
FileIO

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers



Table of Contents

Section 1: FileIO

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Supported Firmware Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Global Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

FileIO Instruction Manual Date Code 20190214



NOTE: See the ACSELERATOR RTAC

Library Extensions Instruction Manual

(LibraryExtensionsIM) for explanation

of the concepts used by the

object-oriented extensions to the

IEC 61131-3 standard.

RTAC LIBRARY

FileIO

Introduction

The FileIO library includes the internal RTAC sel_file and sel_ftp_client libraries. This
library provides function blocks that simplify asynchronous file management for basic file
read and write operations. It also provides access to the underlying firmware interface
libraries.

Because the classes this library provides manage asynchronous file operations, the user
must call the Run() method of instantiated classes on every scan to ensure that all queued
work is correctly performed and monitored. Each class provides various methods to initiate
new read or write operations, collect data, or cause other changes in state.

Special Considerations

ä Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:=” must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error
such as:

// "C0328: Assignment not allowed for type class_FileIOObject"
myFileIOObject := otherFileIOObject;

// This is fine
someVariable := myFileIOObject.value;
// As is this
pt_myFileIOObject := ADR(myFileIOObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT
members in function blocks, functions, or methods. Place them in the VAR_-
IN_OUT section or use pointers instead.

Date Code 20190214 Instruction Manual FileIO



2 FileIO

Enumerations

ä Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

ä All file read operations are done completely into RAM. This means that the reading
of large files that exceed the available RAM will not work as expected.

Supported Firmware Versions

Versions 3.5.4.0 and later of this library must be used with an RTAC device that is running
firmware version R144-V1 firmware or later.

Versions 3.5.3.0 and later of this library must be used with an RTAC device that is running
firmware version R143-V0 firmware or later.

Versions 3.5.2.0 and later of this library must be used on an RTAC device that is running
firmware version R136-V2 or later.

Version 3.5.1.0 of this library must be used on an RTAC device that is running firmware
version R135.

Previous versions of this library can be used on firmware versions R132–R135.

To enable FileIO library support, the device number of your RTAC must include the correct
feature in its model option table (MOT). You cannot download projects that include this
library to RTACs that do not support the library. Use the SEL website MOT configuration
(https://selinc.com/products/) to ensure that a particular part number has FileIO support
enabled.

Global Parameters

The library applies the following values as maximums; they can be modified when the
library is included in a project.

Name IEC 61131 Type Value Description

g_p_FileIo_MaxBufferSize UDINT 1048576 The maximum internal buffer
size allowed for class_Fil-
eReader2 or class_FileWriter.
This value is the maximum
file size you can read in, and
the maximum amount you can
append to a file at one time.
The default value is 10242 • 10.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

FileIO Instruction Manual Date Code 20190214

https://selinc.com/products/


FileIO 3

Enumerations

enum_FtpSendSchedule

Enumeration Description

ON_CLOSE When the previous log file is closed, as part of starting a new log file with the
StartNewLog() method, synchronize the closed log to the FTP server.

ON_UPDATE Send active log file each time an additional log is added.

sel_file.Enum_protocol_id

This enumeration is defined in the underlying sel_file library. It lists the protocols that can
create an event.

Enumeration Value

NO_PROTOCOL_SPECIFIED 0
SEL_CLIENT 1
SEL_SERVER 2
MODBUS_CLIENT 3
MODBUS_SERVER 4
DNP_CLIENT 5
DNP_SERVER 6
SEL_MIRRORED_BITS 7
C37118_CLIENT 8
GOOSE_RX 9
ACCESS_POINT_CLIENT 10
ACCESS_POINT_SERVER 11
GOOSE_TX 12
ETHERCAT 13
DNP_SERVER_FAILOVER 14
IEC61850_CLIENT 15
IEC61850_SERVER 16
NGVL 17
LG8979_CLIENT 18
LG8979_SERVER 19
IEC60870_CLIENT 20
IEC60870_SERVER 21
C37118_SERVER 22
SES92_SERVER 23
PGE2179_CLIENT 24
FLEX_PARSE_CLIENT 25

sel_file.Enum_event_type

This enumeration is defined in the underlying sel_file library. This enumeration defines the
types of events the database can store. It is part of the event handle and should be used to
help decide which sel_file.Enum_event_data to use when opening an event.

Date Code 20190214 Instruction Manual FileIO



4 FileIO

Enumerations

Enumeration Description

NO_EVENT_TYPE There is no event type associated with this file.
CEV_FILE A plaintext file containing event data.
COMTRADE A zipped folder containing the event data as COMTRADE files.

sel_file.Enum_event_data

This enumeration is defined in the underlying sel_file library. It defines how that library
attempts to open events.

Enumeration Description

RAW_DATA Return the data exactly as it is stored in the database.
CFG_FILE Treat the data as an archive and extract the first file with a .cfg extension.
DAT_FILE Treat the data as an archive and extract the first file with a .dat extension.
HDR_FILE Treat the data as an archive and extract the first file with a .hdr extension.
INF_FILE Treat the data as an archive and extract the first file with a .inf extension.

sel_file.Enum_sel_file_errors

This enumeration is defined in the underlying sel_file library. It defines the status of file and
SOE requests. After a call to a function, variables of this type will display IN_PROGRESS
for a time, after which they will change to some other value. NO_ERROR implies that the
task completed successfully, and SYSTEM_BUSY means that the driver already has too
many jobs queued that it must complete before accepting any more jobs. In this case, a
subsequent request might succeed if one of the queued jobs has been completed. Any other
result should be descriptive of the error encountered.

Enumeration Description

NO_ERROR The request completed successfully.
FILE_NOT_FOUND The requested file was not found in the file system.
INVALID_FILE_NAME The file name provided was invalid.
INVALID_FH The file handle provided was not for an open file.
INVALID_FILTER The filter provided was invalid.
INVALID_TIMESTAMP The time stamp provided was invalid.
FS_OUT_OF_SPACE The file system did not have enough space to perform the action.
DIR_LIST_NOT_INIT The directory iterator has not be initialized.
SYSTEM_BUSY The system is too busy to process the request.
TOO_MANY_TASKS The system has received requests from more than two tasks.
OPERATION_FAILED There was a system call failure while processing the request.
IN_PROGRESS The system is processing the request.

FileIO Instruction Manual Date Code 20190214



FileIO 5

Structures

sel_ftp_client.Enum_sel_ftp_client_errors

This enumeration is defined in the underlying sel_ftp_client library. It defines the status of
FTP requests. After a call to a function, variables of this type will display IN_PROGRESS
for a time, after which they will change to some other value. NO_ERROR implies that the
task completed successfully, and SYSTEM_BUSY means that the driver already has too
many jobs queued that it must complete before accepting any more jobs. In this case, a
subsequent request might succeed if one of the queued jobs has been completed. Any other
result should be descriptive of the error encountered.

Enumeration Description

NO_ERROR The request successfully triggered an FTP attempt.
INIT_FAILED The FTP process is not responding.
INVALID_OPERATION There was a system call failure while processing the request.
INVALID_IP The IP address provided was not in the form XXX.XXX.XXX.XXX,

where XXX is an integer that is ≤ 255.
INVALID_USR_NAME The username provided contained invalid characters.
INVALID_PASSWORD The password provided contained invalid characters.
INVALID_FILE_NAME The file name provided contained invalid characters.
INVALID_MAX_TIME The time provided was less than or equal to 0.
FS_OUT_OF_SPACE The file system did not have enough space to perform the action.
SYSTEM_BUSY The system is too busy to process the request.
OPERATION_TIMEOUT The FTP attempt took longer than the provided time-out.
IN_PROGRESS The system is processing the request.

Structures

Structures provide a means to group together several memory locations (variables), making
them easier to manage.

struct_EventDetails

Name IEC 61131 Type Description

Handle Struct_event_handle The details required to access this event via the
database.

Device STRING(32) The name of the device the event was collected from.
TimeStamp DT The time stamp of the event as seconds since epoch.
TimeMilliseconds UINT The millisecond at which the event occurred.
FileSize DINT The size of the event in the database in bytes.

sel_file.Struct_event_handle

This struct is defined in the underlying sel_file library. This struct contains all information
required to uniquely identify an event in the database.

Date Code 20190214 Instruction Manual FileIO



6 FileIO

Structures

Name IEC 61131 Type Description

EventID LINT An identifier of the event.
ProtocolID Enum_protocol_id An identifier of the protocol that gathered the event.
EventType Enum_event_type The type of the event file.

sel_file.Struct_soe_content

This struct is defined in the underlying sel_file library. This struct contains all value fields
returned by an SOE query.

Name IEC 61131 Type Description

DeviceName STRING(255) The name of the device that logged this event on the
RTAC.

TagName STRING(255) The tag that changed prompting this SOE to be logged.
Message STRING(255) The message of this SOE.
Category STRING(255) The category string provided for this SOE.
Priority STRING(255) The priority string provided for this SOE.
TimeStamp DT The time stamp of the event as seconds since epoch.
Millisecond UINT The time at which the event occurred with resolution to

the ms.
DSTOffset INT The daylight-saving time offset that should be applied to

the time stamp.
UTCOffset INT The timezone offset that should be applied to the time

stamp.
AlarmEnabled BOOL This SOE can trigger an alarm.

sel_file.Struct_soe_content_id

This struct is defined in the underlying sel_file library. This struct contains all value fields
returned by an SOE query.

Name IEC 61131 Type Description

DeviceName STRING(255) The name of the device that logged this event on the
RTAC.

TagName STRING(255) The tag that changed prompting this SOE to be logged.
Message STRING(255) The message of this SOE.
Category STRING(255) The category string provided for this SOE.
Priority STRING(255) The priority string provided for this SOE.
TimeStamp DT The time stamp of the event as seconds since epoch.
Millisecond UINT The time at which the event occurred with resolution to

the ms.
DSTOffset INT The daylight-saving time offset that should be applied to

the time stamp.
UTCOffset INT The timezone offset that should be applied to the time

stamp.
AlarmEnabled BOOL This SOE can trigger an alarm.
RemoteSoe BOOL The SOE was generated by a device other than the local

RTAC.
ID STRING(80) A unique identifier for this SOE.

FileIO Instruction Manual Date Code 20190214



FileIO 7

Functions

sel_file.Struct_soe_filter

This struct is defined in the underlying sel_file library. This struct contains all filters possible
to apply to an SOE query. If left empty, no filter will be applied on that field.

The filter string must contain only letters (case-sensitive); numbers; the symbols _, -, and
“ ” (space); and the wildcard characters * and ?. The character * acts as a multicharacter
wildcard and the character ? acts as a single character wildcard when inside any string.

Name IEC 61131 Type Description

DeviceNameFilter STRING(255) The filter to place on the device name.
TagNameFilter STRING(255) The filter to use on the tag name.
MessageFilter STRING(255) The filter to use on the SOE message.
CategoryFilter STRING(255) The filter to use on the SOE category.
PriorityFilter STRING(255) The filter to use on the SOE priority.
ReturnAlarmSoeOnly BOOL Only return SOEs that can trigger an alarm.

Functions

This library provides the following functions, which allow single-operation asynchronous
actions. Each call has a status argument that must persist across multiple scans. Calling
any function does not complete the requested work, but rather queues the work to be
performed over multiple scans. This means you should only call a given function once per
desired operation. The system updates the status variable automatically when the operation
completes in either success or failure. Avoid reusing pointers or variables passed as VAR_-
IN_OUT until the status variable used has changed from the value of IN_PROGRESS.

fun_FtpDownload

Use this function to download files to the local, sequestered file system from an FTP server.

Inputs

Name IEC 61131 Type Description

ftpServer STRING(15) The IP address of the FTP server being contacted.
localPath STRING(255) The local path and file name to which you are writing. It must

begin with “/” and contain the full file path. It may contain
all printable ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It cannot
contain any file path manipulation variables (//, /./, /../).

remotePath STRING(255) The complete path and file name of the file to download from
the FTP server. It must contain only printable characters
(ASCII values 0x32 to 0x7E inclusive), excluding single and
double quotation characters.

username STRING(32) The username to be used. This must only contain alphanu-
meric characters and “_”.

Date Code 20190214 Instruction Manual FileIO



8 FileIO

Functions

Inputs

Name IEC 61131 Type Description

password STRING(32) The password for use on the FTP server. This may contain
any printable ASCII characters excluding the quote charac-
ters.

timeout UDINT The number of seconds for the FTP attempt to run before it
is canceled. This value must be greater than 0.

Inputs/Outputs

Name IEC 61131 Type Description

status Enum_sel_ftp_client_errors The active status of this FTP event.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the FTP download request for processing.

ä Validates that the time-out exceeds zero seconds.

ä Validates that all string characters meet the prescribed requirements.

ä Validates that at least 250 MB of space are available in the file system for the download
contents.

ä Attempts to FTP the file onto the RTAC as an asynchronous event.

ä A status of NO_ERROR implies that the FTP command was successfully issued, the
FTP service completed, and the service returned no error code.

fun_FtpEventUpload

Use this function to upload event files from the database to an FTP server.

Inputs

Name IEC 61131 Type Description

ftpServer STRING(15) The IP address of the FTP server being contacted.
localEvent Struct_event_handle The event file to upload.
remotePath STRING(255) The complete path and file name of the file to save on

the FTP server. It must contain only printable characters
(ASCII values 0x32 to 0x7E inclusive), excluding single
and double quotation characters.

username STRING(32) The username to be used. This must only contain alphanu-
meric characters and “_”.

password STRING(32) The password for use on the FTP server. This may con-
tain any printable ASCII characters excluding the quote
characters.

timeout UDINT The number of seconds for the FTP attempt to run before
it is canceled. This value must be greater than 0.

FileIO Instruction Manual Date Code 20190214



FileIO 9

Functions

Inputs/Outputs

Name IEC 61131 Type Description

status Enum_sel_ftp_client_errors The active status of this FTP event.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the FTP upload request for processing.

ä Attempts to FTP the file from the RTAC as an asynchronous event.

ä A status of NO_ERROR implies that the FTP command was successfully issued, the
FTP service completed, and the service returned no error code.

fun_FtpUpload

Use this function to upload individual files from the local, sequestered file system to an FTP
server.

Inputs

Name IEC 61131 Type Description

ftpServer STRING(15) The IP address of the FTP server being contacted.
localPath STRING(255) The complete local path and file name to upload. It must

begin with “/” and contain the full file path. It may contain
all printable ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It cannot
contain any file path manipulation variables (//, /./, /../).

remotePath STRING(255) The complete path and file name of the file to write on the
FTP server. It must contain only printable characters (ASCII
values 0x32 to 0x7E inclusive), excluding single and double
quotation characters.

username STRING(32) The username to be used. This must only contain alphanu-
meric characters and “_”.

password STRING(32) The password for use on the FTP server. This may contain
any printable ASCII characters excluding the quote charac-
ters.

timeout UDINT The number of seconds for the FTP attempt to run before it
is canceled. This value must be greater than 0.

Inputs/Outputs

Name IEC 61131 Type Description

status Enum_sel_ftp_client_errors The active status of this FTP event.

Date Code 20190214 Instruction Manual FileIO



10 FileIO

Functions

Processing

ä Sets status to IN_PROGRESS.

ä Queues the FTP upload request for processing.

ä Attempts to FTP the file from the RTAC as an asynchronous event.

ä A status of NO_ERROR implies that the FTP command was successfully issued, the
FTP service completed, and the service returned no error code.

fun_DeleteFile

Use this function to delete any file or empty folder from the sequestered file system.

Inputs

Name IEC 61131 Type Description

filename STRING(255) The full path and file name of the file to delete. It may con-
tain all printable ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It cannot contain
any file path manipulation variables (//, /./, /../).

Inputs/Outputs

Name IEC 61131 Type Description

status Enum_sel_file_errors The variable where the state of the asynchronous task that is
deleting the file will be reported.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the file deletion request for processing.

ä If status later changes to NO_ERROR, the system successfully found and deleted the
file.

ä If status later changes to OPERATION_FAILED, the system failed to either find or
delete the file.

ä If status later changes to anything else, the system stopped the request before the
deletion command was issued.

fun_FileSize

Use this function to request the size of any file in the sequestered file system. If the size of
the file provided exceeds UDINT max (4,294,967,295) bytes, then the value that is returned
will roll over and equal the file size modulo 4,294,967,296.

FileIO Instruction Manual Date Code 20190214



FileIO 11

Functions

Inputs

Name IEC 61131 Type Description

filename STRING(255) The full path and file name for the size calculations. It may
contain all printable ASCII characters between 16#20(Space)
and 16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It cannot
contain any file path manipulation variables (//, /./, /../).

Inputs/Outputs

Name IEC 61131 Type Description

status Enum_sel_file_errors The variable where the state of the asynchronous task that
is obtaining the file size will be reported.

sizeInBytes UDINT After completion, this variable contains the size of the
file in bytes.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the file size request for processing.

ä If status later changes to NO_ERROR, sizeInBytes contains the file size.

ä If status later changes to OPERATION_FAILED, then the system failed to find the
file.

ä If status later changes to anything else, sizeInBytes is undefined.

fun_FilesystemFreeSpace

Use this function to validate how much usable space remains in the file system. FileIO
will not use all the space on the file system, and the value returned by this function reflects
that. When the value this function returns reaches zero, additional writes to the file system
through FileIO will fail.

Inputs/Outputs

Name IEC 61131 Type Description

status Enum_sel_file_errors The variable where the state of the asynchronous task
that is obtaining the file system free space will be
reported.

spaceAvailable ULINT After completion, this variable contains the space left
in the file system that the FileIO library can use, in
bytes.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the file system size request for processing.

Date Code 20190214 Instruction Manual FileIO



12 FileIO

Functions

ä If status later changes to NO_ERROR, spaceAvailable contains the file system free
space.

ä If status later changes to anything else, spaceAvailable is undefined.

fun_SoeAscending

Use this function to request a limited number of SOEs from the database, beginning with a
specified time and moving toward the future.

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content

Pointer to the array to populate with the SOE data.
The array provided must have at least maxSoeCount
members, or memory corruption will occur.

startTime DT The earliest time to include in the results. This
value must be between the years 2000 and 2037, or
the call will result in an error.

maxSoeCount UINT The maximum number of SOEs to place in pt_-
soeBuffer. This number must exceed zero to obtain
a non-error result and it must not exceed the number
of Struct_soe_content objects that can fit in the
memory space pt_soeBuffer points to, or memory
corruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

fun_SoeDescending

Use this function to request a limited number of SOEs from the database, beginning with a
specified time and moving toward the past.

FileIO Instruction Manual Date Code 20190214



FileIO 13

Functions

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content

Pointer to the array to populate with the SOE data.
The array provided must have at least maxSoeCount
members, or memory corruption will occur.

startTime DT The latest time to include in the results. This value
must be between the years 2000 and 2037, or the
call will result in an error.

maxSoeCount UINT The maximum number of SOEs to place in pt_-
soeBuffer. This number must exceed zero to obtain
a non-error result and it must not exceed the number
of Struct_soe_content objects that can fit in the
memory space pt_soeBuffer points to, or memory
corruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

fun_SoeWindow

Use this function to request a limited number of SOEs from the database, beginning with a
specified time and moving toward the specified, future end time.

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content

Pointer to the array to populate with the SOE data.
The array provided must have at least maxSoeCount
members, or memory corruption will occur.

startTime DT The earliest time to include in the results. This
value must be between the years 2000 and 2037, or
the call will result in an error.

Date Code 20190214 Instruction Manual FileIO



14 FileIO

Functions

Inputs

Name IEC 61131 Type Description

endTime DT The latest time to include in the results. This value
must be between the years 2000 and 2037, or the
call will result in an error.

maxSoeCount UINT The maximum number of SOEs to place in pt_-
soeBuffer. This number must exceed zero to obtain
a non-error result and it must not exceed the number
of Struct_soe_content objects that can fit in the
memory space pt_soeBuffer points to, or memory
corruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

fun_LocalSoeGetID

Use this function to request the data of a single SOE after a provided time stamp. If the
system finds no SOE after the time stamp, it provides the nearest SOE before the time stamp.
If the system finds no SOEs, then status reports an error. Any data returned are for an SOE
the local RTAC generated.

Inputs

Name IEC 61131 Type Description

soeTime DT The time near which to search for an SOE. This value must be
between the years 2000 and 2037, or the call will result in an
error.

FileIO Instruction Manual Date Code 20190214



FileIO 15

Functions

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable where the state of the asynchronous task that is

obtaining the SOE id will be reported.
soeData Struct_soe_content_id The location that will be populated with the information

describing the returned SOE.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä If status later changes to NO_ERROR, soeData contains the pertinent information
for one local SOE.

ä If status later changes to anything else, the contents of soeData are undefined.

fun_LocalSoeAscending

Use this function to request a limited number of SOEs from the database beginning with a
specified SOE and moving toward the future. The order of the returned SOEs is the time of
their creation on the RTAC, not the time of the actual event. The local RTAC generated all
returned SOEs.

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content_id

Pointer to the array to populate with the SOE
data. The array provided must have at least max-
SoeCount members, or memory corruption will
occur.

startID STRING(80) The unique identifier of a local SOE.
maxSoeCount UINT The maximum number of SOEs to place in pt_-

soeBuffer. This number must exceed zero to ob-
tain a non-error result and it must not exceed the
number of Struct_soe_content_id objects that
can fit in the memory space pt_soeBuffer points
to, or memory corruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Date Code 20190214 Instruction Manual FileIO



16 FileIO

Functions

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä The selection of SOEs begins at the SOE after startID. If startID represent an invalid
SOE, the system returns no SOEs.

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

fun_LocalSoeDescending

Use this function to request a limited number of SOEs from the database beginning with a
specified SOE and moving toward the past. The order of the returned SOEs is the time of
their creation on the RTAC, not the time of the actual event. The local RTAC generated all
returned SOEs.

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content_id

Pointer to the array to populate with the SOE
data. The array provided must have at least max-
SoeCount members, or memory corruption will
occur.

startID STRING(80) The unique identifier of a local SOE.
maxSoeCount UINT The maximum number of SOEs to place in pt_-

soeBuffer. This number must exceed zero to ob-
tain a non-error result and it must not exceed the
number of Struct_soe_content_id objects that
can fit in the memory space pt_soeBuffer points
to, or memory corruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä The selection of SOEs begins at the SOE before startID. If startID represent an
invalid SOE, the system returns no SOEs.

FileIO Instruction Manual Date Code 20190214



FileIO 17

Functions

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

fun_RemoteSoeGetID

Use this function to request the data of a single SOE after a provided time stamp. If the
system finds no SOE after the time stamp, it provides the nearest SOE before the time stamp.
If the system finds no SOEs, then status reports an error. Any data returned are an SOE a
device other than the local RTAC generated.

Inputs

Name IEC 61131 Type Description

soeTime DT The time near which to search for an SOE. This value must be
between the years 2000 and 2037, or the call will result in an
error.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable where the state of the asynchronous task that is

obtaining the SOE id will be reported.
soeData Struct_soe_content_id The location that will be populated with the information

describing the returned SOE.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä If status later changes to NO_ERROR, soeData contains the pertinent information
for one remote SOE.

ä If status later changes to anything else, the contents of soeData are undefined.

fun_RemoteSoeAscending

Use this function to request a limited number of SOEs from the database beginning with a
specified SOE and moving toward the future. The order of the returned SOEs is the time of
their creation on the RTAC, not the time of the actual event. A device other than the local
RTAC generated all SOEs returned.

Date Code 20190214 Instruction Manual FileIO



18 FileIO

Functions

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content_id

Pointer to the array to populate with the SOE data.
The array provided must have at least maxSoeCount
members, or memory corruption will occur.

startID STRING(80) The unique identifier of a remote SOE.
maxSoeCount UINT The maximum number of SOEs to place in pt_soe-

Buffer. This number must exceed zero to obtain a
non-error result and it must not exceed the number
of Struct_soe_content_id objects that can fit in the
memory space pt_soeBuffer points to, or memory cor-
ruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä The selection of SOEs begins at the SOE after startID. If startID represent an invalid
SOE, the system returns no SOEs.

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

fun_RemoteSoeDescending

Use this function to request a limited number of SOEs from the database beginning with a
specified SOE and moving toward the past. The order of the returned SOEs is the time of
their creation on the RTAC, not the time of the actual event. A device other than the local
RTAC generated all SOEs returned.

FileIO Instruction Manual Date Code 20190214



FileIO 19

Classes

Inputs

Name IEC 61131 Type Description

pt_soeBuffer POINTER TO
Struct_soe_content_id

Pointer to the array to populate with the SOE data.
The array provided must have at least maxSoeCount
members, or memory corruption will occur.

startID STRING(80) The unique identifier of a remote SOE.
maxSoeCount UINT The maximum number of SOEs to place in pt_soe-

Buffer. This number must exceed zero to obtain a
non-error result and it must not exceed the number
of Struct_soe_content_id objects that can fit in the
memory space pt_soeBuffer points to, or memory cor-
ruption will occur.

Inputs/Outputs

Name IEC 61131 Type Description

filters Struct_soe_filter The values defining the filter criteria.
status Enum_sel_file_errors The variable that reports the state of the asynchronous task

that is obtaining the SOE list.
soeCount UINT The location to report the number of SOEs placed in pt_-

soeBuffer.

Processing

ä Sets status to IN_PROGRESS.

ä Queues the SOE request for processing.

ä The selection of SOEs begins at the SOE after startID. If startID represent an invalid
SOE, the system returns no SOEs.

ä If status later changes to NO_ERROR, soeCount SOEs were placed at location
pt_soeBuffer.

ä If status later changes to anything else, values at pt_soeBuffer remain unchanged.

Classes

This library provides the following classes as extensions of the IEC 61131 function block.

class_DirectoryListing (Class)

This class calls the sel_file.sel_open_dir() function after a new listing is requested
by the call to CreateNewList(). On the task where this class is instantiated, Run() must
be called once on every scan to handle all of the asynchronous file system interactions.
While there are still items to list, Run() will call sel_file.sel_read_dir() once each
scan until the complete directory listing is built.

Date Code 20190214 Instruction Manual FileIO



20 FileIO

Classes

Outputs

Name IEC 61131 Type Description

InProgress BOOL Stays TRUE while the Run() method constructs the list-
ing. The class ignores any calls to CreateNewList()
while this output is TRUE.

Error BOOL TRUE if the directory listing could not be created.
ErrorDesc STRING(255) The last error encountered is described here.
NewListReady BOOL Once a list has been built, this output is set to TRUE.

CreateNewList (Method)

This is one of the methods that can be called each time a new directory listing is required.
If no filter is given, it will provide a complete listing of the directory.

Inputs

Name IEC 61131 Type Description

directoryName STRING(255) The directory path to get file list from. Path separators
should be the “/” character.

filter STRING(255) If not blank, only those files that contain this substring
will be appended to the list.

Processing

ä Clears Error.

ä Sets the NewListReady value to FALSE and destroys any internal lists.

ä Initiates the enumeration of the directory, carried out by the Run() method.

CreateNewerThanList (Method)

This is one of the methods that can be called each time a new directory listing is required.
This method causes a list to be generated that contains all files with a date code equal to or
newer than the value passed in.

Inputs

Name IEC 61131 Type Description

directoryName STRING(255) The directory path to get file list from. Path separators
should be the “/” character.

filter STRING(255) If not blank, only those files that contain this substring
will be appended to the list.

mtimeSec DT Last UTC modification time (DT#yyyy-mm-dd-
00:00:00)

FileIO Instruction Manual Date Code 20190214



FileIO 21

Classes

Processing

ä Clears Error.

ä Sets the NewListReady value to FALSE and deletes any internal lists.

ä Initiates the enumeration of the directory, carried out by the Run() method.

GetList (Method)

The call to this method must occur after the NewListReady output is TRUE to obtain the
populated class_SELStringList. There can only be one call to this method per created list.

Inputs/Outputs

Name IEC 61131 Type Description

list SELString.class_SELStringList The class_SelStringList to write the directory listing
to. See the SELString library for more information
about the type class_SELStringList.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the class_SELStringList provided was populated success-
fully.

Processing

ä Returns FALSE if NewListReady is not TRUE.

ä Populates list with the prepared list.

ä Sets the NewListReady class output to FALSE.

ä Destroys the internal list.

Run (Method)

Call this method on every scan. It supervises the asynchronous directory listing.

Processing

ä If a directory listing has been initiated:

â Ensure that the directory is opened, using the sel_file.sel_open_dir()
function.

â Repeatedly call the sel_file.sel_read_dir() and append a class_SEL-
String to list for each file name containing the filter substring, until no more file
names are returned.

Date Code 20190214 Instruction Manual FileIO



22 FileIO

Classes

ä Once the directory listing is complete, it closes the operation by setting NewListReady
to TRUE and calling sel_file.sel_close_dir().

ä If any error occurs, Error is set to TRUE and ErrorDesc is populated appropriately.

class_EventReportListing (Class)

This class has been completely removed from the library. If it was included in projects,
these projects will now provide compile-time errors. If you want event access, the class_-
EventListing provides access to those files along with non-obfuscated file names, the ability
to filter queries based on several criteria, and the ability to properly open COMTRADE file
collections to view individual files.

Please note that the class_EventListing class does have one limitation that this class did not.
All class_EventListing objects on a single RTAC task (e.g., Main or Automation) share an
internal iterator. It is best practice to only have one class_EventListing per task.

class_EventListing (Class)

This class calls sel_file.sel_begin_event_iterator_filtered() after a new list-
ing request activated by a call to CreateNewList() or CreateNewFilteredList(). On
the task in which this class is instantiated, Run() must be called once on every scan to
handle all of the asynchronous file system interactions. While there are still items to list,
Run() calls sel_file.sel_next_event() once each scan until the complete directory
listing is built.

All class_EventListing objects on a single RTAC task (e.g., Main or Automation) share an
internal iterator. It is best practice to only have one class_EventListing per task.

Outputs

Name IEC 61131 Type Description

InProgress BOOL Stays TRUE while the Run() method constructs the list-
ing. The class ignores any calls to CreateNewList()
while this output is TRUE.

Error BOOL TRUE if the directory listing could not be created.
ErrorDesc STRING(255) The last error encountered is described here.
NewListReady BOOL Once a list has been built, this output is set to TRUE.

CreateNewList (Method)

This method may be called each time a new listing of event reports is required. It filters by
device name only.

Inputs/Outputs

Name IEC 61131 Type Description

deviceName STRING(32) If not blank, only events from this device will be listed.

FileIO Instruction Manual Date Code 20190214



FileIO 23

Classes

Processing

ä Clears Error.

ä Sets the NewListReady value to FALSE and destroys any internal lists.

ä Initiates the enumeration of the directory, carried out by the Run() method.

CreateNewFilteredList (Method)

This method may be called each time a new listing of event reports is required. It filters by
device name, time of creation, the reporting protocol, and the event type.

Inputs/Outputs

Name IEC 61131 Type Description

deviceName STRING(32) If not blank, only events from this device will be listed.

Inputs

Name IEC 61131 Type Description

startTime DT The earliest time stamp of a returned event as seconds since
epoch.

endTime DT The latest time stamp of a returned event as seconds since
epoch.

protocol Enum_protocol_id The protocol that collected the events.
eventType Enum_event_type The type of the events to be presented.

Processing

ä Clears Error.

ä Sets the NewListReady value to FALSE and destroys any internal lists.

ä Initiates the enumeration of the events, carried out by the Run() method.

ä Values of NO_PROTOCOL_SPECIFIED, NO_EVENT_TYPE, or zero for startTime
and endTime result in the associated filter not being used.

GetList (Method)

The call to this method must occur after the NewListReady output is TRUE to obtain the
vector of event handles. There can only be one call to this method per created list.

Date Code 20190214 Instruction Manual FileIO



24 FileIO

Classes

Inputs/Outputs

Name IEC 61131 Type Description

list DynamicVectors.class_BaseVector The vector to write the directory listing to. This
vector must have been initialized with an element
size SIZEOF(struct_EventDetails).

See the DynamicVectors library for more infor-
mation about the type class_BaseVector.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the class_BaseVector provided was populated successfully.

Processing

ä Returns FALSE if NewListReady is not TRUE.

ä Populates list with the prepared list.

ä Sets the NewListReady class output to FALSE.

ä Destroys the internal list.

Run (Method)

Call this method on every scan. It supervises the asynchronous event report listing.

Processing

ä If an event listing has been initiated:

â Ensure that the listing is opened by using sel_file.sel_begin_event_-
iterator().

â Repeatedly call sel_file.sel_next_event() and append a struct_EventDe-
tails to list for each of the returned files that were issued by deviceName, the
system returns no more files.

ä Once the directory listing is complete, it closes the operation by setting NewListReady
to TRUE.

ä If any error occurs, Error is set to TRUE and ErrorDesc is populated appropriately.

FileIO Instruction Manual Date Code 20190214



FileIO 25

Classes

class_FileWriter (Class)

This class provides the ability to write files to the sequestered RTAC file system. This class
is instantiated with a specific file name. The return value of each method is based on the
success or failure of queuing the requested action. The final success or failure of each action
is not determined until processing completes after multiple calls to the Run() method,
which you must call every scan to perform whatever file-handling actions are buffered in its
internal queue.

The g_p_FileIo_MaxBufferSize parameter, detailed in Global Parameters on page 2, dictates
the maximum amount of data that can be buffered at one time before writing to the specified
file.

Initialization Inputs

Name IEC 61131 Type Description

filename STRING(255) The full path of the file opened in append mode. The character
“/” delimits the folder path. This path must end with the full
file name, including extension. It may contain all printable
ASCII characters between 16#20(Space) and 16#7E(~) except
for ", ', :, <, %, >, ?, \, and |. It cannot contain any file path
manipulation variables (//, /./, /../). If the file does not exist, it
will be created.

Properties

Name IEC 61131 Type Access Description

BytesLeft UDINT R Number of unwritten bytes in the internal buffer.
Filename STRING(255) R/W Write to this property to set the next file to which

data are written. It may contain all printable
ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and
|. It cannot contain any file path manipulation
variables (//, /./, /../).

Writing to this property sets the FileRename
output true. If data are appended to this class
while FileRename is TRUE, subsequent attempts
to set Filename are ignored until FileRename
returns to FALSE.

After modifying Filename, any append method
call queues data for the new file.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

Date Code 20190214 Instruction Manual FileIO



26 FileIO

Classes

Outputs

Name IEC 61131 Type Description

Error BOOL TRUE if the function block cannot write the contents of its
buffer to file.

ErrorDesc STRING(255) The last error encountered will be described here.
FileRename BOOL After the Filename property is set, this pin will remain

TRUE until all pending writes to the previous file name
have been completed.

AppendBytes (Method)

Call this method whenever bytes are to be appended to the write buffer. Every subsequent
call of the Run() method will write as many bytes as possible until nothing remains in the
write buffer.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the item to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, starting with pt_data.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE for successful addition of the data to the output buffer.

Processing

ä Check that numBytes exceeds 0.

ä Check that the memory region specified has read access.

ä If both previous statements are true, copy the contents of the specified region into the
output buffer.

ä If the copy succeeded, return TRUE.

ä If any error occurs, the method sets Error to TRUE, populates ErrorDesc appropri-
ately, and returns FALSE.

AppendSELString (Method)

Call this method to append the content of a class_SELString to the write buffer.

FileIO Instruction Manual Date Code 20190214



FileIO 27

Classes

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to append.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of strSel was successfully added to the output
buffer.

Processing

ä Copy the content of the supplied string to the output buffer.

ä If the copy succeeded, return TRUE.

ä If any error occurs, the method sets Error to TRUE, populates ErrorDesc appropri-
ately, and returns FALSE.

AppendString (Method)

Call this method to append the content of a string to the write buffer.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to append.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of str was successfully added to the output
buffer.

Processing

ä Copy the content of the supplied string to the output buffer.

ä If copy succeeded, return TRUE.

ä If any error occurs, the method sets Error to TRUE, populates ErrorDesc appropri-
ately, and returns FALSE.

AppendVector (Method)

Call this method to append the content of a vector to the write buffer.

Date Code 20190214 Instruction Manual FileIO



28 FileIO

Classes

Inputs

Name IEC 61131 Type Description

vector I_Vector The vector to append to the file. See the DynamicVectors library
documentation for information about the I_Vector interface.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the vector was successfully added to the output buffer.

Processing

ä Check that vector passed in is valid and has contents to copy.

ä Copy the content of the dynamic vector into the output buffer.

ä If the copy succeeded, return TRUE.

ä If any error occurs, the method sets Error to TRUE, populates ErrorDesc appropri-
ately, and returns FALSE.

Run (Method)

Call this method on every scan to supervise the asynchronous writing of the internal buffer
to the specified file.

Processing

ä If the file is not open, this method opens it in append mode and stores the file handle
internally.

ä If the file is open and there are data in the internal buffer, this method writes to the
opened file.

ä Monitors the asynchronous write process, clears the buffer of written data, and
subtracts number of bytes written from BytesLeft.

ä If any error occurs, this method sets Error to TRUE and fills ErrorDesc appropriately.

class_FileReader2 (Class)

This class provides the ability to read files from the sequestered RTAC file system. Call
the Run() method every scan to perform whatever file-handling actions are buffered in the
internal queue.

The g_p_FileIo_MaxBufferSize parameter, detailed in Global Parameters on page 2, dictates
the maximum file size that can be read using this class.

FileIO Instruction Manual Date Code 20190214



FileIO 29

Classes

Outputs

Name IEC 61131 Type Description

InProgress BOOL Stays TRUE while the Run() method reads a file. The
class ignores any calls to a read method while this output
is TRUE.

Error BOOL TRUE if the function block cannot read contents of the
file into buffer.

ErrorDesc STRING(255) The last error encountered is described here.
BytesInBuffer UDINT The number of bytes that were read from file. Set to 0

when a read method is called, and populated when read
is complete.

ReadFile (Method)

Call this method to read the content of a file into the internal buffer.

Inputs

Name IEC 61131 Type Description

filename STRING(255) The full path to the file of interest within the sequestered file
system. The character “/” delimits the folder path. This path
must end with the full file name, including extension. It may
contain all printable ASCII characters between 16#20(Space)
and 16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It cannot
contain any file path manipulation variables (//, /./, /../).

Processing

ä Checks that a read operation is not in progress.

ä Ensures that the first character of filename is “/”. This method prepends the character
if it is missing from the filename provided.

ä Initiates a read operation, which Run() performs.

ReadEventFromDB (Method)

Call this method to read the content of an event from the database into the internal buffer.

Inputs

Name IEC 61131 Type Description

handle Struct_event_handle The details required to request this event from the database.
fileType Enum_event_data The file extension to attempt to extract from this event.

Processing

ä Checks that a read operation is not in progress.

ä Initiates a read operation, which Run() performs.

Date Code 20190214 Instruction Manual FileIO



30 FileIO

Classes

CopyTo (Method)

Copies the contents of the buffer to a user-accessible location.

Inputs

Name IEC 61131 Type Description

startByte UDINT Indicates the first byte to copy as an offset from the begin-
ning of the internal buffer.

pt_byte POINTER TO BYTE The destination address to where the bytes should be copied.
numBytes UDINT The maximum number of bytes to write out, starting with

startByte.

Return Value

IEC 61131 Type Description

UDINT Returns the number of bytes copied to the destination address.

Processing

ä Checks that startByte is less than BytesInBuffer and that pt_byte is a valid pointer
with write access. If the initial checks fail, return 0.

ä Copies contents of internal buffer to destination until all remaining bytes in buffer
have been copied or numBytes specified have been copied.

ä Returns the number of bytes copied.

AppendToSELString (Method)

Copies the contents of the internal buffer to a class_SELString.

Inputs

Name IEC 61131 Type Description

startByte UDINT Indicates the first byte to copy as an offset from the beginning
of the internal buffer.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to which the contents of the internal buffer
will be appended. See the SELString library documentation for
information about the class_SELString type.

FileIO Instruction Manual Date Code 20190214



FileIO 31

Classes

NOTE: This method assumes that
the string str is of type STRING(255).

Smaller strings will cause undesired

behavior.

Return Value

IEC 61131 Type Description

UDINT Returns the number of characters added to the SELString.

Processing

ä Checks that startByte is less than BytesInBuffer. If the initial check fails, returns 0.

ä Beginning with startByte, appends the bytes from the internal buffer to the strSel
supplied, until one of the following occurs:

1. The class_SELString throws an internal error.

2. No bytes remain in the buffer.

ä Returns the number of characters added to strSel.

CopyToString (Method)

Copies the content of the internal buffer to a string.

Inputs

Name IEC 61131 Type Description

startByte UDINT Indicates the first byte to copy as an offset from the beginning
of the internal buffer.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to which the content of the internal buffer will be
written.

Return Value

IEC 61131 Type Description

UDINT Returns the number of characters added to the string.

Processing

ä Checks that startByte is less than BytesInBuffer. If the initial check fails, returns 0.

ä Copies the bytes from the internal buffer to str until either of the following occurs:

1. Two hundred and fifty-five (255) characters have been copied.

2. No bytes remain in the buffer.

ä Appends a null terminator onto the str.

Date Code 20190214 Instruction Manual FileIO



32 FileIO

Classes

AppendToVector (Method)

Allows the content of the buffer to be copied to the end of a user-accessible vector.

Inputs

Name IEC 61131 Type Description

startByte UDINT Indicates the first byte to copy as an offset from the beginning
of the internal buffer.

vector I_Vector The vector to which the internal buffer content is appended.
See the DynamicVectors library documentation for information
about the I_Vector interface.

Return Value

IEC 61131 Type Description

UDINT Returns the number of elements added to the vector.

Processing

ä Checks that startByte is less than BytesInBuffer. If the initial check fails, return 0.

ä Pushes the contents of the buffer into the supplied vector.

ä If the number of bytes specified for the copied output (BytesInBuffer minus startByte)
is not evenly divisible by the vector ElementSize, then pads the last element appended
to vector with trailing zeros.

Run (Method)

Call this method on every scan to supervise the asynchronous reading of the specified file
into the internal buffer.

Processing

ä Waits until the initiation of a file read operation by the ReadFile() or ReadEventReport()
methods.

ä If the file is not open, opens the file in read mode and stores the file handle internally.

ä If the file is open and a read has been signaled by the ReadFile() or ReadEventReport
methods, monitors the asynchronous task until complete.

ä Populates BytesInBuffer upon completion of the read.

ä If any error occurs, this method sets Error TRUE and fills ErrorDesc appropriately.

FileIO Instruction Manual Date Code 20190214



FileIO 33

Classes

class_FileReader (Class)

This is a deprecated class that is now an exact copy of class_FileReader2. The ability to
view event files by name only has been removed from the file system. Projects that contain
the ReadEventReport method will now generate compile-time errors. Reading files should
be accomplished using full paths or Struct_event_handle objects.

The g_p_FileIo_MaxBufferSize parameter, detailed in Global Parameters on page 2, dictates
the maximum file size that can be read using this class.

If you use this class, consider refactoring to use class_FileReader2.

class_BasicDirectoryManager (Class)

This class manages files within a given directory by removing files based on the size of the
directory, the number of files in the directory, or the maximum number of days to hold a
file since modified.

This class does not do the following:

ä Directly write any files.

ä Modify any files.

ä Monitor files within a subdirectory.

Before you can use class_BasicDirectoryManager to manage a directory, it must be provided
the folder path to monitor, a maximum size for that directory, and either a maximum number
of files to hold or a maximum number of days for which to hold files.

File Blacklisting

File blacklisting allows for files to be ignored by the class_BasicDirectoryManager. A
blacklisted file cannot be deleted, and it is not counted in the total directory size or number
of files.

A file is blacklisted by having a period (.) as the first character in the file name.

For example, a file named “.somefile.txt” is ignored by class_BasicDirectoryManager, while
a file named “MySpecialFileData.txt” is managed by class_BasicDirectoryManager.

File Rotation

Periodically, the class compares the new directory size against the maximum permitted
directory size set in the object declaration. If the directory exceeds the maximum folder
size, the oldest file is deleted. If only one file exists, no files are deleted. This allows the
single file to overfill the allotted maximum until the creation of a new file. This means that
if the maximum number of files is set to one, the manager never deletes files based on the
directory size or age of the file.

Date Code 20190214 Instruction Manual FileIO



34 FileIO

Classes

Outputs

Name IEC 61131 Type Description

Directory STRING(128) The directory being managed.
Error BOOL TRUE if the class encounters any error.
ErrorDesc STRING(255) The last error encountered by this class.
SpaceUsed ULINT The size, in bytes, of all managed files in this directory.
MaxFolderSize ULINT The size, in bytes, at which the directory begins deleting

files, starting at the oldest.
MaxFileCount UDINT The maximum number of files this directory stores. A

value of zero indicates that MaxFileCount is ignored.
MaxDaysHeld UDINT The maximum number of days this directory stores files

based on the time stamp. A value of zero indicates that
MaxDaysHeld is ignored.

bootstrap_SetDirectory (Method)

This method is called once, before any other method, to configure the class_BasicDirectory-
Manager. It provides the values the class uses to determine what directory to watch and
when to delete files.

Inputs

Name IEC 61131 Type Description

folderName STRING(127) The folder to use and manage. The character “/”
delimits the folder path. It may contain all print-
able ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It
cannot contain any file path manipulation variables
(//, /./, /../). If the folder does not exist, the class
will show an error until the directory is created by
some other mechanism.

maximumFolderSize ULINT The size, in bytes, at which the directory begins
deleting files, starting at the oldest.

maximumNumFiles UDINT The maximum number of files this directory stores.
A value of zero indicates that maximumNumFiles
is ignored.

maximumNumDays UDINT The maximum number of days this directory stores
files based on the time stamp. A value of zero
indicates that maximumNumDays is ignored.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if no errors occured during bootstrapping.

FileIO Instruction Manual Date Code 20190214



FileIO 35

Classes

Run (Method)

Call this method on every scan. It supervises the asynchronous deletion of old files. Dele-
tions occur only if the number of files in the directory, the size of the directory, or the
number of days to hold a file exceeds user-set limits.

Processing

This class maintains an internal state machine with a round-robin job scheduler, ensuring
that the amount of processing overhead per scan remains relatively constant.

Subsequent calls to the Run() method perform the following sequence of operations:

1. If the directory listing is exhausted:

a) Determine the cutoff file for deletions on the next scan by performing the
following steps:

i. Collect a running total of space moving backward in time.

ii. Find the file that causes the space to be exceeded and store its time stamp.

iii. Find the file that exceeds the file count and store its time stamp.

iv. Set the cutoff time to the newest of the two saved time stamps.

b) Restart the directory iterator.

2. If the directory listing is not exhausted, perform one of the following checks on the
next file:

a) If the file is blacklisted, ignore it.

b) If the file is managed and newer than the cutoff time from the previous directory
scan, leave it alone.

c) If the file is managed and older than the cutoff time from the previous directory
scan, delete it.

class_DirectoryManager (Class)

This class allows for the creation of managed files, over time, in a controlled directory. It
provides protection for the size of the directory, the number of files in the directory, and the
size of those files.

Before you can use this class to manage a directory, you must provide it the folder path
designating to where log files are written, a maximum size for that directory, a maximum
number of files to allow in that directory, and a postfix to add to log files.

This class uses class_FileWriter objects to perform the writing of log files and event logs.
See class_FileWriter (Class) on page 25 for more detailed information about the limitations
on the maximum size of log files or maximum number of buffered log entries.

File Entries

File entries take exactly the data provided and append this information to the active file. No
additional formatting is performed.

Date Code 20190214 Instruction Manual FileIO



36 FileIO

Classes

Event Logs

In addition to log files, you may want to create a separate file that records information
corresponding to some event, with custom formatting. These are referred to as “Event
Logs,” and should not be confused with the “Event Records” relays generate, containing
high-resolution waveforms. An event file is simply a custom log file written out to the
managed directory, rotated with the files (as described in File Rotation on page 36), and
sent to the same FTP server (if set) for this manager object.

Event Logs are stored with the time stamp of when they were created. The format for these
files is YYYY-MM-DD-HH-MM_eventPostfix, where eventPostfix is defined in the method
call to write the file.

It is important to recognize that, because the file name does not include seconds, two events
recorded within the same minute and defined with the same eventPostfix argument will
cause the contents of the second event to be appended to the end of the first file.

File Rotation

Periodically, the class compares the new directory size against the maximum permitted
directory size set in the object declaration. If the directory exceeds the maximum folder size,
the oldest file is deleted. If no other files exist except the active file, no files are deleted.
This allows the single active file to overfill the allotted maximum until the creation of a
new file.

Outputs

Name IEC 61131 Type Description

Directory STRING(127) The directory being managed.
ActiveFile STRING(128) The rotating file presently waiting for write requests.
Error BOOL TRUE if the class cannot write the contents of its buffer

to file.
ErrorDesc STRING(255) The last error encountered by this class.
SpaceUsed ULINT The size, in bytes, of all managed files in this directory.
MaxFolderSize ULINT The size, in bytes, at which the directory begins deleting

files, starting at the oldest.
MaxFileSize UDINT The size, in bytes, at which this class rotates its automat-

ically generated files.
MaxFileCount UDINT The maximum number of files this directory stores. A

value of zero indicates that MaxFileCount is ignored.

bootstrap_SetDirectory (Method)

This method is called once, before any other method, to configure the class_DirectoryMan-
ager. It provides the values the class uses to determine where to store files, what to call
them, and when to create and delete them.

FileIO Instruction Manual Date Code 20190214



FileIO 37

Classes

Inputs

Name IEC 61131 Type Description

folderName STRING(127) The folder to use and manage. The character “/”
delimits the folder path. It may contain all print-
able ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It
cannot contain any file path manipulation variables
(//, /./, /../). If the folder does not exist, it will be
created the first time that a file is written. Any files
in this directory that are not managed files will be
deleted.

filenamePostfix STRING(16) A string that is added to the end of the time-
stamped file name on every file.

maximumFolderSize UDINT The size, in bytes, at which the directory manager
begins deleting files, starting at the oldest.

maximumFileSize UDINT The size, in bytes, at which this class rotates its
automatically generated files.

maximumNumFiles UDINT The maximum number of files this directory stores.
A value of zero indicates that maximumNumFiles
is ignored.

rollFileAtDay BOOL Close the working file each day at midnight and
start a new file.

SetFtpServerForArchiving (Method)

Call this method once to specify a remote FTP server to which generated files are sent and
how often the files should be sent.

Every FTP attempt generates a log file to assist with debugging (overwriting the previous
log file if it exists). The file includes success notifications as well as errors the ftp client
encounters (such as a bad username or password). View the following file, found at the root
of the sequestered file system, via a web browser after attempting an FTP file transfer:

ftplog.txt

Inputs

Name IEC 61131 Type Description

ftpServer STRING(15) The IP address of the FTP server being contacted.
remotePath STRING(127) The folder on the FTP server to where the local files

are sent.
username STRING(32) The FTP username used to log into the server. This

must contain only alphanumeric or underscore charac-
ters.

password STRING(32) The password associated with the FTP username used
to log into the server. This may contain any printable
ASCII characters, excluding the quote characters.

timeout UDINT The number of seconds for the FTP attempt to be run
before it is canceled. Must be greater than 0.

schedule enum_FtpSendSchedule Specify when local files should be sent to the remote
FTP server.

Date Code 20190214 Instruction Manual FileIO



38 FileIO

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the arguments provided are within range.

Processing

ä Validates the input strings and confirms that a valid IP address is provided.

ä If the inputs provided are valid, sets internal variables so that the Run() method
attempts to send files, and returns TRUE.

ä If the inputs provided are invalid, returns FALSE.

SetFileHeaderBytes (Method)

This method sets a block of text the class will place at the beginning of every non-event file
it creates. If you desire a newline, you must include it in the provided data. A numBytes of
zero clears any existing header; new files will be started with the first data entry instead.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to use as the header block, as
returned by the ADR() function.

numBytes UDINT The number of bytes to store, beginning with pt_data.

SetFileHeaderSELString (Method)

This method sets a block of text the class will place at the beginning of every non-event
file it creates. If you desire a newline, you must include it in the provided data. A strSel
of Size zero clears any existing header; new files will be started with the first data entry
instead.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to use as the header block.

SetFileHeaderString (Method)

This method sets a block of text the class will place at the beginning of every non-event file
it creates. If you desire a newline, you must include it in the provided data. A str of LEN
zero clears any existing header; new files will be started with the first data entry instead.

FileIO Instruction Manual Date Code 20190214



FileIO 39

Classes

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to use as the header block.

SetFileHeaderVector (Method)

This method sets a block of text the class will place at the beginning of every non-event
file it creates. If you desire a newline, you must include it in the provided data. A vector
of Size zero clears any existing header; new files will be started with the first data entry
instead.

Inputs

Name IEC 61131 Type Description

vector I_Vector The vector to use as the header block. See the DynamicVec-
tors library documentation for information about the I_Vector
interface.

SetFileFooterBytes (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A numBytes of
zero clears any existing footer.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to use as the footer block, as re-
turned by the ADR() function.

numBytes UDINT The number of bytes to store, beginning with pt_data.

SetFileFooterSELString (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A strSel of Size
zero clears any existing footer.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to use as the footer block.

Date Code 20190214 Instruction Manual FileIO



40 FileIO

Classes

SetFileFooterString (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A str of LEN zero
clears any existing footer.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to use as the footer block.

SetFileFooterVector (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A vector of Size
clears any existing footer.

Inputs

Name IEC 61131 Type Description

vector I_Vector The vector to use as the new footer block. See the DynamicVec-
tors library documentation for information about the I_Vector
interface.

StartNewFile (Method)

Use this method to close the active file and begin a new one. Unless you call this method, a
new file starts only if the conditions provided in bootstrap_SetDirectory() are met,
(i.e., rollFileAtDay is TRUE and a new day has begun or the active file size exceeded
maximumFileSize).

Processing

ä For an active log file and a non-empty footer string, this method places that string at
the end of the active file.

ä Closes the active file.

ä Creates a new file with the present time stamp.

ä For a non-empty header string, places that string at the top of the new file.

WriteToFileBytes (Method)

Call this method to append a raw byte array to the active file.

FileIO Instruction Manual Date Code 20190214



FileIO 41

Classes

Inputs/Outputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, beginning with pt_data.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of pt_data was successfully added to the output
buffer.

Processing

ä Appends numBytes characters, starting at address pt_data to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteToFileSELString (Method)

Call this method to append an SELString to the active file.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to append.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of strSel was successfully added to the output
buffer.

Processing

ä Appends the content of selStr to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteToFileString (Method)

Call this method to append a string to the active file.

Date Code 20190214 Instruction Manual FileIO



42 FileIO

Classes

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to append to the file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of str was successfully added to the output
buffer.

Processing

ä Appends the value of str to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteToFileVector (Method)

Call this method to append a vector of data to the active file.

Inputs/Outputs

Name IEC 61131 Type Description

vector I_Vector The vector to append to the file. See the DynamicVectors library
documentation for information about the I_Vector interface.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of vector was successfully added to the output
buffer.

Processing

ä Appends the content of vector to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

EventLogFromBytes (Method)

Call this method to write a log file with contents defined in a contiguous set of memory.

FileIO Instruction Manual Date Code 20190214



FileIO 43

Classes

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, beginning with pt_data.

Inputs/Outputs

Name IEC 61131 Type Description

eventPostfix STRING(16) A string that is added to the end of the time-stamped file
name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromSELString (Method)

Call this method to write a log file with contents defined in a class_SELString.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The content of the event file.
eventPostfix STRING(16) A string that is added to the end of the time-stamped file

name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Date Code 20190214 Instruction Manual FileIO



44 FileIO

Classes

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromString (Method)

Call this method to write a log file with contents defined in a string.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The content of the event file.
eventPostfix STRING(16) A string that is added to the end of the time-stamped file

name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromVector (Method)

Call this method to write a log file with contents defined in an I_Vector.

Inputs

Name IEC 61131 Type Description

vector I_Vector The content of the event file. See the DynamicVectors library
documentation for information about the I_Vector interface.

FileIO Instruction Manual Date Code 20190214



FileIO 45

Classes

Inputs/Outputs

Name IEC 61131 Type Description

eventPostfix STRING(16) A string that is added to the end of the time-stamped file
name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

Run (Method)

Call this method on every scan. It supervises the asynchronous writing of queued data to
active files and the asynchronous deletion of old files. Deletions occur only if the number
of files in the directory or size of the directory exceed user-set limits.

This method is also responsible for sending local files to a remote FTP server if the user has
configured FTP through a successful call to SetFtpServerForArchiving().

Processing

This class maintains an internal state machine with a round-robin job scheduler, ensuring
that the amount of processing overhead per scan remains relatively constant.

Subsequent calls to the Run() method perform the following sequence of operations:

1. If the system day of year has changed since the last time Run() was called and the
class is set to start a new file each day, the method starts a new log by calling the
StartNewFile() method.

2. Is this object already in one of the states described in Processing States on page 57?

ä Yes: Continues execution of that state.

ä No: Evaluates the job priority list described in Processing Jobs on page 57
and executes the next job.

Date Code 20190214 Instruction Manual FileIO



46 FileIO

Classes

3. Calls Run() on the internal class_FileWriter object that handles the writing of
entries.

4. Calls Run() on the internal class_FileWriter object that handles the writing of event
logs.

Processing Jobs

Only one job is performed per call to this method. The jobs are listed below in priority
order:

1. Enters the Send File state if a write operation has been completed since the last
Send File state completed (determined by looking for the falling edge of class_-
FileWriter.BytesLeft <> 0).

2. Enters the Directory Housekeeping state if there is no directory listing or the last
listing was exhausted.

3. Enters the Resend File state if there are unsent files that have not been synchronized
to the remote server .

Processing States

Some of the jobs in Processing Jobs on page 57 cause this object to enter a state. The
following describes these states and their exit criteria:

ä Send File: This state exits immediately if a valid FTP server was not provided using
the method SetFtpServerForArchiving().

If the FTP server was set appropriately, the behavior of this state varies depending on
the value of the schedule argument passed in using the SetFtpServerForArchiving()
method call. Enumerations on page 2 defines the enumeration for this argument.

â schedule = ON_CLOSE: If this write was initiated by the StartNewFile()
method, the closed file is sent to the FTP server using the sel_ftp_client.ftp_-
upload() function call.

The state is maintained until the file is sent and then successfully read back
using the sel_ftp.ftp_download() function call.

If any error occurs, this method sets Error to TRUE and fills ErrorDesc appro-
priately.

â schedule = ON_UPDATE: The active file is sent to the server using the method
call sel_ftp.ftp_upload().

ä Directory Housekeeping: The following sub-states exist in this state.

â Obtain the size of the active file.

â If the active file size is greater than maximumFileSize, start a new file.

FileIO Instruction Manual Date Code 20190214



FileIO 47

Classes

â If the file list is exhausted:

1. Determine the cutoff file for deletions on the next scan by performing
the following steps:

a. Collect a running total of space moving backward in time.

b. Find the file that causes space to be exceeded and store the time
stamp of that file.

c. Find the file that exceeds the file count moving backward in time
and store its time stamp.

d. Set the cutoff time to the newest of the two saved time stamps.

2. Restart the directory iterator.

â If the directory listing is not exhausted, perform one of the following checks on
the next file:

ã If unmanaged, delete it.

ã If the file is managed and newer than the cutoff time from the previous
directory scan, leave it alone.

ã If the file is managed and older than the cutoff time from the previous
directory scan, delete it.

class_TimeBasedDirectoryManager (Class)

This class allows for the creation of managed files, over time, in a controlled directory. It
provides protection for the size of the directory, the number of files in the directory, and the
size of those files.

Before you can use this class to manage a directory, you must provide it the folder path
designating to where log files are written, a maximum size for that directory, a maximum
number of days for which to hold files, and a postfix to add to log files.

This class uses class_FileWriter objects to perform the writing of log files and event logs.
See class_FileWriter (Class) on page 25 for more detailed information about the limitations
on the maximum size of log files or maximum number of buffered log entries.

File Entries

File entries take exactly the data provided and append this information to the active file. No
additional formatting is performed.

Event Logs

In addition to log files, you may want to create a separate file that records information
corresponding to some event, with custom formatting. These are referred to as “Event
Logs,” and should not be confused with the “Event Records” relays generate, containing
high-resolution waveforms. An event file is simply a custom log file written out to the
managed directory, rotated with the files (as described in File Rotation on page 48), and
sent to the same FTP server (if set) for this manager object.

Date Code 20190214 Instruction Manual FileIO



48 FileIO

Classes

Event Logs are stored with the time stamp of when they were created. The format for these
files is YYYY-MM-DD-HH-MM_eventPostfix, where eventPostfix is defined in the method
call to write the file.

It is important to recognize that, because the file name does not include seconds, two events
recorded within the same minute and defined with the same eventPostfix argument will
cause the contents of the second event to be appended to the end of the first file.

File Rotation

Periodically, the class compares the new directory size against the maximum permitted
directory size set in the object declaration. If the directory exceeds the maximum folder size,
the oldest file is deleted. If no other files exist except the active file, no files are deleted.
This allows the single active file to overfill the allotted maximum until the creation of a
new file.

Outputs

Name IEC 61131 Type Description

Directory STRING(127) The directory being managed.
ActiveFile STRING(128) The rotating file presently waiting for write requests.
Error BOOL TRUE if the class cannot write the contents of its buffer

to file.
ErrorDesc STRING(255) The last error encountered by this class.
SpaceUsed ULINT The size, in bytes, of all managed files in this directory.
MaxFolderSize ULINT The size, in bytes, at which the directory begins deleting

files, starting at the oldest.
MaxFileSize UDINT The size, in bytes, at which this class rotates its automat-

ically generated files.
MaxDaysHeld UDINT The maximum number of days this directory stores files

based on the time stamp.

bootstrap_SetDirectory (Method)

This method is called once, before any other method, to configure the class. It provides the
values the class uses to determine where to store files, what to call them, and when to create
and delete them.

Inputs

Name IEC 61131 Type Description

folderName STRING(127) The folder to use and manage. The character “/”
delimits the folder path. It may contain all print-
able ASCII characters between 16#20(Space) and
16#7E(~) except for ", ', :, <, %, >, ?, \, and |. It
cannot contain any file path manipulation variables
(//, /./, /../). If the folder does not exist, it will be
created the first time that a file is written. Any files
in this directory that are not managed files will be
deleted.

filenamePostfix STRING(16) A string that is added to the end of the time-
stamped file name on every file.

FileIO Instruction Manual Date Code 20190214



FileIO 49

Classes

Inputs

Name IEC 61131 Type Description

maximumFolderSize UDINT The size, in bytes, at which the directory begins
deleting files, starting at the oldest.

maximumFileSize UDINT The size, in bytes, at which this class rotates its
automatically generated files.

maximumNumDays UDINT The maximum number of days from today this
directory stores files based on the time stamp.

rollFileAtDay BOOL Close the working file each day at midnight and
start a new file.

SetFileHeaderBytes (Method)

This method sets a block of text the class will place at the beginning of every non-event file
it creates. If you desire a newline, you must include it in the provided data. A numBytes of
zero clears any existing header; new files will be started with the first data entry instead.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to use as the header block, as
returned by the ADR() function.

numBytes UDINT The number of bytes to store, beginning with pt_data.

SetFileHeaderSELString (Method)

This method sets a block of text the class will place at the beginning of every non-event
file it creates. If you desire a newline, you must include it in the provided data. A strSel
of Size zero clears any existing header; new files will be started with the first data entry
instead.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to use as the header block.

SetFileHeaderString (Method)

This method sets a block of text the class will place at the beginning of every non-event file
it creates. If you desire a newline, you must include it in the provided data. A str of LEN
zero clears any existing header; new files will be started with the first data entry instead.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to use as the header block.

Date Code 20190214 Instruction Manual FileIO



50 FileIO

Classes

SetFileHeaderVector (Method)

This method sets a block of text the class will place at the beginning of every non-event
file it creates. If you desire a newline, you must include it in the provided data. A vector
of Size zero clears any existing header; new files will be started with the first data entry
instead.

Inputs

Name IEC 61131 Type Description

vector I_Vector The vector to use as the header block. See the DynamicVec-
tors library documentation for information about the I_Vector
interface.

SetFileFooterBytes (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A numBytes of
zero clears any existing footer.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to use as the footer block, as re-
turned by the ADR() function.

numBytes UDINT The number of bytes to store, beginning with pt_data.

SetFileFooterSELString (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A strSel of Size
zero clears any existing footer.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to use as the footer block.

SetFileFooterString (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A str of LEN zero
clears any existing footer.

FileIO Instruction Manual Date Code 20190214



FileIO 51

Classes

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to use as the footer block.

SetFileFooterVector (Method)

This method sets a block of text the class will place at the end of every non-event file it
creates. If you desire a newline, you must include it in the provided data. A vector of Size
clears any existing footer.

Inputs

Name IEC 61131 Type Description

vector I_Vector The vector to use as the new footer block. See the DynamicVec-
tors library documentation for information about the I_Vector
interface.

StartNewFile (Method)

Use this method to close the active file and begin a new one. Unless you call this method, a
new file starts only if the conditions provided in bootstrap_SetDirectory() are met,
(i.e., rollFileAtDay is TRUE and a new day has begun or the active file size exceeded
maximumFileSize).

Processing

ä For an active log file and a non-empty footer string, this method places that string at
the end of the active file.

ä Closes the active file.

ä Creates a new file with the present time stamp.

ä For a non-empty header string, places that string at the top of the new file.

WriteToFileBytes (Method)

Call this method to append a raw byte array to the active file.

Inputs/Outputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, beginning with pt_data.

Date Code 20190214 Instruction Manual FileIO



52 FileIO

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of pt_data was successfully added to the output
buffer.

Processing

ä Appends numBytes characters, starting at address pt_data to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteToFileSELString (Method)

Call this method to append an SELString to the active file.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to append.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of strSel was successfully added to the output
buffer.

Processing

ä Appends the content of selStr to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteToFileString (Method)

Call this method to append a string to the active file.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to append to the file.

FileIO Instruction Manual Date Code 20190214



FileIO 53

Classes

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of str was successfully added to the output
buffer.

Processing

ä Appends the value of str to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteToFileVector (Method)

Call this method to append a vector of data to the active file.

Inputs/Outputs

Name IEC 61131 Type Description

vector I_Vector The vector to append to the file. See the DynamicVectors library
documentation for information about the I_Vector interface.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of vector was successfully added to the output
buffer.

Processing

ä Appends the content of vector to the output buffer.

ä Does not append a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

EventLogFromBytes (Method)

Call this method to write a log file with contents defined in a contiguous set of memory.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, starting with pt_data.

Date Code 20190214 Instruction Manual FileIO



54 FileIO

Classes

Inputs/Outputs

Name IEC 61131 Type Description

eventPostfix STRING(16) A string that is added to the end of the time-stamped file
name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromSELString (Method)

Call this method to write a log file with contents defined in a class_SELString.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The content of the event file.
eventPostfix STRING(16) A string that is added to the end of the time-stamped file

name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

FileIO Instruction Manual Date Code 20190214



FileIO 55

Classes

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromString (Method)

Call this method to write a log file with contents defined in a string.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The content of the event file.
eventPostfix STRING(16) A string that is added to the end of the time-stamped file

name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromVector (Method)

Call this method to write a log file with contents defined in an I_Vector.

Inputs

Name IEC 61131 Type Description

vector I_Vector The content of the event file. See the DynamicVectors library
documentation for information about the I_Vector interface.

Date Code 20190214 Instruction Manual FileIO



56 FileIO

Classes

Inputs/Outputs

Name IEC 61131 Type Description

eventPostfix STRING(16) A string that is added to the end of the time-stamped file
name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

Run (Method)

Call this method on every scan. It supervises the asynchronous writing of queued data to
active files and the asynchronous deletion of old files. Deletions occur only if the number
of files in the directory or size of the directory exceed user-set limits.

This method is also responsible for sending local files to a remote FTP server if the user has
configured FTP through a successful call to SetFtpServerForArchiving().

Processing

This class maintains an internal state machine with a round-robin job scheduler, ensuring
that the amount of processing overhead per scan remains relatively constant.

Subsequent calls to the Run() method perform the following sequence of operations:

1. If the system day of year has changed since the last time Run() was called and the
class is set to start a new file each day, the method starts a new log by calling the
StartNewFile() method.

2. Is this object already in one of the states described in Processing States on page 57?

ä Yes: Continues execution of that state.

ä No: Evaluates the job priority list described in Processing Jobs on page 57
and executes the next job.

FileIO Instruction Manual Date Code 20190214



FileIO 57

Classes

3. Calls Run() on the internal class_FileWriter object that handles the writing of
entries.

4. Calls Run() on the internal class_FileWriter object that handles the writing of event
logs.

Processing Jobs

Only one job is performed per call to this method. The jobs are listed below in priority
order:

1. Enters the Send File state if a write operation has been completed since the last
Send File state completed (determined by looking for the falling edge of class_-
FileWriter.BytesLeft <> 0).

2. Enters the Directory Housekeeping state if there is no directory listing or the last
listing was exhausted.

3. Enters the Resend File state if there are unsent files that have not been synchronized
to the remote server .

Processing States

Some of the jobs in Processing Jobs on page 57 cause this object to enter a state. The
following describes these states and their exit criteria:

ä Send File: This state exits immediately if a valid FTP server was not provided using
the method SetFtpServerForArchiving().

If the FTP server was set appropriately, the behavior of this state varies depending on
the value of the schedule argument passed in using the SetFtpServerForArchiving()
method call. Enumerations on page 2 defines the enumeration for this argument.

â schedule = ON_CLOSE: If this write was initiated by the StartNewFile()
method, the closed file is sent to the FTP server using the sel_ftp_client.ftp_-
upload() function call.

The state is maintained until the file is sent and then successfully read back
using the sel_ftp.ftp_download() function call.

If any error occurs, this method sets Error to TRUE and fills ErrorDesc appro-
priately.

â schedule = ON_UPDATE: The active file is sent to the server using the method
call sel_ftp.ftp_upload().

ä Directory Housekeeping: The following sub-states exist in this state.

â Obtain the size of the active file.

â If the active file size is greater than maximumFileSize, start a new file.

Date Code 20190214 Instruction Manual FileIO



58 FileIO

Classes

â If the file list is exhausted:

1. Determine the cutoff file for deletions on the next scan by performing
the following steps:

a. Collect a running total of space moving backward in time.

b. Find the file that causes space to be exceeded and store the time
stamp of that file.

c. Calculate and save the time stamp that exceeds the maxNumDays
value.

d. Set the cutoff time to the newest of the two saved time stamps.

2. Restart the directory iterator.

â If the directory listing is not exhausted, perform one of the following checks on
the next file:

ã If unmanaged, delete it.

ã If the file is managed and newer than the cutoff time from the previous
directory scan, leave it alone.

ã If the file is managed and older than the cutoff time from the previous
directory scan, delete it.

class_LogDirectoryManager (Class)

This class allows for the creation of managed files, over time, in a controlled directory. It
provides protection for the size of the directory, the number of files in the directory, and the
size of those files.

Before you can use this class to manage a directory, you must provide it the folder path
designating to where log files are written, a maximum size for that directory, a maximum
number of files to allow in that directory, and a postfix to add to log files.

This class uses class_FileWriter objects to perform the writing of log files and event logs.
See class_FileWriter (Class) on page 25 for more detailed information about the limitations
on the maximum size of log files or maximum number of buffered log entries.

Log Entries

Log entries are prefixed with a time stamp and added as a single-row entry to the active log
file.

The log file names are stored with the time stamp of when they were created. The format for
these files is YYYY-MM-DD-HH-MM_logPostfix, where logPostfix is set in the declaration
of the class.

FileIO Instruction Manual Date Code 20190214



FileIO 59

Classes

Event Logs

In addition to log files, you may want to create a separate file that records information
corresponding to some event, with custom formatting. These are referred to as “Event
Logs,” and should not be confused with the “Event Records” relays generate, containing
high-resolution waveforms. An event file is simply a custom log file written out to the
managed directory, rotated with the log files (as described in File Rotation on page 59), and
sent to the same FTP server (if set) for this manager object.

Event Logs are stored with the time stamp of when they were created. The format for these
files is YYYY-MM-DD-HH-MM_eventPostfix, where eventPostfix is defined in the method
call to write the file.

It is important to recognize that, because the file name does not include seconds, two events
recorded within the same minute and defined with the same eventPostfix argument will
cause the contents of the second event to be appended to the end of the first file.

File Rotation

Periodically, the class compares the new directory size against the maximum permitted
directory size set in the object declaration. If the directory exceeds the maximum folder
size, the oldest file is deleted. If no other files exist except the active log file, no files are
deleted. This allows the single active log file to overfill the allotted maximum until the
creation of a new log file.

Initialization Inputs

Name IEC 61131 Type Description

folderName STRING(127) The folder to write logs to and manage. The
character “/” delimits the folder path. It may
contain all printable ASCII characters between
16#20(Space) and 16#7E(~) except for ", ', :, <,
%, >, ?, \, and |. It cannot contain any file path
manipulation variables (//, /./, /../). If the folder
does not exist, it will be created the first time
that a log is written. Any files in this directory
that are not log files will be deleted.

logPostfix STRING(16) A string that is added to the end of the time-
stamped file name on every log file.

maxFolderSize UDINT The size, in bytes, at which the directory begins
deleting files, starting at the oldest.

maxNumFiles UDINT The maximum number of files this directory
stores. A value of zero indicates that maxNum-
Files is ignored.

autoStartNewLogDaily BOOL If this is TRUE, a new log file is automatically
created on the first PLC scan of every day, re-
gardless of whether an entry is written that day.
If FALSE, a new log file will only be created at
the first log entry method call.

Date Code 20190214 Instruction Manual FileIO



60 FileIO

Classes

Outputs

Name IEC 61131 Type Description

Directory STRING(127) The directory being managed.
ActiveFile STRING(128) The rotating file presently waiting for write requests.
Error BOOL TRUE if the class cannot write the contents of its buffer

to file.
ErrorDesc STRING(255) The last error encountered by this class.
SpaceUsed ULINT The size, in bytes, of all managed files in this directory.
MaxFolderSize ULINT The size, in bytes, at which the directory begins deleting

files, starting at the oldest.
MaxFileSize UDINT The size, in bytes, at which this class rotates its automat-

ically generated files.
MaxFileCount UDINT The maximum number of files this directory stores. A

value of zero indicates that MaxFileCount is ignored.

SetFtpServerForArchiving (Method)

Call this method once to specify a remote FTP server to which generated files are sent and
how often the files should be sent.

Every FTP attempt generates a log file to assist with debugging (overwriting the previous
log file if it exists). The file includes success notifications as well as errors the ftp client
encounters (such as a bad username or password). View the following file, found at the root
of the sequestered file system, via a web browser after attempting an FTP file transfer:

ftplog.txt

Inputs

Name IEC 61131 Type Description

ftpServer STRING(15) The IP address of the FTP server being contacted.
remotePath STRING(127) The folder on the FTP server to where the local files

are sent.
username STRING(32) The FTP username used to log into the server. This

must contain only alphanumeric or underscore charac-
ters.

password STRING(32) The password associated with the FTP username used
to log into the server. This may contain any printable
ASCII characters, excluding the quote characters.

timeout UDINT The number of seconds for the FTP attempt to be run
before it is canceled. Must be greater than 0.

schedule enum_FtpSendSchedule Specify when local files should be sent to the remote
FTP server.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the arguments provided are within range.

FileIO Instruction Manual Date Code 20190214



FileIO 61

Classes

Processing

ä Validates the input strings and confirms that a valid IP address is provided.

ä If the inputs provided are valid, sets internal variables so that the Run() method
attempts to send files, and returns TRUE.

ä If the inputs provided are invalid, returns FALSE.

StartNewLog (Method)

Call this method to create a new log file. All new log entries are added to this file until this
method is called again or the system day of year changes. Do not call this method if you
desire exactly one log file per day.

Processing

ä If there was an active log file, adds a log entry with the text: --End log file--

ä Updates internal retained variable storing the active log time via the SYS_TIME()
function call.

ä Adds a log to this new file with the text: --Begin log file--

WriteLogEntryBytes (Method)

Call this method to append a raw byte array to the active log file.

Inputs/Outputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, beginning with pt_data.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of pt_data was successfully added to the output
buffer.

Processing

ä Gets the current date from SYS_TIME().

ä Writes the time stamp of the log entry to the output buffer in the form YYYY-MM-DD-
HH-MM-SS.MiS, where MiS is milliseconds.

ä Appends numBytes characters starting at address pt_data to the output buffer.

ä Appends a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

Date Code 20190214 Instruction Manual FileIO



62 FileIO

Classes

WriteLogEntrySELString (Method)

Call this method to append an SELString to the active log file.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The class_SELString to append.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of strSel was successfully added to the output
buffer.

Processing

ä Gets the current date from SYS_TIME().

ä Writes the time stamp of the log entry to the output buffer in the form YYYY-MM-DD-
HH-MM-SS.MiS, where MiS is milliseconds.

ä Appends the content of selStr to the output buffer.

ä Appends a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteLogEntryString (Method)

Call this method to append a string to the active log file.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The string to add to the log.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of str was successfully added to the output
buffer.

Processing

ä Gets the current date from SYS_TIME().

ä Writes the time stamp of the log entry to the output buffer in the form YYYY-MM-DD-
HH-MM-SS.MiS, where MiS is milliseconds.

FileIO Instruction Manual Date Code 20190214



FileIO 63

Classes

ä Appends the value of str to the output buffer.

ä Appends a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

WriteLogEntryVector (Method)

Call this method to append a vector of data to the active log file.

Inputs/Outputs

Name IEC 61131 Type Description

vector I_Vector The vector to append to the file. See the DynamicVectors library
documentation for information about the I_Vector interface.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the content of vector was successfully added to the output
buffer.

Processing

ä Gets the current date from SYS_TIME().

ä Writes the time stamp of the log entry to the output buffer in the form YYYY-MM-DD-
HH-MM-SS.MiS, where MiS is milliseconds.

ä Appends the content of vector to the output buffer.

ä Appends a newline to the output buffer.

ä If any error occurs, sets Error TRUE and populates ErrorDesc appropriately.

EventLogFromBytes (Method)

Call this method to write a log file with contents defined in a contiguous set of memory.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The address of the bytes to write to file, as returned by the
ADR() function.

numBytes UDINT The number of bytes to write, starting with pt_data.

Date Code 20190214 Instruction Manual FileIO



64 FileIO

Classes

Inputs/Outputs

Name IEC 61131 Type Description

eventPostfix STRING(16) A string that is added to the end of the time-stamped file
name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromSELString (Method)

Call this method to write a log file with contents defined in a class_SELString.

Inputs/Outputs

Name IEC 61131 Type Description

strSel class_SELString The content of the event file.
eventPostfix STRING(16) A string that is added to the end of the time-stamped file

name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

FileIO Instruction Manual Date Code 20190214



FileIO 65

Classes

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromString (Method)

Call this method to write a log file with contents defined in a string.

Inputs/Outputs

Name IEC 61131 Type Description

str STRING(255) The content of the event file.
eventPostfix STRING(16) A string that is added to the end of the time-stamped file

name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

EventLogFromVector (Method)

Call this method to write a log file with contents defined in an I_Vector.

Inputs

Name IEC 61131 Type Description

vector I_Vector The content of the event file. See the DynamicVectors library
documentation for information about the I_Vector interface.

Date Code 20190214 Instruction Manual FileIO



66 FileIO

Classes

Inputs/Outputs

Name IEC 61131 Type Description

eventPostfix STRING(16) A string that is added to the end of the time-stamped file
name of an event log file.

Return Value

IEC 61131 Type Description

BOOL Returns TRUE if the data are successfully added to the output buffer.

Processing

ä Obtains the system time through the SYS_TIME() function call.

ä Constructs the new file name from the time and eventPostfix.

ä Sets the internal class_FileWriter object that handles event logs to use the new file
name.

ä Passes the provided data to the internal class_FileWriter that handles event logs.

ä If any error occurs, sets Error to TRUE, populates ErrorDesc appropriately, and
returns FALSE.

Run (Method)

Call this method on every scan. It supervises the asynchronous writing of queued data to
active files and the asynchronous deletion of old files. Deletions occur only if the number
of files in the directory or size of the directory exceed user-set limits.

This method is also responsible for sending local files to a remote FTP server if the user has
configured FTP through a successful call to SetFtpServerForArchiving().

Processing

This class maintains an internal state machine with a round-robin job scheduler, ensuring
that the amount of processing overhead per scan remains relatively constant.

Subsequent calls to the Run() method perform the following sequence of operations:

1. If the system day of year has changed since the last time Run() was called, the
method starts a new log by calling the StartNewLog() method.

2. Is this object already in one of the states described in Processing States on page 67?

ä Yes: Continues execution of that state.

ä No: Evaluates the job priority list described in Processing Jobs on page 67
and executes the next job.

3. Calls Run() on the internal class_FileWriter object that handles the writing of
entries.

4. Calls Run() on the internal class_FileWriter object that handles the writing of event
logs.

FileIO Instruction Manual Date Code 20190214



FileIO 67

Classes

Processing Jobs

Only one job is performed per call to this method. The jobs are listed below in priority
order:

1. Enters the Send File state if a write operation has been completed since the last
Send File state completed (determined by looking for the falling edge of class_-
FileWriter.BytesLeft <> 0).

2. Enters the Directory Housekeeping state if there is no directory listing or the last
listing was exhausted.

3. Enters the Resend File state if there are unsent files that have not been synchronized
to the remote server .

Processing States

Some of the jobs in Processing Jobs on page 67 cause this object to enter a state. The
following describes these states and their exit criteria:

ä Send File: This state exits immediately if a valid FTP server was not provided using
the method SetFtpServerForArchiving().

If the FTP server was set appropriately, the behavior of this state varies depending on
the value of the schedule argument passed in using the SetFtpServerForArchiving()
method call. Enumerations on page 2 defines the enumeration for this argument.

â schedule = ON_CLOSE: If this write was initiated by the StartNewLog()
method, the closed file is sent to the FTP server using the sel_ftp_client.ftp_-
upload() function call.

The state is maintained until the file is sent and then successfully read back
using the sel_ftp.ftp_download() function call.

If any error occurs, this method sets Error to TRUE and fills ErrorDesc appro-
priately.

â schedule = ON_UPDATE: The active file is sent to the server using the method
call sel_ftp.ftp_upload().

ä Directory Housekeeping: The following sub-states exist in this state.

â Obtain the size of the active file.

â If the active file size is greater than 1/3 of the maxFolderSize, start a new file.

Date Code 20190214 Instruction Manual FileIO



68 FileIO

Benchmarks

â If the file list is exhausted:

1. Determine the cutoff file for deletions on the next scan by performing
the following steps:

a. Collect a running total of space moving backward in time.

b. Find the file that causes space to be exceeded and store the time
stamp of that file.

c. Find the file that exceeds the file count moving backward in time
and store its time stamp.

d. Set the cutoff time to the newest of the two saved time stamps.

2. Restart the directory iterator.

â If the directory listing is not exhausted, perform one of the following checks on
the next file:

ã If unmanaged, delete it.

ã If the file is managed and newer than the cutoff time from the previous
directory scan, leave it alone.

ã If the file is managed and older than the cutoff time from the previous
directory scan, delete it.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3505

â R136-V0 firmware

ä SEL-3530

â R136-V0 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R136-V0 firmware

Benchmark Test Descriptions

It is important to note that all computation in the sel_file and sel_ftp_client libraries is
performed at a lower priority than any logic processing functionality. The time required to
perform a given action is proportional to the RTAC processing burden. The only values this
document records are the times for queuing that lower-priority work. The system performs
the lower-priority work asynchronously, so the Run() method of each class must be called
or the status variable passed to the functions must be monitored on every scan to supervise
the asynchronous operations.

FileIO Instruction Manual Date Code 20190214



FileIO 69

Benchmarks

Calculation of each time is the average of 100 iterations of the described computation.

class_DirectoryListing

CreateNewList

The time necessary to request a new list when provided a 255-character path.

GetList

The time necessary to copy a list containing 10 file names.

Run

The time necessary to call Run() on each scan when there is directory work pending.

Idle

The time necessary to call Run() on each scan when there is no directory work pending.

class_EventListing

CreateNewList

The time necessary to request a new list when provided a 255-character path.

GetList

The time necessary to copy a list containing 10 file names.

Run

The time necessary to call Run() on each scan when there is directory work pending.

Run (Idle)

The time necessary to call Run() on each scan when there is no directory work pending.

class_FileWriter

AppendBytes

The time necessary to request 255 bytes be written via AppendBytes().

AppendVector

The time necessary to request 255 bytes be written via AppendVector().

Date Code 20190214 Instruction Manual FileIO



70 FileIO

Benchmarks

AppendString

The time necessary to request 255 bytes be written via AppendString().

AppendSELString

The time necessary to request 255 bytes be written via AppendSELString().

Run

The time necessary to call Run() on the scan it switches from idle to work pending. This
tests how long it takes to request a copy of 255 characters when switching from idle state.

Run (Idle)

The time necessary to call Run() on each scan when there is no work pending.

class_FileReader2

ReadFile

The time necessary to request that a file with a 255-byte-long file name be opened via
ReadFile().

CopyTo

The time necessary to copy 255 bytes from the internal buffer via CopyTo().

AppendToVector

The time necessary to append 255 bytes from the internal buffer by using AppendToVector().

CopyToString

The time necessary to copy 255 bytes from the internal buffer via CopyToString().

AppendToSELString

The time necessary to append 255 bytes from the internal buffer by using AppendToSELString().

Run

The time necessary to call Run() on a class_FileReader2 on the scan it switches from work
pending to idle. This tests how long it takes to request a copy of 255 characters into the
internal buffer when switching to idle state.

Run (Idle)

The time necessary to call Run() on a class_FileReader each scan when there is no work
pending.

FileIO Instruction Manual Date Code 20190214



FileIO 71

Benchmarks

class_LogDirectoryManager

StartNewLog

The time necessary to call StartNewLog().

WriteLogEntryBytes

The time necessary to call WriteLogEntryBytes() with 255 bytes of input.

WriteLogEntryVector

The time necessary to call WriteLogEntryVector() with 255 bytes of content.

WriteLogEntryString

The time necessary to call WriteLogEntryString() with 255 characters of content.

WriteLogEntrySELString

The time necessary to call WriteLogEntrySELString() with 255 characters of content.

EventLogFromBytes

The time necessary to call EventLogFromBytes() with 255 bytes of input.

EventLogFromVector

The time necessary to call EventLogFromVector() with 255 bytes of input.

EventLogFromString

The time necessary to call EventLogFromString() with 255 bytes of input.

EventLogFromSELString

The time necessary to call EventLogFromSELString() with 255 bytes of input.

Run

The time necessary to call Run() with FTP configured.

class_DirectoryManager

StartNewFile

The time necessary to call StartNewLog().

Date Code 20190214 Instruction Manual FileIO



72 FileIO

Benchmarks

WriteLogEntryBytes

The time necessary to call WriteLogEntryBytes() with 255 bytes of input.

WriteLogEntryVector

The time necessary to call WriteLogEntryVector() with 255 bytes of content.

WriteLogEntryString

The time necessary to call WriteLogEntryString() with 255 characters of content.

WriteLogEntrySELString

The time necessary to call WriteLogEntrySELString() with 255 characters of content.

EventLogFromBytes

The time necessary to call EventLogFromBytes() with 255 bytes of input.

EventLogFromVector

The time necessary to call EventLogFromVector() with 255 bytes of input.

EventLogFromString

The time necessary to call EventLogFromString() with 255 bytes of input.

EventLogFromSELString

The time necessary to call EventLogFromSELString() with 255 bytes of input.

Run

The time necessary to call Run() with FTP configured.

class_TimeBasedDirectoryManager

StartNewFile

The time necessary to call StartNewLog().

WriteLogEntryBytes

The time necessary to call WriteLogEntryBytes() with 255 bytes of input.

WriteLogEntryVector

The time necessary to call WriteLogEntryVector() with 255 bytes of content.

FileIO Instruction Manual Date Code 20190214



FileIO 73

Benchmarks

WriteLogEntryString

The time necessary to call WriteLogEntryString() with 255 characters of content.

WriteLogEntrySELString

The time necessary to call WriteLogEntrySELString() with 255 characters of content.

EventLogFromBytes

The time necessary to call EventLogFromBytes() with 255 bytes of input.

EventLogFromVector

The time necessary to call EventLogFromVector() with 255 bytes of input.

EventLogFromString

The time necessary to call EventLogFromString() with 255 bytes of input.

EventLogFromSELString

The time necessary to call EventLogFromSELString() with 255 bytes of input.

Run

The time necessary to call Run() with FTP configured.

fun_FtpDownload

The time necessary to request a file download when provided a 255-character path.

fun_FtpEventUpload

The time necessary to request an event upload when provided a 255-character path.

fun_FtpUpload

The time necessary to request a file upload when provided a 255-character path.

fun_DeleteFile

The time necessary to request a file delete when provided a 255-character path.

Date Code 20190214 Instruction Manual FileIO



74 FileIO

Benchmarks

fun_FileSize

The time necessary to request a file size when provided a 255-character path.

fun_FilesystemFreeSpace

The time necessary to request the available free space on the system.

fun_SoeAscending

The time necessary to request a list of 10 SOE reports without a filter.

fun_SoeDescending

The time necessary to request a list of 10 SOE reports without a filter.

fun_SoeWindow

The time necessary to request a list of 10 SOE reports without a filter.

fun_LocalSoeGetID

The time necessary to request a list of 10 SOE reports without a filter.

fun_LocalSoeAscending

The time necessary to request a list of 10 SOE reports without a filter.

fun_LocalSoeDescending

The time necessary to request a list of 10 SOE reports without a filter.

fun_RemoteSoeGetID

The time necessary to request a list of 10 SOE reports without a filter.

fun_RemoteSoeAscending

The time necessary to request a list of 10 SOE reports without a filter.

FileIO Instruction Manual Date Code 20190214



FileIO 75

Benchmarks

fun_RemoteSoeDescending

The time necessary to request a list of 10 SOE reports without a filter.

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

class_DirectoryListing.CreateNewList 327 202 11
class_DirectoryListing.GetList 72 45 4
class_DirectoryListing.Run 137 42 3
class_DirectoryListing.Run (Idle) 5 4 1
class_EventListing.CreateNewList 6 4 1
class_EventListing.GetNewList 353 218 73
class_EventListing.Run 18 12 2
class_EventListing.Run (Idle) 2 1 1
class_FileWriter.AppendBytes 27 20 2
class_FileWriter.AppendVector 37 17 1
class_FileWriter.AppendString 43 26 2
class_FileWriter.SELString 1170 678 53
class_FileWriter.Run 62 50 5
class_FileWriter.Run (Idle) 5 4 1
class_FileReader2.ReadFile 25 14 1
class_FileReader2.CopyTo 38 19 1
class_FileReader2.AppendToVector 824 459 19
class_FileReader2.AppendToString 13 6 1
class_FileReader2.AppendToSELString 460 287 17
class_FileReader2.Run 4 2 1
class_FileReader2.Run (Idle) 3 1 1
class_LogDirectoryManager.StartNewLog 552 285 13
class_LogDirectoryManager.WriteLogEntryBytes 113 127 4
class_LogDirectoryManager.WriteLogEntryVector 159 100 4
class_LogDirectoryManager.WriteLogEntryString 143 71 5
class_LogDirectoryManager.WriteLogEntrySELString 1934 1030 45
class_LogDirectoryManager.EventLogFromBytes 145 91 4
class_LogDirectoryManager.EventLogFromVector 149 68 3
class_LogDirectoryManager.EventLogFromString 172 116 4
class_LogDirectoryManager.EventLogFromSELString 1927 1024 44
class_LogDirectoryManager.Run 624 368 14
class_DirectoryManager.StartNewFile 237 104 5
class_DirectoryManager.WriteLogEntryBytes 92 27 1
class_DirectoryManager.WriteLogEntryVector 41 15 1
class_DirectoryManager.WriteLogEntryString 46 30 2
class_DirectoryManager.WriteLogEntrySELString 1770 952 44
class_DirectoryManager.EventLogFromBytes 286 135 4
class_DirectoryManager.EventLogFromVector 220 85 4
class_DirectoryManager.EventLogFromString 158 80 4
class_DirectoryManager.EventLogFromSELString 1966 1020 43
class_DirectoryManager.Run 574 309 14

Date Code 20190214 Instruction Manual FileIO



76 FileIO

Examples

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

class_TimeBasedDirectoryManager.StartNewFile 256 95 5
class_TimeBasedDirectoryManager.WriteLogEntryBytes 79 27 1
class_TimeBasedDirectoryManager.WriteLogEntryVector 46 17 1
class_TimeBasedDirectoryManager.WriteLogEntryString 47 21 2
class_TimeBasedDirectoryManager.WriteLogEntrySELString 1769 969 45
class_TimeBasedDirectoryManager.EventLogFromBytes 282 116 4
class_TimeBasedDirectoryManager.EventLogFromVector 236 84 3
class_TimeBasedDirectoryManager.EventLogFromString 165 82 4
class_TimeBasedDirectoryManager.EventLogFromSELString 198 1016 45
class_TimeBasedDirectoryManager.Run 592 348 16
fun_FtpDownload 112 76 4
fun_FtpEventUpload 75 45 5
fun_FtpUpload 88 88 5
fun_DeleteFile 73 50 4
fun_FileSize 93 53 5
fun_FilesystemFreeSpace 75 41 4
fun_SoeAscending 106 64 5
fun_SoeDescending 106 63 4
fun_SoeWindow 118 62 4
fun_LocalSoeGetID 122 60 5
fun_LocalSoeAscending 108 64 4
fun_LocalSoeDescending 118 65 4
fun_RemoteSoeGetID 113 61 4
fun_RemoteSoeAscending 116 65 5
fun_RemoteSoeDescending 106 63 4

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Writing From Changing String

Objective

You want to append the contents of a string to a file every time the value of that string
changes.

FileIO Instruction Manual Date Code 20190214



FileIO 77

Examples

Assumptions

This example assumes that a user-specified IEC 61131 function called fun_StringDifferent
provides functionality similar to that in Code Snippet 1.

Code Snippet 1 fun_StringsDifferent

(* Compares str1 to str2. If they are identical until the null terminator
is encountered in both strings, then return FALSE. *)
FUNCTION fun_StringsDifferent : BOOL
VAR CONSTANT

c_maxStringSize : UDINT := 255;
END_VAR
VAR_IN_OUT

str1 : STRING(c_maxStringSize); // The first string to compare
str2 : STRING(c_maxStringSize); // The second string to compare

END_VAR
VAR

i : UDINT;
differenceFound : BOOL := FALSE;

END_VAR

FOR i := 0 TO c_maxStringSize - 1 DO
IF (0 = str1[i]) AND (0 = str2[i]) THEN

// Found null terminator on both strings at the same time.
EXIT;

ELSIF str1[i] <> str2[i] THEN
differenceFound := TRUE;
EXIT;

END_IF
END_FOR
(* Return True if difference found *)
fun_StringsDifferent := differenceFound;

Solution

Because we assume that a simple string comparison function exists, we can write out the
contents of a string to a file every time it changes by using just a few lines of code, as in
Code Snippet 2.

Code Snippet 2 prg_WriteStringOnChange

PROGRAM prg_WriteStringOnChange
VAR

TheStringToWrite : STRING(255) := '';
TheStringLastWritten : STRING(255) := '';
FileWriter : class_FileWriter('/OutputFolder/OutputFile.txt');

END_VAR

Date Code 20190214 Instruction Manual FileIO



78 FileIO

Examples

Code Snippet 2 prg_WriteStringOnChange (Continued)

IF fun_StringsDifferent(TheStringToWrite, TheStringLastWritten) THEN
FileWriter.AppendString(TheStringToWrite);
TheStringLastWritten := TheStringToWrite;

END_IF
FileWriter.Run(); // Run this every scan regardless.

Reading File Contents Into Byte Array

Objective

You want to read the contents of a file into a byte array.

Assumptions

The file “/FileToRead.txt” exists in the root of the RTAC public file system.

Solution

The file is read into an internal buffer and then copied into an empty user-supplied byte
array using the program in Code Snippet 3.

Code Snippet 3 prg_ReadToByteArray

PROGRAM prg_ReadToByteArray
VAR CONSTANT

c_ByteArraySize : UDINT := 10_000;
END_VAR
VAR

TheByteArray : ARRAY[1..c_ByteArraySize] OF BYTE;
Filename : STRING(255) := '/FileToRead.txt';
FileReader : class_FileReader2;
FirstScan : BOOL := TRUE;
Copied : BOOL := FALSE;

END_VAR

IF FirstScan THEN
//Initiate the File Read.
FileReader.ReadFile(Filename);
FirstScan := FALSE;

ELSIF 0 < FileReader.BytesInBuffer AND NOT Copied THEN
FileReader.CopyTo(startByte := 0,

pt_byte := ADR(TheByteArray),
numBytes := c_ByteArraySize);

Copied := TRUE;
END_IF
FileReader.Run(); // Run this every scan regardless.

FileIO Instruction Manual Date Code 20190214



FileIO 79

Examples

NOTE: See the DynamicVectors
library documentation for more

information about DynamicVectors.

See the ACSELERATOR RTAC Library

Extensions Instruction Manual

(LibraryExtensionsIM) for explanation

about the concepts used by the

object-oriented extensions to the

IEC 61131-3 standard.

Reading File Contents Into Dynamic Byte Vector

Objective

You want to read the contents of a file into a Dynamic Byte Vector.

Assumptions

1. You have included the DynamicVectors library in your project.

2. The file “/FileToRead.txt” exists in the root of the RTAC public file system.

Solution

The file will first be read into an internal buffer and then copied into an empty user-supplied
class_ByteVector using the program in Code Snippet 4.

Code Snippet 4 prg_ReadToByteVector

PROGRAM prg_ReadToByteVector
VAR

TheByteVector : DynamicVectors.class_ByteVector;
Filename : STRING(255) := '/FileToRead.txt';
FileReader : class_FileReader2;
FirstScan : BOOL := TRUE;
Copied : BOOL := FALSE;

END_VAR

IF FirstScan THEN
//Initiate the File Read.
FileReader.ReadFile(Filename);
FirstScan := FALSE;

ELSIF 0 < FileReader.BytesInBuffer AND NOT Copied THEN
FileReader.AppendToVector(startByte := 0, vector := TheByteVector);
Copied := TRUE;

END_IF
FileReader.Run(); // Run this every scan regardless.

Reading File Contents Into Array of Strings

Objective

You want to read the contents of a file into an array of strings.

Assumptions

The file “/FileToRead.txt” exists in the root of the RTAC File Manager.

Date Code 20190214 Instruction Manual FileIO



80 FileIO

Examples

NOTE: See the SELString library
documentation for more information

about class_SELStrings and

class_SELStringLists.

Solution

The file will first be read into an internal buffer and then it will be copied into an empty
user-supplied strings using the program in Code Snippet 5.

Code Snippet 5 prg_ReadToArrayOfStrings

PROGRAM prg_ReadToArrayOfStrings
VAR CONSTANT

c_NumStringsInArray : UDINT := 1_000;
c_StringSize : UDINT := 255;

END_VAR
VAR

TheStringArray : ARRAY[1..c_NumStringsInArray] OF STRING(c_StringSize);
Filename : STRING(255) := '/FileToRead.txt';
FileReader : class_FileReader2;
FirstScan : BOOL := TRUE;
Copied : BOOL := FALSE;
stringIter : UDINT;
bufferTracker : UDINT := 0;

END_VAR

IF FirstScan THEN
//Initiate the File Read.
FileReader.ReadFile(Filename);
FirstScan := FALSE;

ELSIF 0 < FileReader.BytesInBuffer AND NOT Copied THEN
FOR stringIter := 1 TO c_NumStringsInArray DO

IF bufferTracker <= FileReader.BytesInBuffer THEN
FileReader.CopyToString(startByte := bufferTracker,

str := TheStringArray[stringIter]);
ELSE

// All of the file contents has been copied into strings.
EXIT;

END_IF
bufferTracker := bufferTracker + c_StringSize;

END_FOR
Copied := TRUE;

END_IF
FileReader.Run(); // Run this every scan regardless.

Reading Event Reports Retrieved From Relays

Objective

You have set up the RTAC to automatically collect and buffer event records, and want to
read the contents of these records.

Assumptions

1. You have included the SELString and DynamicVectors libraries in your project.

2. The RTAC database contains events collected from the desired relays.

FileIO Instruction Manual Date Code 20190214



FileIO 81

Examples

Solution

You can locate qualifying files using a class_EventListing. Then you can select one as in
Code Snippet 6.

Code Snippet 6 prg_ReadEventReportFromRelay

PROGRAM prg_ReadEventReportFromRelay
VAR

EventReportListing : class_EventListing;
EventReportList : class_BaseVector(SIZEOF(struct_EventDetails), 32);
FileReader : class_FileReader2;
FileContents : class_ByteVector;
//A record of the first 255 characters of the read in file.
FirstFileChars : STRING(255);
EventReportFileDetails : struct_EventDetails;
StepNumber : UDINT := 1; // Start off by running.
EventIndexToRead : UDINT := 0; // The index of the file to read in
EventIndexRead : UDINT := 0;
Initiate : BOOL; // Force this value to TRUE in order to start reading

files.
END_VAR

Date Code 20190214 Instruction Manual FileIO



82 FileIO

Examples

Code Snippet 6 prg_ReadEventReportFromRelay (Continued)

IF Initiate THEN
// Start the state machine to read the event.
StepNumber := 1;
Initiate := FALSE;

END_IF
CASE StepNumber OF
1:

// Request a list of all events on the system.
EventReportListing.CreateNewList(deviceName := '');
StepNumber := StepNumber + 1;

2:
// Wait for the list to be ready.
IF EventReportListing.NewListReady THEN

IF EventReportListing.GetList(list := EventReportList) THEN
StepNumber := StepNumber + 1;

END_IF
END_IF

3:
// Select a specific event if that many events exist on the system.
IF EventIndexToRead < EventReportList.Size THEN

EventReportList.GetCopyOfElement(EventIndexToRead,
ADR(EventReportFileDetails));

EventIndexRead := EventIndexToRead;
FileReader.ReadEventFromDB(EventReportFileDetails.Handle,

FileIo.sel_file.RAW_DATA);
StepNumber := StepNumber + 1;

END_IF
4:

// The file reader has read the data in. Do any required work.
IF 0 < FileReader.BytesInBuffer THEN

FileReader.AppendToVector(0, FileContents);
(*Update the output string by copying to it the first 255 bytes or

the complete file, whichever is less.*)
SysMemCpy(pDest := ADR(FirstFileChars),

pSrc := FileContents.pt_Data,
udiCount := MIN(FileContents.Size, 255));

StepNumber := StepNumber + 1;
END_IF

5:
// Wait for until Initiate = TRUE for next file read request.
StepNumber := 0;

END_CASE
EventReportListing.Run(); // Run this every scan regardless.
FileReader.Run(); // Run this every scan regardless.

Reading COMTRADE Events Retrieved From Relays

Objective

You have set up the RTAC to automatically collect COMTRADE events and want to read
the contents of these records.

FileIO Instruction Manual Date Code 20190214



FileIO 83

Examples

NOTE: See the SELString library
documentation for more information

about class_SELStrings and

class_SELStringLists.

Assumptions

1. You have included the SELString and DynamicVectors libraries in your project.

2. Collected events from the desired relays exist in the RTAC database.

Solution

You can locate qualifying files using a class_EventListing. Then you can select one as in
Code Snippet 7.

Code Snippet 7 prg_ReadComtradeEventFromRelay

PROGRAM prg_ReadComtradeEventFromRelay
VAR

EventReportListing : class_EventListing;
EventReportList : class_BaseVector(SIZEOF(struct_EventDetails), 32);
cfgReader : class_FileReader2;
datReader : class_FileReader2;
//A record of the first 255 characters of the read in file.
EventReportFileDetails : struct_EventDetails;
StepNumber : UDINT := 1; // Start off by running.
EventIndexToRead : UDINT := 0;
Initiate : BOOL; // Force this value to TRUE in order to start reading

files.
END_VAR

Date Code 20190214 Instruction Manual FileIO



84 FileIO

Examples

Code Snippet 7 prg_ReadComtradeEventFromRelay (Continued)

IF Initiate THEN
StepNumber := 1; // Start executing the state machine
Initiate := FALSE;

END_IF
CASE StepNumber OF
1:

EventReportListing.CreateNewList(deviceName := '');
StepNumber := StepNumber + 1;

2:
IF EventReportListing.NewListReady THEN

IF EventReportListing.GetList(list := EventReportList) THEN
StepNumber := StepNumber + 1;

END_IF
END_IF
EventIndexToRead := 0;

3:
WHILE EventIndexToRead < EventReportList.Size DO // An event was found

EventReportList.GetCopyOfElement(EventIndexToRead,
ADR(EventReportFileDetails));
EventIndexToRead := EventIndexToRead + 1;
IF EventReportFileDetails.Handle.EventType =

FileIo.sel_file.COMTRADE THEN
cfgReader.ReadEventFromDB(EventReportFileDetails.Handle,
FileIo.sel_file.CFG_FILE);
datReader.ReadEventFromDB(EventReportFileDetails.Handle,
FileIo.sel_file.DAT_FILE);
EXIT;

END_IF
END_WHILE
StepNumber := StepNumber + 1;

4:
IF NOT cfgReader.InProgress AND NOT datReader.InProgress THEN

//Extract data and perform desired actions on the data here.
//cfgReader and datReader contain the contents desired.
StepNumber := StepNumber + 1;

END_IF
5:

IF EventIndexToRead >= EventReportList.Size THEN
//This branch represents having accessed all COMTRADE files found.
StepNumber := 0;

ELSE
//This branch represents having more files to check.
StepNumber := 3;

END_IF
END_CASE
EventReportListing.Run(); // Run this every scan regardless.
cfgReader.Run(); // Run this every scan regardless.
datReader.Run();

FileIO Instruction Manual Date Code 20190214



FileIO 85

Examples

Downloading File to Local File System From Remote FTP

Server

Objective

You want to read a file onto the local file system from a remote FTP server and call the local
file “FileFromFtpServer.csv”.

Assumptions

1. An FTP server is set up, configured, and accessible by the RTAC over the network.

2. The FTP server configuration is as follows:

ä IP address: 192.168.0.2

ä Username: FTPUSER

ä Password: TAIL

3. The file “FileToFtp.csv” exists in the root of the FTP server file system.

Solution

First, you must get the file from the remote server by performing an FTP download using
code similar to that shown in Code Snippet 8.

Then you can manipulate the file at will. For example, you could read the file into an internal
buffer, then copy it into an empty user-supplied class_ByteVector by using the program
shown previously in Code Snippet 4.

Code Snippet 8 prg_FtpDownload

PROGRAM prg_FtpDownload
VAR

FtpServerIP : STRING(15) := '192.168.0.2';
FtpServerUsername : STRING(32) := 'FTPUSER';
FtpServerPassword : STRING(32) := 'TAIL';
FtpServerFileToGet : STRING(255) := 'FileToFtp.csv';
RenameAsLocalFile : STRING(255) := '/FileFromFtpServer.csv';

FirstScan : BOOL := FALSE;
Timeout : UDINT := 10; // Time in seconds
DownloadStatus : FileIo.sel_ftp_client.Enum_sel_ftp_client_errors := 0;
CurrentStatus : FileIo.sel_ftp_client.Enum_sel_ftp_client_errors;
DownloadAttemptCompleted : BOOL := FALSE;
DownloadAttemptFailed : BOOL := FALSE;

END_VAR

Date Code 20190214 Instruction Manual FileIO



86 FileIO

Examples

Code Snippet 8 prg_FtpDownload (Continued)

CurrentStatus := DownloadStatus;
IF FirstScan THEN

//Initiate the FTP Read.
FileIo.sel_ftp_client.ftp_download(

ftp_server := FtpServerIP,
local_path := RenameAsLocalFile,
remote_path := FtpServerFileToGet,
username := FtpServerUsername,
password := FtpServerPassword,
timeout := Timeout,
status := DownloadStatus); // This is passed in as a VAR_IN_OUT

(* Note, making this call will cause the download status to be
initialized

to 'IN_PROGRESS'*)
FirstScan := FALSE;

(* Because DownloadStatus was passed in as a VAR_IN_OUT,
it can be written to by the external FTP task.
Check it regularly to see if the download status changed to 0 *)
ELSIF FileIo.sel_ftp_client.NO_ERROR = CurrentStatus THEN

DownloadAttemptCompleted := TRUE;
ELSIF CurrentStatus < FileIo.sel_ftp_client.IN_PROGRESS THEN

// The operation has hit an error because NO_ERROR was already checked.
DownloadAttemptFailed := TRUE;

END_IF

Uploading File From Local File System to Remote FTP

Server

Objective

You want to write a file from the local file system to a remote FTP server and call the local
file “FileFromRTAC.csv”.

Assumptions

1. An FTP server is set up, configured, and accessible by the RTAC over the network.

2. The FTP server configuration is as follows:

ä IP address: 192.168.0.2

ä Username: FTPUSER

ä Password: TAIL

3. The file “FileToSend.csv” exists in the root of the RTAC File Manager.

Solution

Get the file onto the remote server by performing an FTP upload.

FileIO Instruction Manual Date Code 20190214



FileIO 87

Examples

Code Snippet 9 prg_FtpUpload

PROGRAM prg_FtpUpload
VAR

FtpServerIP : STRING(15) := '192.168.0.2';
FtpServerUsername : STRING(32) := 'FTPUSER';
FtpServerPassword : STRING(32) := 'TAIL';
FileNameForFtpServer : STRING(255) := 'FileFromRTAC.csv';
LocalFileToSend : STRING(255) := '/FileToSend.csv';
FirstScan : BOOL := TRUE;
Timeout : UDINT := 10; // Time in seconds
UploadStatus : FileIo.sel_ftp_client.Enum_sel_ftp_client_errors

:= 0;
CurrentStatus : FileIo.sel_ftp_client.Enum_sel_ftp_client_errors;
UploadAttemptCompleted : BOOL := FALSE;
UploadAttemptFailed : BOOL := FALSE;

END_VAR

CurrentStatus := UploadStatus;
IF FirstScan THEN

//Initiate the FTP write.
FileIo.sel_ftp_client.ftp_upload(

ftp_server := FtpServerIP,
local_path := LocalFileToSend,
remote_path := FileNameForFtpServer,
username := FtpServerUsername,
password := FtpServerPassword,
timeout := Timeout,
status := UploadStatus); // This is passed in as a VAR_IN_OUT

(* Note, making this call will cause the upload status to be initialized
to 'IN_PROGRESS'*)
FirstScan := FALSE;

(* Because UploadStatus was passed in as a VAR_IN_OUT,
it can be written to by the external FTP task.
Check it regularly to see if the upload status changed to 0 *)

ELSIF FileIo.sel_ftp_client.NO_ERROR = CurrentStatus THEN
UploadAttemptCompleted := TRUE;

ELSIF CurrentStatus < FileIo.sel_ftp_client.IN_PROGRESS THEN
// The operation has hit an error because NO_ERROR was already checked.
UploadAttemptFailed := TRUE;

END_IF

Basic Directory Management With Persistent Log Files

Objective

Use the basic directory manager to implement a six-file circular buffer in a target directory
that is being populated by an independent FileIO class_FileWriter instance. Write application
errors to a persistent log file in the target directory so the log file is not subject to the circular
buffer.

Date Code 20190214 Instruction Manual FileIO



88 FileIO

Examples

Assumptions

1. A user-programmed application is writing files to a designated folder, Dir1, on the
RTAC file system by using FileIO class_FileWriter.

2. A Global Variable List, GVL1, has been defined to contain variables pertinent to
error tracking activities for the application. This example GVL is shown in Code
Snippet 10.

3. The user-programmed application populates the variables in GVL1.

Code Snippet 10 Error Tracking: GVL1

VAR_GLOBAL
//Flag indicating error condition on the given application
g_ApplicationError : BOOL;
//User-defined numeric error category
g_ApplicationErrorCode : DINT;
//Specific error message
g_ApplicationErrorDescription : STRING(255);

END_VAR

Solution

Instantiate a class_BasicDirectoryManager to fulfill the stated directory management ob-
jectives. Also use class_FileWriter to generate a persistent error log file. Recall that
class_BasicDirectoryManager ignores files with file names beginning with a period (.).

Code Snippet 11 prg_ManageComplexDirectory

PROGRAM prg_ManageComplexDirectory
VAR

FirstScan : BOOL := TRUE;
FolderName : STRING := 'Dir1';
ErrorFileWriter : FileIO.class_FileWriter(filename :=

'Dir1/.ErrorLog.txt');
Manager : FileIO.class_BasicDirectoryManager;
ApplicationErrorTrigger : R_TRIG;
TempLogString : STRING(255);

END_VAR

FileIO Instruction Manual Date Code 20190214



FileIO 89

Examples

Code Snippet 11 prg_ManageComplexDirectory (Continued)

IF FirstScan THEN
(*Initialize the basic directory manager
by calling the bootstrap_SetDirectory() method.
Limit target directory to 1MB, 6 files, and
no limit on the age of the files.*)
Manager.bootstrap_SetDirectory(folderName := FolderName,

maximumFolderSize := 1024*1024, maximumNumFiles := 6,
maximumNumDays := 0);

FirstScan := FALSE;
END_IF

//Look for the rising edge of the error flag.
ApplicationErrorTrigger(CLK := GVL1.g_ApplicationError);

(*IF error detected, write current state of GVL1 variables
to the persistent log file, preceded by the current system time.*)
IF ApplicationErrorTrigger.Q THEN

TempLogString :=
CONCAT(DT_TO_STRING(System_Time_Control_POU.System_Time_DateAndTime),
' Application error code:');

TempLogString := CONCAT(TempLogString,
DINT_TO_STRING(GVL1.g_ApplicationErrorCode));

TempLogString := CONCAT(TempLogString, '$nError message: ');
TempLogString := CONCAT(TempLogString,

GVL1.g_ApplicationErrorDescription);
TempLogString := CONCAT(TempLogString, '$n$r');
ErrorFileWriter.AppendString(TempLogString);

END_IF

//Run the persistent file writer
ErrorFileWriter.Run();
//Manage the target directory
Manager.Run();

Logging a History of Inputs and Outputs

Objective

You want to keep a week’s worth of input value history, as well as outputs from a protection
algorithm that has been implemented.

Assumptions

There exist some set of inputs and outputs to the work being done. Here these are delineated
by adding the prefix g_, indicating that they exist in a GVL as shown in Code Snippet 12.

Date Code 20190214 Instruction Manual FileIO



90 FileIO

Examples

Code Snippet 12 Global Variable List

VAR_GLOBAL
g_TriggerOne : BOOL;
g_TriggerTwo : BOOL;
g_WorkingVoltage : REAL;
g_WorkingCurrent : REAL;

g_OutputOne : BOOL;
g_OutputTwo : BOOL;

END_VAR

Solution

You can instantiate a class_LogDirectoryManager to manage rotation of the logs you want.

Code Snippet 13 prg_LogApplicationActions

PROGRAM prg_LogApplicationActions
VAR

LogManager : class_LogDirectoryManager( folderName := '/WeekOfLogs/',
logPostfix := 'InVsOuts.log',
maxFolderSize := 512000,
maxNumFiles := 7,
autoStartNewLogDaily := TRUE);

WorkspaceString : STRING(255);
END_VAR

IF g_TriggerOne THEN
WorkspaceString := CONCAT( 'Trigger One received with a input voltage

of ',
REAL_TO_STRING(g_workingVoltage));

LogManager.WriteLogEntryString(WorkspaceString);
END_IF
IF g_TriggerTwo THEN

WorkspaceString := CONCAT( 'Trigger Two received with a input current
of ',

REAL_TO_STRING(g_workingCurrent));
LogManager.WriteLogEntryString(WorkspaceString);

END_IF

(*At this point the user calls the application doing work so the outputs
update.*)

IF g_OutputOne THEN
LogManager.WriteLogEntryString('Action One requested');

END_IF
IF g_OutputTwo THEN

LogManager.WriteLogEntryString('Action Two requested');
END_IF

LogManager.Run();

FileIO Instruction Manual Date Code 20190214



FileIO 91

Examples

Rotating Logs More Frequently

Objective

You want to keep a week’s worth of logs with creation of a new log file every eight hours.

Solution

You can instantiate a class_LogDirectoryManager to manage rotation of the logs you want.
To do this, you must track the time and issue StartNewLog() on the eight-hour shift
boundaries.

Code Snippet 14 prg_RotatingLogs

PROGRAM prg_RotatingLogs
VAR CONSTANT

c_ShiftChange1 : UDINT := 1;
c_ShiftChange2 : UDINT := 9;
c_ShiftChange3 : UDINT := 17;

END_VAR
VAR

//Note that maxNumFiles allows for three files and the automated
nightly rollover.

LogManager : class_LogDirectoryManager( folderName :=
'/WeekOfShiftLogs/',

logPostfix := 'Shift.log',
maxFolderSize := 512000,
maxNumFiles := 28,
autoStartNewLogDaily := TRUE);

FirstScan : BOOL := TRUE;

PresentTime : timestamp_t;
TimeOfDay : TIME_OF_DAY;

PreviousHours : UDINT;
PresentHours : UDINT;

END_VAR

Date Code 20190214 Instruction Manual FileIO



92 FileIO

Examples

Code Snippet 14 prg_RotatingLogs (Continued)

PresentTime := SYS_TIME();
TimeOfDay := DT_TO_TOD(PresentTime.value.dateTime);

PreviousHours := PresentHours;
//Divide by 1000 to remove milliseconds and 3600 to remove seconds and

minutes.
PresentHours := TOD_TO_UDINT(TimeOfDay)/3600000;

IF FirstScan THEN
PreviousHours := PresentHours;
FirstScan := FALSE;

END_IF

IF PreviousHours < c_ShiftChange1 AND PresentHours >= c_ShiftChange1 THEN
LogManager.StartNewLog();

ELSIF PreviousHours < c_ShiftChange2 AND PresentHours >= c_ShiftChange2
THEN

LogManager.StartNewLog();
ELSIF PreviousHours < c_ShiftChange3 AND PresentHours >= c_ShiftChange3

THEN
LogManager.StartNewLog();

END_IF

//Do any work and logging desired.

LogManager.Run();

Logging Events Via FTP

Objective

You want to record event logs on a remote server.

Assumptions

1. An FTP server is set up, configured, and accessible by the RTAC over the network.

2. The FTP server configuration is as follows:

ä IP address: 192.168.0.2

ä Username: FTPUSER

ä Password: TAIL

3. There are external variables g_EventOccurred and g_EventDescription, driven by
other code, that cause an event to be populated and sent.

4. There exists some set of inputs and outputs for the work being done. Here these are
delineated by adding the prefix g_, indicating that they exist in a GVL as shown in
Code Snippet 15.

FileIO Instruction Manual Date Code 20190214



FileIO 93

Examples

Code Snippet 15 Global Variable List

VAR_GLOBAL
g_EventOccurred : BOOL;
g_EventDescription : STRING(255);

END_VAR

Solution

You can instantiate a class_LogDirectoryManager to accept the data for transmission and to
manage the storage required to facilitate the transaction.

Code Snippet 16 prg_RemoteEventLogs

PROGRAM prg_RemoteEventLogs
VAR

LogManager : class_LogDirectoryManager( folderName := '/RemoteLogs/',
logPostfix := '',
maxFolderSize := 10240,
maxNumFiles := 10,
autoStartNewLogDaily := FALSE);

EventPostfix : String(16) := 'RTAC1.event';
ServerIP : STRING(15) := '192.168.0.2';
RemotePath : STRING := '/RTAC1_Event_Files/';
FtpUser : STRING := 'FTPUSER';
FtpPassword : STRING := 'TAIL';

FirstScan : BOOL := TRUE;
Workbench : STRING(255);

END_VAR

IF FirstScan THEN
LogManager.SetFtpServerForArchiving( ftpServer := ServerIP,

remotePath := RemotePath,
username := FtpUser,
password := FtpPassword,
timeout := 5,
schedule := ON_UPDATE);

FirstScan := FALSE;
END_IF

//Do any work and logging desired.

IF g_EventOccurred THEN
LogManager.EventLogFromString( str := g_EventDescription,

eventPostfix := EventPostfix);
g_EventOccurred := FALSE;

END_IF
LogManager.Run();

Date Code 20190214 Instruction Manual FileIO



94 FileIO

Examples

Iterating Over All SOEs

Objective

You need to programmatically iterate over all SOEs from the RTAC and be sure that every
SOE after a certain time is addressed.

Assumptions

Your workload requires assurances that every SOE is seen and that duplication of responses
to SOEs is unacceptable. In this use case, the order of the events matters less than ensuring
that each event is seen and addressed. For this method to work, the SOEs must either be all
from the local RTAC or from external devices being logged on the RTAC. If both types of
SOEs exist, they would need to be handled independently.

Solution

You periodically query the system for the next c_MaxSoeCount SOEs that have not yet been
addressed.

Code Snippet 17 prg_SoeIterator

PROGRAM prg_SoeIterator
VAR CONSTANT

c_MaxSoeCount : UINT := 10;
END_VAR
VAR

// Variables to control the program flow
GetFirstSOE : BOOL := TRUE;
SoeQueried : BOOL := FALSE;
DoWork : BOOL := FALSE;
i : UINT;

// Input Filters
StartTime : DT := DT#2000-1-1-0:0:0;
Filters : FileIo.sel_file.Struct_soe_filter;

// Variables to store function output
Status : FileIo.sel_file.Enum_sel_file_errors;
Content : ARRAY [1..c_MaxSoeCount] OF

FileIo.sel_file.Struct_soe_content_id;
LastOutput : FileIo.sel_file.Struct_soe_content_id;
Count : UINT;

END_VAR

IF GetFirstSOE THEN
// We need to get a starting SOE.
IF NOT SoeQueried THEN

FileIo.fun_LocalSoeGetID(StartTime, Filters, Status, Content[1]);
SoeQueried := TRUE;

ELSE
IF Status = FileIo.sel_file.SYSTEM_BUSY THEN

// The system was too busy try again.
SoeQueried := FALSE;

ELSIF Status = FileIo.sel_file.NO_ERROR THEN

FileIO Instruction Manual Date Code 20190214



FileIO 95

Examples

// We got a result, switch to group queries
GetFirstSoe := FALSE;
SoeQueried := FALSE;
LastOutput := Content[1];
StartTime := Content[1].TimeStamp;
// This function only ever returns one result.
Count := 1;
// Trigger processing for the SOE data returned
DoWork := TRUE;

ELSIF Status = FileIo.sel_file.OPERATION_FAILED THEN
;(* The database was unable to find any SOEs matching the

filters provided. *)
ELSIF Status <> FileIo.sel_file.IN_PROGRESS THEN

;(* If we arrive here configuration is bad and needs to be
manually adjusted to continue. *)

END_IF
END_IF

ELSE
IF NOT SoeQueried THEN

// Beginning from the last SOE received, query for the next set of
SOEs.

FileIo.fun_LocalSoeAscending( ADR(content[1]), LastOutput.ID,
c_MaxSoeCount,

Filters, Status, Count);
SoeQueried := TRUE;

ELSE
IF Status = FileIo.sel_file.SYSTEM_BUSY THEN

// The system was too busy try again.
SoeQueried := FALSE;

ELSIF Status = FileIo.sel_file.NO_ERROR THEN
DoWork := Count > 0;
SoeQueried := FALSE;
IF DoWork THEN

// Store next lookup information if there is any.
LastOutput := Content[Count];
StartTime := Content[Count].TimeStamp;

END_IF
ELSIF Status <> FileIo.sel_file.IN_PROGRESS THEN

(* If we arrive here configuration is probably OK, as we got
results above.

Something probably affected the ID we were using. Start
over. *)

SoeQueried := FALSE;
GetFirstSOE := TRUE;

END_IF
END_IF

END_IF

IF DoWork THEN
// Process any new data.
FOR i := 1 TO Count DO

;(* Insert your code here to do work on the SOEs encountered. *)
END_FOR
DoWork := FALSE;

END_IF

Date Code 20190214 Instruction Manual FileIO



96 FileIO

Examples

Querying a Subset of SOEs

Objective

You want to display the 10 most recent SOEs each minute.

Assumptions

You have some code for presenting or communicating the SOE content at some other
location. In this use case, the order of events is more important than hard guarantees of
seeing each event occur.

Solution

You periodically query the system for the most recent SOE data.

Code Snippet 18 prg_SoeUpdater

PROGRAM prg_SoeUpdater
VAR CONSTANT

c_MaxSoeCount : UINT := 10;
END_VAR
VAR

// This query has no filters, so leave all values as default empty
// strings.
Filters : FileIo.sel_file.Struct_soe_filter;
Status : FileIo.sel_file.Enum_sel_file_errors;

SoeData : ARRAY [1..c_MaxSoeCount] OF
FileIo.sel_file.Struct_soe_content;

SoesFound : UINT;

Timestamp : timestamp_t;
Now : DT;
Last : DT;

// These are the arrays populated with display data
Devices : ARRAY [1..c_MaxSoeCount] OF STRING(255);
Messages : ARRAY [1..c_MaxSoeCount] OF STRING(255);
Times : ARRAY [1..c_MaxSoeCount] OF DT;

// Flag indicating that SOE data has been requested and not copied.
Running : BOOL := FALSE;

i : UDINT;
END_VAR

FileIO Instruction Manual Date Code 20190214



FileIO 97

Examples

Code Snippet 18 prg_SoeUpdater (Continued)

(*Check for the first run after the SOE query completes.*)
IF Running AND Status <> FileIo.sel_file.IN_PROGRESS THEN

(*Loop across all found SOEs. This is guaranteed to be less than our
array

*sizes c_MaxSoeCount because of the arguments passed to the function
below*)

FOR i := 1 TO SoesFound DO
Devices[i] := SoeData[i].DeviceName;
Messages[i] := SoeData[i].Message;
Times[i] := SoeData[i].TimeStamp;

END_FOR
Running := FALSE;

END_IF

Timestamp := Sys_Time();
Now := Timestamp.value.dateTime;

(*Only query for SOEs on even minute intervals*)
IF ((DT_TO_UDINT(Now) MOD 60) = 0) AND

(*Only query for SOEs if any previous request has completed.*)
Status <> FileIo.sel_file.IN_PROGRESS AND
(*Only allow one query per second even if the last one completed.*)
Now > Last THEN

fun_SoeDescending(ADR(SoeData), Now, c_MaxSoeCount, Filters, Status,
SoesFound);

Running := TRUE;
Last := Now;

END_IF

Listing the Content of a Directory

Objective

You want to list the the files contained in the /TestDirectory.

You want the listing to automatically occur when the project is uploaded. In addition, you
want the ability to refresh the directory listing after the project is downloaded by forcing a
value in the online editor.

Assumptions

The directory content to be listed is uploaded.

Solution

Create the file list using the FileIo.class_DirectoryListing, and write that content into an
array to make it easier to see.

Date Code 20190214 Instruction Manual FileIO



98 FileIO

Examples

Code Snippet 19 prg_ListDirectory

PROGRAM prg_ListDirectory
VAR CONSTANT

c_MaxFilesToList : UDINT := 10;
c_MaxFilenameLength : UDINT := 255;

END_VAR
VAR

Lister : FileIo.class_DirectoryListing;
DirList : FileIo.class_SELStringList;
ArrayList : ARRAY[1..c_MaxFilesToList] OF

STRING(c_MaxFilenameLength);
Stage : UDINT := 1; // Force to 1 with <Ctrl> <F6>

to run again
END_VAR
VAR_TEMP

i : UDINT;
pt_SelStr : POINTER TO FileIo.class_SELString;

END_VAR

CASE Stage OF
1: // Clear from last run, and request a new list

DirList.Clear();
FOR i := 1 TO c_MaxFilesToList DO

ArrayList[i] := ''; // Empty the array
END_FOR
Lister.CreateNewList(directoryName := '/TestDirectory',

filter := '');
Stage := Stage + 1;

2: // Wait until done
IF Lister.NewListReady THEN

Lister.GetList(DirList);
// Read the list into the array
DirList.Begin(); // Start at the beginning of the list
FOR i := 1 TO DirList.Size DO

IF (i > c_MaxFilesToList) THEN
EXIT; // No more room in the array

END_IF
pt_SelStr := DirList.Next();
IF 0 <> pt_SelStr THEN // Always check pointers aren't 0

ArrayList[i] := pt_SelStr^.ToString();
END_IF

END_FOR
Stage := 0; // Reset to start

END_IF
ELSE

; // Do nothing
END_CASE
Lister.Run(); // Always run the worker method

FileIO Instruction Manual Date Code 20190214



FileIO 99

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.4.1 ä Added facility to filter a directory listing to only return files newer
than or equal to the date and time specified.

20190201

ä Added new class_BasicDirectoryManager, which rotates the con-
tents of a given directory based on maximum size constraints.

ä Must be used with R144-V1 firmware or later.
3.5.3.0 ä Allows new versions of ACSELERATOR RTAC to compile projects

for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
ä Increased default g_p_FileIo_MaxBufferSize size from 1 MB to

10 MB
3.5.2.2 ä Added note recommending not using FileIO with RTAC firmware

versions R136-V0 and R136-V1.
20161221

ä Added class_TimeBasedDirectoryManager to provide directory
management capabilities for the user to keep files for a set number
of days rather than a maximum number of files.

ä Fixed an issue in class_DirectoryManger and class_LogDirectory-
Manager in which a system performing large quantities of FileIO
tasks could result in early deletion of managed files.

ä Added class_TimeBasedDirectoryManager to provide directory
management capabilities for the user to keep files for a set number
of days rather than a maximum number of files.

ä Fixed an issue in class_DirectoryManger and class_LogDirectory-
Manager in which a system performing large quantities of FileIO
tasks could result in early deletion of managed files.

ä Rebranded the FileIo library to uppercase the “o” and be: “FileIO”
(literature change only, no changes made to actual library name or
namespaces).

3.5.2.0 ä Added class_DirectoryManager to provide directory management
capabilities without the file content helps and constraints found in
class_LogDirectoryManager.

20160610

ä Added ability to write to directory manager files from vectors,
byte arrays, and SELStrings in addition to the strings previously
possible.

ä Added functions to facilitate accessing SOEs monotonically in
order of SOE creation.

ä Added function to query for available file system free space.
ä Modified file deletion algorithm for the directory manager classes to

recover space faster in the case that the directory size is exceeded.
ä Modified class_LogDirectoryManager to remove metadata for

deleted files from the .unsent file both when FTP is configured
and when it is not.

ä Modified library to ensure that calling the StartNewLog() method
on class_LogDirectoryManger multiple times during startup always
appends the time-stamped file close message.

ä Modified BytesLeft in class_FileWriter to show all pending work,
where before it did not include bytes to be written to a new file
name.

ä Modified class_LogDirectoryManager to prevent a condition where
dates before the year 2000 cause constant writing and rotating of
files.

Date Code 20190214 Instruction Manual FileIO



100 FileIO

Release Notes

Version Summary of Revisions Date Code

ä Modified class_Filewriter property Filename to no longer require
file content before allowing Filename to be modified again.

ä Removed deprecated features from class_FileReader because of
loss of file system support. Use of these features now results in
compilation errors.

ä Removed deprecated class_EventReportListing because of loss of
file system support. Use of this class now results in compilation
errors.

3.5.1.0 ä Added class_FileReader2 that replaces deprecated dependency with
new sel_file features for accessing events.

20150930

ä Added functions and documentation to wrapping underlying
firmware API.

ä Removed documentation of underlying firmware API.
ä Added ability to read from the SOE database into the logic engine.

3.5.0.10 ä Made class_LogDirectoryManager able to delete files more quickly,
facilitating a faster file creation rate and larger number of files.

20150717

ä Fixed issue in class_FileWriter where changing Filename in quick
succession caused the class to get stuck writing to a single file.

3.5.0.9 ä Fixed issue where an invalid Filename followed immediately by a
valid Filename locked out class_FileWriter.

20150213

3.5.0.7 ä Added the Filename property to class_FileWriter. 20141205
ä Added a new class_LogDirectoryManager.

3.5.0.4 ä Internal parts of the library are now hidden. 20141008
ä Tested with sel_file V1.0.1.0 -released with R133 firmware (see

RTAC firmware release notes for more details).
3.5.0.3 ä Initial release. 20140812

FileIO Instruction Manual Date Code 20190214


	Section 1: FileIO
	Introduction
	Special Considerations

	Supported Firmware Versions
	Global Parameters
	Enumerations
	enum_FtpSendSchedule
	sel_file.Enum_protocol_id
	sel_file.Enum_event_type
	sel_file.Enum_event_data
	sel_file.Enum_sel_file_errors
	sel_ftp_client.Enum_sel_ftp_client_errors

	Structures
	struct_EventDetails
	sel_file.Struct_event_handle
	sel_file.Struct_soe_content
	sel_file.Struct_soe_content_id
	sel_file.Struct_soe_filter

	Functions
	fun_FtpDownload
	fun_FtpEventUpload
	fun_FtpUpload
	fun_DeleteFile
	fun_FileSize
	fun_FilesystemFreeSpace
	fun_SoeAscending
	fun_SoeDescending
	fun_SoeWindow
	fun_LocalSoeGetID
	fun_LocalSoeAscending
	fun_LocalSoeDescending
	fun_RemoteSoeGetID
	fun_RemoteSoeAscending
	fun_RemoteSoeDescending

	Classes
	class_DirectoryListing (Class)
	CreateNewList (Method)
	CreateNewerThanList (Method)
	GetList (Method)
	Run (Method)

	class_EventReportListing (Class)
	class_EventListing (Class)
	CreateNewList (Method)
	CreateNewFilteredList (Method)
	GetList (Method)
	Run (Method)

	class_FileWriter (Class)
	AppendBytes (Method)
	AppendSELString (Method)
	AppendString (Method)
	AppendVector (Method)
	Run (Method)

	class_FileReader2 (Class)
	ReadFile (Method)
	ReadEventFromDB (Method)
	CopyTo (Method)
	AppendToSELString (Method)
	CopyToString (Method)
	AppendToVector (Method)
	Run (Method)

	class_FileReader (Class)
	class_BasicDirectoryManager (Class)
	File Blacklisting
	bootstrap_SetDirectory (Method)
	Run (Method)

	class_DirectoryManager (Class)
	bootstrap_SetDirectory (Method)
	SetFtpServerForArchiving (Method)
	SetFileHeaderBytes (Method)
	SetFileHeaderSELString (Method)
	SetFileHeaderString (Method)
	SetFileHeaderVector (Method)
	SetFileFooterBytes (Method)
	SetFileFooterSELString (Method)
	SetFileFooterString (Method)
	SetFileFooterVector (Method)
	StartNewFile (Method)
	WriteToFileBytes (Method)
	WriteToFileSELString (Method)
	WriteToFileString (Method)
	WriteToFileVector (Method)
	EventLogFromBytes (Method)
	EventLogFromSELString (Method)
	EventLogFromString (Method)
	EventLogFromVector (Method)
	Run (Method)

	class_TimeBasedDirectoryManager (Class)
	bootstrap_SetDirectory (Method)
	SetFileHeaderBytes (Method)
	SetFileHeaderSELString (Method)
	SetFileHeaderString (Method)
	SetFileHeaderVector (Method)
	SetFileFooterBytes (Method)
	SetFileFooterSELString (Method)
	SetFileFooterString (Method)
	SetFileFooterVector (Method)
	StartNewFile (Method)
	WriteToFileBytes (Method)
	WriteToFileSELString (Method)
	WriteToFileString (Method)
	WriteToFileVector (Method)
	EventLogFromBytes (Method)
	EventLogFromSELString (Method)
	EventLogFromString (Method)
	EventLogFromVector (Method)
	Run (Method)

	class_LogDirectoryManager (Class)
	SetFtpServerForArchiving (Method)
	StartNewLog (Method)
	WriteLogEntryBytes (Method)
	WriteLogEntrySELString (Method)
	WriteLogEntryString (Method)
	WriteLogEntryVector (Method)
	EventLogFromBytes (Method)
	EventLogFromSELString (Method)
	EventLogFromString (Method)
	EventLogFromVector (Method)
	Run (Method)


	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	class_DirectoryListing
	class_EventListing
	class_FileWriter
	class_FileReader2
	class_LogDirectoryManager
	class_DirectoryManager
	class_TimeBasedDirectoryManager
	fun_FtpDownload
	fun_FtpEventUpload
	fun_FtpUpload
	fun_DeleteFile
	fun_FileSize
	fun_FilesystemFreeSpace
	fun_SoeAscending
	fun_SoeDescending
	fun_SoeWindow
	fun_LocalSoeGetID
	fun_LocalSoeAscending
	fun_LocalSoeDescending
	fun_RemoteSoeGetID
	fun_RemoteSoeAscending
	fun_RemoteSoeDescending

	Benchmark Results

	Examples
	Writing From Changing String
	Objective
	Assumptions
	Solution

	Reading File Contents Into Byte Array
	Objective
	Assumptions
	Solution

	Reading File Contents Into Dynamic Byte Vector
	Objective
	Assumptions
	Solution

	Reading File Contents Into Array of Strings
	Objective
	Assumptions
	Solution

	Reading Event Reports Retrieved From Relays
	Objective
	Assumptions
	Solution

	Reading COMTRADE Events Retrieved From Relays
	Objective
	Assumptions
	Solution

	Downloading File to Local File System From Remote FTP Server
	Objective
	Assumptions
	Solution

	Uploading File From Local File System to Remote FTP Server
	Objective
	Assumptions
	Solution

	Basic Directory Management With Persistent Log Files
	Objective
	Assumptions
	Solution

	Logging a History of Inputs and Outputs
	Objective
	Assumptions
	Solution

	Rotating Logs More Frequently
	Objective
	Solution

	Logging Events Via FTP
	Objective
	Assumptions
	Solution

	Iterating Over All SOEs
	Objective
	Assumptions
	Solution

	Querying a Subset of SOEs
	Objective
	Assumptions
	Solution

	Listing the Content of a Directory
	Objective
	Assumptions
	Solution


	Release Notes


