant if the algorithm completed
before steps was exhausted.

4. Returns FALSE and outputs a determinant of zero if LockMatrices() has not
been called or steps was exhausted before completing the algorithm.

5. In the case that the matrix is not invertible, outputs a determinant of zero.

ProcessTimed (Method)

This method computes the determinant of an already locked-in matrix.

The operation will perform work for the next duration microseconds toward the complete
matrix operation.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 33

Classes

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Outputs

Name IEC 61131 Type Description

determinant struct_ComplexRect The determinant of the matrix. Zero if the calculation is
incomplete or the matrix is not invertible.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Performs work toward completing the algorithm, in groups of steps, until duration
microseconds is exceeded.

3. Decrements duration by the microseconds consumed.

4. Returns TRUE and outputs the calculated determinant if the operation completed
before duration was exhausted.

5. Returns FALSE and outputs a determinant of zero if LockMatrices() has not
been called or duration was exhausted before completing the algorithm.

6. In the case that the matrix is not invertible, outputs a determinant of zero.

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

Date Code 20180926 Instruction Manual MathMatrix

34 MathMatrix

Classes

class_MatrixGaussianElim (Class)

This class handles the locking handshakes and the state required to simplify the matrix to a
diagonal ones matrix with trailing columns using Gaussian elimination over the course of
multiple scans. The contents of coefficients are destroyed and the contents of solutions are
modified by this class.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to perform the Gaussian elimination. It must be called before
each calculation to be performed.

Inputs/Outputs

Name IEC 61131 Type Description

coefficients class_Matrix The coefficients of the variables being solved for.
solutions class_Matrix The right hand side of the system of equations.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the Gaussian elimination is now ready.

Processing

1. Returns FALSE if either matrix is not initialized.

2. Returns FALSE if coefficients is not a separate matrix from solutions.

3. Returns FALSE if either matrix is busy doing any stepwise operation.

4. Returns FALSE if coefficients has fewer columns than rows.

5. Returns FALSE if solutions is not one column with the same number of rows as
coefficients.

6. Returns FALSE if it cannot lock both matrices involved in the operation.

7. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

ProcessSteps (Method)

This method performs Gaussian elimination on two already locked-in matrices.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 35

Classes

The operation will perform the next steps sub-operations of the complete calculation.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Outputs

Name IEC 61131 Type Description

error BOOL This algorithm cannot solve this system of equations.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the Gaussian elimination completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Reduces the first Rows • Rows of coefficients to an identity matrix using elementary
row operations.

3. Performs the same row operations on solutions.

4. If at any time the row operations cannot reduce coefficients further and there is still
not an identity matrix on the left, the operation is terminated and error is set.

5. Decrements steps by the number of operations performed.

6. Returns TRUE if the Gaussian elimination completed before steps was exhausted.

7. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

8. The contents of coefficients are destroyed and the contents of solutions are modified
by this method.

Output Combination Meanings

Error Return Description

FALSE FALSE This should never occur.
FALSE TRUE The Gaussian elimination completed successfully.
TRUE FALSE The matrix state prevented the Gaussian elimination request.
TRUE TRUE The matrix is not invertible and cannot be reduced by this Gaussian elimi-

nation algorithm.

Date Code 20180926 Instruction Manual MathMatrix

36 MathMatrix

Classes

ProcessTimed (Method)

This method performs Gaussian elimination on two already locked-in matrices.

The operation will perform work for the next duration microseconds toward the complete
inversion algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Outputs

Name IEC 61131 Type Description

error BOOL This algorithm cannot solve this system of equations.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the Gaussian elimination completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Reduces the first Rows • Rows of coefficients to an identity matrix using elementary
row operations.

3. Performs the same row operations on solutions.

4. If at any time the row operations cannot reduce coefficients further and there is still
not an identity matrix on the left, the operation is terminated and error is set.

5. Performs work toward completing the algorithm, in groups of steps, until duration
microseconds is exceeded.

6. Decrements duration by the microseconds consumed.

7. Returns TRUE if the Gaussian elimination completed before duration was exhausted.

8. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

9. The contents of coefficients are destroyed and the contents of solutions are modified
by this method.

The table, listed for the previous method, is provided as reference for interpreting output
combinations.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 37

Classes

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_MatrixInvert (Class)

This class handles the locking handshakes and the state required to create the inverse of a
square matrix over the course of multiple scans. The contents of original are destroyed in
the process so if the data are still desired, they must be copied before this class is used. The
entire operation will complete before the function returns.

One common use case for inverting a matrix is to solve a system of equations. In this library
that use case is discouraged unless solving the same system for many solutions as Gaussian
elimination performs the same functionality with less overhead.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to invert a matrix. (result = original-1). It must be called
before each inversion to be performed.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix to invert.
result class_Matrix The inverted matrix.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the inversion operation is now ready.

Date Code 20180926 Instruction Manual MathMatrix

38 MathMatrix

Classes

Processing

1. Returns FALSE if original is not initialized.

2. Returns FALSE if result is not a separate matrix from original.

3. Returns FALSE if any of the matrices is busy doing any stepwise operation.

4. Returns FALSE if original is not a square matrix.

5. Returns FALSE if result cannot be sized correctly to store the product.

6. Returns FALSE if it cannot lock all matrices involved in the operation.

7. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

8. The contents of result are destroyed by this method.

ProcessSteps (Method)

This method performs the inversion algorithm on two already locked-in matrices.

The operation will perform the next steps sub-operations of the complete inversion algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Outputs

Name IEC 61131 Type Description

error BOOL The matrix is not invertible.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the inversion completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Sets result to an identity matrix.

3. Reduces original to an identity matrix using elementary row operations.

4. Performs the same row operations on result to create the inverse.

5. If at any time the row operations cannot reduce original further and it is still not an
identity matrix, the operation is terminated and error is set.

6. Decrements steps by the number of operations performed.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 39

Classes

7. Returns TRUE if the inversion algorithm completed before steps was exhausted.

8. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

9. The contents of original are destroyed by this method.

ProcessTimed (Method)

This method performs the inversion algorithm on two already locked-in matrices.

The operation will perform work for the next duration microseconds toward the complete
inversion algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Outputs

Name IEC 61131 Type Description

error BOOL The matrix is not invertible.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the inversion completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Sets result to an identity matrix.

3. Reduces original to an identity matrix using elementary row operations.

4. Performs the same row operations on result to create the inverse.

5. If at any time the row operations cannot reduce original further and it is still not an
identity matrix, the operation is terminated and error is set.

6. Performs work toward completing the algorithm, in groups of steps, until duration
microseconds is exceeded.

7. Decrements duration by the microseconds consumed.

8. Returns TRUE if the inversion algorithm completed before duration was exhausted.

9. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

10. The contents of original are destroyed by this method.

Date Code 20180926 Instruction Manual MathMatrix

40 MathMatrix

Classes

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_MatrixMultiply (Class)

This class handles the locking handshakes and the state required to multiply two class_Matrix
objects over the course of multiple scans.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to perform a new multiply (result = matrix1 • matrix2). It
must be called before each multiply to be performed.

Inputs/Outputs

Name IEC 61131 Type Description

matrix1 class_Matrix The multiplicand.
matrix2 class_Matrix The multiplier.
result class_Matrix The matrix to store the product.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the multiply operation is now ready.

Processing

1. Returns FALSE if either matrix1 or matrix2 is not initialized.

2. Returns FALSE if result is not a separate matrix from both matrix1 and matrix2.

3. Returns FALSE if any of the matrices are busy doing any stepwise operation.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 41

Classes

4. Returns FALSE if Cols of matrix1 does not match Rows of matrix2.

5. Returns FALSE if result cannot be sized correctly to store the product.

6. Returns FALSE if it cannot lock all matrices involved in the operation.

7. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

8. The contents of result are destroyed by this method.

ProcessSteps (Method)

This method performs the multiplication algorithm on three already locked-in matrices.

The operation will perform the next steps sub-operations of the complete multiplication
algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the multiplication completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Multiplies matrix1 by matrix2.

3. Decrements steps by the number of operations performed.

4. Returns TRUE if the multiply algorithm completed before steps was exhausted.

5. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

ProcessTimed (Method)

This method performs the multiplication algorithm on three already locked-in matrices.

The operation will perform work for the next duration microseconds toward the complete
multiplication algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Date Code 20180926 Instruction Manual MathMatrix

42 MathMatrix

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the multiplication completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Multiplies matrix1 by matrix2.

3. Performs work toward completing the multiplication algorithm, in groups of steps,
until duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

5. Returns TRUE if the multiply algorithm completed before duration was exhausted.

6. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_MatrixSubtract (Class)

This class handles the locking handshakes and the state required to subtract one class_Matrix
object from another over the course of multiple scans.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to perform a new subtraction (result = matrix1 – matrix2). It
must be called before each subtraction to be performed.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 43

Classes

Inputs/Outputs

Name IEC 61131 Type Description

matrix1 class_Matrix The minuend.
matrix2 class_Matrix The subtrahend.
result class_Matrix The difference of matrix1 – matrix2.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the subtraction operation is now ready.

Processing

1. Returns FALSE if either matrix1 or matrix2 is not initialized.

2. Returns FALSE if result is not a separate matrix from both matrix1 and matrix2.

3. Returns FALSE any of the matrices are busy doing any stepwise operation.

4. Returns FALSE if the dimensions of matrix1 do not match those of matrix2.

5. Returns FALSE if result cannot be resized to match the dimensions of the other two
matrices.

6. Returns FALSE if it cannot lock all matrices involved in the operation.

7. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

8. The contents of result are destroyed by this method.

ProcessSteps (Method)

This method performs the subtraction algorithm on three already locked-in matrices.

The operation will perform the next steps sub-operations of the complete subtraction algo-
rithm.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the subtraction completed.

Date Code 20180926 Instruction Manual MathMatrix

44 MathMatrix

Classes

Processing

1. Validates that LockMatrices() has been successfully called.

2. Subtracts each element in matrix2 from its corresponding element in matrix1 and
the difference in result.

3. Decrements steps by the number of sub-operations performed.

4. Returns TRUE if the subtraction algorithm completed before steps was exhausted.

5. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

ProcessTimed (Method)

This method performs the subtraction algorithm on three already locked-in matrices.

The operation will perform work for the next duration microseconds toward the complete
subtraction algorithm.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the subtraction completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Subtracts each element in matrix2 from its corresponding element in matrix1 and
stores the difference in result.

3. Performs work toward completing the subtraction algorithm, in groups of steps,
until duration microseconds is exceeded.

4. Decrements duration by the microseconds consumed.

5. Returns TRUE if the subtraction algorithm completed before duration was exhausted.

6. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 45

Classes

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_MatrixTranspose (Class)

This class handles the locking handshakes and the state required to transpose a class_Matrix
object over the course of multiple scans.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

LockMatrices (Method)

This method primes the class to perform a new matrix transpose. It must be called before
each transpose to be performed.

Inputs

Name IEC 61131 Type Description

conjugate BOOL The result of this operation will be the Hermitian Transpose.
Before each element is placed in result, it will be conjugated.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix to copy from.
result class_Matrix The matrix to copy to.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the transpose operation is now ready.

Processing

1. Returns FALSE if original is not initialized.

2. Returns FALSE if result is not a separate matrix from original.

3. Returns FALSE if either of the matrices is busy doing any stepwise operation.

4. Returns FALSE if result cannot be resized to the correct dimensions.

Date Code 20180926 Instruction Manual MathMatrix

46 MathMatrix

Classes

5. Returns FALSE if it cannot lock all matrices involved in the operation.

6. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

7. The contents of result are destroyed by this method.

ProcessSteps (Method)

This method transposes an already locked-in matrix.

The operation will perform the next steps sub-operations of the complete matrix transpose.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the transpose completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Copies each element (i, j) from original to element (j, i) of result.

3. If conjugate was TRUE, conjugate each element in result.

4. Decrements steps by the number of sub-operations performed.

5. Returns TRUE if the transpose algorithm completed before steps was exhausted.

6. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

ProcessTimed (Method)

This method transposes an already locked-in matrix.

The operation will perform work for the next duration microseconds toward the complete
matrix transpose.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 47

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the transpose completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Copies each element (i, j) from original to element (j, i) of result.

3. If conjugate was TRUE, conjugate each element in result.

4. Performs work toward completing the transpose, in groups of steps, until duration
microseconds is exceeded.

5. Decrements duration by the microseconds consumed.

6. Returns TRUE if the transpose algorithm completed before duration was exhausted.

7. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

class_Matrix_ATA (Class)

This class handles the locking handshakes and the state required for an optimization of the
operation (ATA) transposing the input matrix and multiplying it by the original matrix over
the course of multiple scans.

Outputs

Name IEC 61131 Type Description

Busy BOOL This class has locked class_Matrix instances and is in the middle
of a calculation.

Date Code 20180926 Instruction Manual MathMatrix

48 MathMatrix

Classes

LockMatrices (Method)

This method primes the class to perform a new matrix operation ATA. It must be called
before each operation to be performed.

Inputs

Name IEC 61131 Type Description

conjugate BOOL The result of this operation will be calculated using the Her-
mitian Transpose. Before the transpose step is complete, each
element will be conjugated.

Inputs/Outputs

Name IEC 61131 Type Description

original class_Matrix The matrix A.
result class_Matrix The matrix for the result.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation is now ready.

Processing

1. Returns FALSE if original is not initialized.

2. Returns FALSE if result is not a separate matrix from original.

3. Returns FALSE if either of the matrices is busy doing any stepwise operation.

4. Returns FALSE if result cannot be resized to the correct dimensions.

5. Returns FALSE if it cannot lock all matrices involved in the operation.

6. If all other checks succeeded, then stores required references, sets Busy to TRUE,
and returns TRUE.

7. The contents of result are destroyed by this method.

ProcessSteps (Method)

This method computes ATA of an already locked-in matrix.

The operation will perform the next steps sub-operations of the complete task.

Inputs/Outputs

Name IEC 61131 Type Description

steps UDINT The number of sub-operations to attempt this task cycle.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 49

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Decrements steps by the number of sub-operations performed.

3. Returns TRUE if the algorithm completed before steps was exhausted.

4. Returns FALSE if LockMatrices() has not been called or steps was exhausted
before completing the algorithm.

ProcessTimed (Method)

This method computes ATA of an already locked-in matrix.

The operation will perform work for the next duration microseconds toward the complete
matrix operation.

Inputs/Outputs

Name IEC 61131 Type Description

duration UDINT The number of microseconds to spend on this calculation.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the operation completed.

Processing

1. Validates that LockMatrices() has been successfully called.

2. Performs work toward completing the algorithm, in groups of steps, until duration
microseconds is exceeded.

3. Decrements duration by the microseconds consumed.

4. Returns TRUE if the operation completed before duration was exhausted.

5. Returns FALSE if LockMatrices() has not been called or duration was exhausted
before completing the algorithm.

Date Code 20180926 Instruction Manual MathMatrix

50 MathMatrix

Benchmarks

UnlockMatrices (Method)

This method unlocks any matrices locked by LockMatrices(). It only needs to be called
by the user if the matrix operation has been terminated early by calling Clear() on any of
the dependent matrices. In all other cases, the matrices will be unlocked on completion of
the algorithm.

Processing

1. Requests that all locked matrices free themselves for other operations.

2. Sets Busy to FALSE.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3505

â R134 firmware

ä SEL-3530

â R134 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V1 firmware

Benchmark Test Descriptions

Each benchmark is run on three different matrices: a 2 by 2, an 8 by 8, and a 64 by 64. All
matrices used in the benchmarks are sized such that no memory allocations occur during
the benchmark run.

fun_DeleteMatrix

The posted time is the average execution time of 100 consecutive calls when deleting a
matrix.

fun_MatrixAdd

The posted time is the average execution time of 100 consecutive calls when adding two
matrices.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 51

Benchmarks

fun_MatrixCopyColumn

The posted time is the average execution time of 100 consecutive calls when copying a
column from one matrix to another.

fun_MatrixDeterminant

The posted time is the average execution time of 100 consecutive calls when operating on a
valid invertable matrix.

fun_MatrixGaussianElim

The posted time is the average execution time of 100 consecutive calls when operating on a
valid matrix that allows the algorithm to run to completion.

fun_MatrixInvert

The posted time is the average execution time of 100 consecutive calls when inverting a
matrix.

fun_MatrixMultiply

The posted time is the average execution time of 100 consecutive calls when multiplying
two matrices.

fun_MatrixSubtract

The posted time is the average execution time of 100 consecutive calls when subtracting
two matrices.

fun_MatrixTranspose

The posted time is the average execution time of 100 consecutive calls when transposing a
matrix.

fun_MatrixTranspose (Hermitian)

The posted time is the average execution time of 100 consecutive calls when calculating the
Hermitian transpose of a matrix.

fun_Matrix_ATA

The posted time is the average execution time of 100 consecutive calls when calculating
ATA.

Date Code 20180926 Instruction Manual MathMatrix

52 MathMatrix

Benchmarks

fun_Matrix_ATA (Hermitian)

The posted time is the average execution time of 100 consecutive calls when calculating
ATA when using the Hermitian transpose.

fun_NewMatrix

The posted time is the average execution time of 100 consecutive calls when allocating a
new matrix.

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

fun_DeleteMatrix - 2x2 118 54 6
fun_DeleteMatrix - 8x8 105 49 4
fun_DeleteMatrix - 64x64 119 57 4
fun_MatrixAdd - 2x2 17 7 1
fun_MatrixAdd - 8x8 66 46 4
fun_MatrixAdd - 64x64 5 408 3 299 244
fun_MatrixCopyColumn - 2x2 7 2 1
fun_MatrixCopyColumn - 8x8 10 3 1
fun_MatrixCopyColumn - 64x64 61 36 1
fun_MatrixDeterminant - 2x2 69 41 3
fun_MatrixDeterminant - 8x8 1 118 665 53
fun_MatrixDeterminant - 64x64 515 458 292 846 26 267
fun_MatrixGaussianElim - 2x2 76 39 2
fun_MatrixGaussianElim - 8x8 1 392 731 61
fun_MatrixGaussianElim - 64x64 516 370 296 721 26 789
fun_MatrixInvert - 2x2 74 48 3
fun_MatrixInvert - 8x8 2 092 1 243 105
fun_MatrixInvert - 64x64 1 034 455 581 496 52 648
fun_MatrixMultiply - 2x2 26 15 2
fun_MatrixMultiply - 8x8 1 002 626 51
fun_MatrixMultiply - 64x64 554 947 325 479 26 534
fun_MatrixSubtract - 2x2 13 6 1
fun_MatrixSubtract - 8x8 90 41 4
fun_MatrixSubtract - 64x64 5 341 3 066 242
fun_MatrixTranspose - 2x2 8 4 1
fun_MatrixTranspose - 8x8 29 12 1
fun_MatrixTranspose - 64x64 2 447 1 731 71
fun_MatrixTranspose (Hermitian) - 2x2 14 7 1
fun_MatrixTranspose (Hermitian) - 8x8 97 48 3
fun_MatrixTranspose (Hermitian) - 64x64 6 071 3 699 192
fun_Matrix_ATA - 2x2 26 15 1
fun_Matrix_ATA - 8x8 563 318 29
fun_Matrix_ATA - 64x64 308 482 179 945 13 186
fun_Matrix_ATA (Hermitian) - 2x2 34 19 1

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 53

Examples

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

fun_Matrix_ATA (Hermitian) - 8x8 877 455 39
fun_Matrix_ATA (Hermitian) - 64x64 431 940 239 407 17 341
fun_NewMatrix - 2x2 340 98 10
fun_NewMatrix - 8x8 87 39 5
fun_NewMatrix - 64x64 744 327 13

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Solving a System of Equations

Objective

The user desires to repeatably solve a system of equations for some set of outputs. This
example solves three equations for three unknowns.

For example, on a given scan the system of equations could be:
x + 2y + 3z = 2
2x + 3y + z = 2
3x + 2y + z = 10

This becomes a 3x4 matrix which, after Gaussian elimination, appears as follows: 1 2 3 2
2 3 1 2
3 2 1 10

 =>

 1 0 0 5
0 1 0 −3
0 0 1 1

By inspection the solution becomes:

x = 5
y = −3
z = 1

Assumptions

Each scan the user has placed the values to use into a pair of arrays of struct_ComplexRect
objects, Values and Answers, before this program is called.

Date Code 20180926 Instruction Manual MathMatrix

54 MathMatrix

Examples

Solution

The user can call this program each scan to receive a solution for the provided inputs, as
shown in Code Snippet 1.

Code Snippet 1 prg_MatrixSolver

PROGRAM prg_MatrixSolver
VAR

(* Here are sample values to generate a matrix with a known solution
[[1 2 3 | 2]
[2 3 1 | 2]
[3 2 1 | 10]] *)

Values : ARRAY [0 .. 8] OF struct_ComplexRect :=
[(Re := 1), (Re := 2), (Re := 3),
(Re := 2), (Re := 3), (Re := 1),
(Re := 3), (Re := 2), (Re := 1)];

AnswerCol : ARRAY [0 .. 2] OF struct_ComplexRect :=
[(Re := 2), (Re := 2), (Re := 10)];

// The result should be [5, -3, 1]
Solution : ARRAY [0 .. 2] OF struct_ComplexRect;

CoefficientsMatrix : class_Matrix(3, 3);
SolutionsMatrix : class_Matrix(3, 1);
pt_Data : POINTER TO POINTER TO struct_ComplexRect;
Unsolved : BOOL;

Row : UINT;
Col : UINT;

END_VAR

//Load each row of the matrix
FOR Row := 0 to CoefficientsMatrix.Rows - 1 DO

pt_Data := CoefficientsMatrix.pt_Data;
//Load all but the answer column of the matrix
FOR Col := 0 TO CoefficientsMatrix.Cols - 1 DO

pt_Data[Row][Col] := Values[Row*(CoefficientsMatrix.Cols) + Col];
END_FOR
//Load the answer column after the final increment above
pt_Data := SolutionsMatrix.pt_Data;
pt_Data[Row][0] := AnswerCol[Row];

END_FOR

fun_MatrixGaussianElim(CoefficientsMatrix, SolutionsMatrix, error =>
Unsolved);

FOR Row := 0 to SolutionsMatrix.Rows - 1 DO
//If a solution was successfully found update the solution array.
IF NOT Unsolved THEN

pt_Data := SolutionsMatrix.pt_Data;
Solution[Row] := pt_Data[Row][0];

END_IF
END_FOR

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 55

Examples

Manipulating a Matrix Across Multiple Scans

Objective

The user needs to manipulate a set of data in matrix form, but has some set of timing
constraints that cause concern regarding the completion of the operations.

Assumptions

The user has created an enumeration to assist in managing the data flow to the desired
outcome.

Code Snippet 2 enum_States

TYPE enum_States :
(

IDLE,
BUILD_MATRICES,
SUM_MATRICES,
SCALE_RESULT,
STORE_RESULT,
ERROR

);
END_TYPE

Solution

The user can call this program each scan, as shown in Code Snippet 3, to receive a solution
for the provided inputs. When Begin is set to true, the calculation will commence. When
the program has copied the answer into Solution, the program sets the Complete flag to true.

Date Code 20180926 Instruction Manual MathMatrix

56 MathMatrix

Examples

Code Snippet 3 prg_MatrixManipulation

PROGRAM prg_MatrixManipulation
VAR CONSTANT

c_StepsPerScan : UDINT := 5;
END_VAR
VAR

State : enum_States := IDLE;

Values1 : ARRAY [0 .. 11] OF struct_ComplexRect;
Values2 : ARRAY [0 .. 11] OF struct_ComplexRect;
Solution : ARRAY [0 .. 11] OF struct_ComplexRect;

Matrix1 : class_Matrix(4, 3);
Matrix2 : class_Matrix(4, 3);
MatrixEnd : class_Matrix(4, 3);
Adder : class_MatrixAdd;
Scalar : struct_ComplexRect := (Re := 2, Im := 0);
pt_Data1 : POINTER TO POINTER TO struct_ComplexRect;
pt_Data2 : POINTER TO POINTER TO struct_ComplexRect;

Row : UINT;
Col : UINT;
Steps : UDINT;
Scans : UDINT;
Begin : BOOL;
Complete : BOOL;

END_VAR

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 57

Examples

Code Snippet 3 prg_MatrixManipulation (Continued)

Steps := c_StepsPerScan;
Scans := Scans + 1;
WHILE Steps > 0 DO

CASE State OF
IDLE:

IF Begin THEN
State := BUILD_MATRICES;
Row := 0;
Col := 0;
Scans := 1;
pt_Data1 := Matrix1.pt_Data;
pt_Data2 := Matrix2.pt_Data;
Begin := FALSE;
Complete := FALSE;
Steps := Steps - 1;

ELSE
Scans := Scans - 1;
Steps := 0;

END_IF
BUILD_MATRICES:

//This is a state machine to load the matrix a few values at a time
Steps := Steps - 1;
pt_Data1[Row][Col] := Values1[Row*(Matrix1.Cols) + Col];
pt_Data2[Row][Col] := Values2[Row*(Matrix1.Cols) + Col];
Col := Col + 1;
IF Col = Matrix1.Cols THEN

Col := 0;
Row := Row + 1;
IF Row = Matrix1.Rows THEN

IF Adder.LockMatrices(Matrix1, Matrix2, MatrixEnd) THEN
State := SUM_MATRICES;

ELSE
State := ERROR;

END_IF
END_IF

END_IF
SUM_MATRICES:

IF Adder.ProcessSteps(steps) THEN
IF MatrixEnd.StartMatrixOperation(MATRIX_SCALE, 0, 0, Scalar)

THEN
State := SCALE_RESULT;

ELSE
State := ERROR;

END_IF
END_IF

SCALE_RESULT:
IF MatrixEnd.MatrixStepScale(steps) THEN

State := STORE_RESULT;
Row := 0;
Col := 0;

END_IF

Date Code 20180926 Instruction Manual MathMatrix

58 MathMatrix

Examples

Code Snippet 3 prg_MatrixManipulation (Continued)

STORE_RESULT:
Steps := Steps - 1;
Solution[Row*(MatrixEnd.Cols) + Col] := MatrixEnd.pt_Data[Row][Col];
Col := Col + 1;
IF Col = MatrixEnd.Cols THEN

Col := 0;
Row := Row + 1;
IF Row = MatrixEnd.Rows THEN

State := IDLE;
Complete := TRUE;
Steps := 0;

END_IF
END_IF

ERROR:
Steps := 0;

END_CASE
END_WHILE

Troubleshooting a Matrix

Objective

The user has designed a solution with matrices to perform some set of calculations and
something is not going as desired. The user would like to have additional insight into the
matrix element values for online troubleshooting.

Assumptions

This solution assumes a static matrix size. This is not required but if the Rows and Cols
variables of the matrix do not match the sizes provided for the troubleshooting variable, the
user must realize that only data up to the size of the matrix are valid.

Solution

The user can add an additional pointer variable to provide additional insight during runtime.
The syntax for this pointer is shown in Code Snippet 4.

MathMatrix Instruction Manual Date Code 20180926

MathMatrix 59

Examples

Code Snippet 4 prg_MatrixTroubleshoot

PROGRAM prg_MatrixTroubleshoot
VAR CONSTANT

c_Rows : UINT := 2;
c_Cols : UINT := 6;

END_VAR
VAR

Values1 : ARRAY [0 .. 11] OF struct_ComplexRect;

Matrix1 : class_Matrix(c_Rows, c_Cols);

(*This is the troubleshooting variable that has been added.
To be valid it must be reassigned each time the memory allocated to
the matrix could change, so the safest usage is to assign it

immediately
before using it.*)

pt_Raw : POINTER TO ARRAY [0 .. c_Rows-1] OF
POINTER TO ARRAY [0 .. c_Cols-1] OF struct_ComplexRect;

END_VAR

//Load the matrix
(*The SysMemCpy command allows the movement of large quantities of

contiguous
data with a single instruction. This can greatly increase the performance
of large data copies. If the destination and the source could overlap
then the SysMemMove call facilitates this with a little more overhead.*)

SysMemCpy(Matrix1.pt_Data[0], ADR(Values1),
c_Cols*SIZEOF(struct_ComplexRect));

SysMemCpy(Matrix1.pt_Data[1], ADR(Values1[6]),
c_Cols*SIZEOF(struct_ComplexRect));

(*Here is where we find some meaningful work up to the point of interest
for troubleshooting.*)

//Assign the troubleshooting variable. Now the data can be seen in
//online mode.
//This line is where a breakpoint would be added.
pt_Raw := Matrix1.pt_Data;

(*There is probably additional work to be accomplished after the point of
interest as well*)

Date Code 20180926 Instruction Manual MathMatrix

60 MathMatrix

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.1 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.0.1 ä Initial release. 20150722

MathMatrix Instruction Manual Date Code 20180926

	Section 1: MathMatrix
	Introduction
	Special Considerations

	Supported Firmware Versions
	Enumerations
	enum_MatrixState

	Functions
	fun_DeleteMatrix (Function)
	fun_MatrixAdd (Function)
	fun_MatrixCopyColumn (Function)
	fun_MatrixDeterminant (Function)
	fun_MatrixGaussianElim (Function)
	fun_MatrixInvert (Function)
	fun_MatrixMultiply (Function)
	fun_MatrixSubtract (Function)
	fun_MatrixTranspose (Function)
	fun_Matrix_ATA (Function)
	fun_NewMatrix (Function)

	Classes
	class_Matrix (Class)
	Clear (Method)
	MatrixRowAdd (Method)
	MatrixRowDivide (Method)
	MatrixRowMultiply (Method)
	MatrixRowSubtract (Method)
	MatrixScale (Method)
	MatrixStepRowAdd (Method)
	MatrixStepRowDivide (Method)
	MatrixStepRowMultiply (Method)
	MatrixStepRowSubtract (Method)
	MatrixStepScale (Method)
	MatrixTimedRowAdd (Method)
	MatrixTimedRowDivide (Method)
	MatrixTimedRowMultiply (Method)
	MatrixTimedRowSubtract (Method)
	MatrixTimedScale (Method)
	RowSwap (Method)
	SetSize (Method)
	StartMatrixOperation (Method)

	class_MatrixAdd (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixCopyColumn (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixDeterminant (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixGaussianElim (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixInvert (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixMultiply (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixSubtract (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_MatrixTranspose (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	class_Matrix_ATA (Class)
	LockMatrices (Method)
	ProcessSteps (Method)
	ProcessTimed (Method)
	UnlockMatrices (Method)

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fun_DeleteMatrix
	fun_MatrixAdd
	fun_MatrixCopyColumn
	fun_MatrixDeterminant
	fun_MatrixGaussianElim
	fun_MatrixInvert
	fun_MatrixMultiply
	fun_MatrixSubtract
	fun_MatrixTranspose
	fun_MatrixTranspose (Hermitian)
	fun_Matrix_ATA
	fun_Matrix_ATA (Hermitian)
	fun_NewMatrix

	Benchmark Results

	Examples
	Solving a System of Equations
	Objective
	Assumptions
	Solution

	Manipulating a Matrix Across Multiple Scans
	Objective
	Assumptions
	Solution

	Troubleshooting a Matrix
	Objective
	Assumptions
	Solution

	Release Notes

