
Email

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: Email

Introduction . 3
Supported Firmware Versions . 4
Enumerations . 4
Function Blocks . 4
Classes . 6
Benchmarks. 16
Examples . 23
Troubleshooting . 27
Release Notes . 29

Email Instruction Manual Date Code 20180926

RTAC LIBRARY

Email

Introduction

The Email library allows emails to be sent easily from a Real-Time Automation Controller
(RTAC) to a Simple Mail Transfer Protocol (SMTP) email server. These emails can contain
periodic information about process status, alert on-call staff to process anomalies, or send
collected event reports or other attachments directly to email accounts or mobile devices.

Though this library does some parsing of the inputs provided, it is not meant to fully support
all features of SMTP. Test all emails to ensure that the formatting of the arguments does not
create an email the SMTP server receiving the request will ignore.

This library uses the HELO message and local IP address to open each email. This means that
any features requiring the EHLO extensions, including user authentication and encryption,
are not supported.

Special Considerations

ä Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:=” must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error
such as:

// "C0328: Assignment not allowed for type
class_EmailClientObject"

myEmailClientObject := otherEmailClientObject;

// This is fine
someVariable := myEmailClientObject.value;
// As is this
pt_myEmailClientObject := ADR(myEmailClientObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT
members in function blocks, functions, or methods. Place them in the VAR_-
IN_OUT section or use pointers instead.

Date Code 20180926 Instruction Manual Email

4 Email

Function Blocks

ä Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.6 and older can be used on RTAC firmware version R132 and higher.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_RecipientType

Enumeration Description

MAIL_TO This recipient will be a direct target of the email.
MAIL_CC This recipient will receive a copy of the email.
MAIL_BCC This recipient will receive a blind copy of the email.

Function Blocks

Function Blocks (FB), if declared in a program or a Global Variable List (GVL), maintain
their state from one processing scan to the next. They should be called during each task
cycle using their input pins to manage their behavior.

fb_SimpleEmailClient (Function Block)

This function block provides a simple triggered interface for sending email to one or two
recipients. It reads all inputs immediately upon receiving a request that data be sent and
ignores any further changes until the next trigger is received.

Email Instruction Manual Date Code 20180926

Email 5

Function Blocks

Initialization Inputs

Name IEC 61131 Type Description

localIPAddr STRING(15) The IP address this RTAC should use to communicate
with the email server. Set this to 0.0.0.0 to leave From IP
information off of the message request and use an arbitrary
interface for communication.

mailServerIP STRING(15) The IP address of the email server.

Inputs

Name IEC 61131 Type Description

Send BOOL Initiate a new email communication.

Inputs/Outputs

Name IEC 61131 Type Description

ToEmail STRING(254) The email address of the message recipient.
ToName STRING(255) The name of the email recipient.
CcEmail STRING(254) The email address to receive a copy of the message.
CcName STRING(255) The name of the copied recipient.
FromEmail STRING(254) The email address of the message sender.
FromName STRING(255) The name of the message sender.
Subject STRING(255) The subject of the message.
BodyStr STRING(255) The body of the message.

Outputs

Name IEC 61131 Type Description

Busy BOOL Indication that the function block is sending an email.
SentMsg STRING(255) The first 255 characters of the last message the function block

sent to the SMTP server.
Error BOOL TRUE if the last attempt to send an email failed.
ErrorStr STRING(80) A description of why the last email transmission failed.

Processing

The fb_SimpleEmailClient function block body does the following:

ä Checks to see if a message is processing.

ä Validates the email addresses provided. Allowed characters include all alphanumeric
characters, ., !, #, $, %, &, +, -, /, =, ?, ^, _, {, }, |, ~, and @.

ä Replaces names containing double quotes with empty strings.

ä Sends a new message to the defined recipients if the function block is not busy and it
detects a rising edge on Send.

ä Works to complete the previously begun email transfer if the function block is busy.

Date Code 20180926 Instruction Manual Email

6 Email

Classes

ä Sets Busy to TRUE if it is waiting on the server to complete an email request.

fb_SimpleEmailClient2 (Function Block)

This function block provides functionality and behavior that is identical to fb_SimpleEmail-
Client (Function Block) on page 4, with the exception that the user may define the outgoing
and destination ports of the email client at declaration. These inputs are described below.

Initialization Inputs

Name IEC 61131 Type Description

localIPAddr STRING(15) The IP address this RTAC should use to communicate
with the email server. Set this to 0.0.0.0 to leave From
IP information off of the message request and use an
arbitrary interface for communication.

localPort UINT The outgoing client port from which emails shall be
sent. Setting this to zero will allow the OS to select an
ephemeral port.

mailServerIP STRING(15) The IP address of the email server.
mailServerPort UINT The port number of the email server. For SMTP, this

is should normally be set to 25, but the user may set it
otherwise if their server is configured accordingly.

Classes

Classes are a particular implementation of a function block. They provide methods and
properties, which normal function blocks do not provide.

class_EmailClient (Class)

This class provides the ability to craft an email message over time and allows for multiple
recipients, dynamic message body lengths, and vector attachments. This class is identical
to class_EmailClient2 with the exception that class_EmailClient2 allows the client to define
the outgoing and destination ports for the client and server, respectively. By contrast, this
class sets the local port to 0, allowing the client OS to select an ephemeral port number.
The destination/server port is set to 25 (the standard SMTP interface port). As such, this
class can be used when there are no special requirements imposed on local or destination
port numbers.

Initialization Inputs

Name IEC 61131 Type Description

localIPAddr STRING(15) The IP address this RTAC should use to communicate
with the email server. Set this to 0.0.0.0 to leave From IP
information off of the message request and use an arbitrary
interface for communication.

mailServerIP STRING(15) The IP address of the email server.

Email Instruction Manual Date Code 20180926

Email 7

Classes

Properties

Name IEC 61131 Type Access Description

Busy BOOL R Indication that the class is sending an email.
SentMsg STRING(255) R The first 255 characters of the last message the

class sent to the SMTP server.
ErrorStr STRING(80) R A description of any state that would prevent the

attempt to send an email.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

AddRecipient (Method)

This method adds a recipient for subsequent outgoing emails when they are sent. This
method may not be called and will return FALSE while Busy is TRUE and the client is
busy sending an email.

Inputs

Name IEC 61131 Type Description

recipientType enum_RecipientType To, Cc, or Bcc.

Inputs/Outputs

Name IEC 61131 Type Description

emailAddress STRING(254) The email address of the recipient.
name STRING(255) The name of the recipient.

Return Value

IEC 61131 Type Description

BOOL TRUE if emailAddress is valid and the recipient was added.

Processing

The AddRecipient() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Checks that the emailAddress contains only allowed characters. Allowed characters
include all alphanumeric characters, ., !, #, $, %, &, +, -, /, =, ?, ^, _, {, }, |, ~, and @.

ä Verifies that names do not contain double quotes.

ä Stores the email address and name to add to the recipient field defined by recipientType
of subsequent emails.

Date Code 20180926 Instruction Manual Email

8 Email

Classes

ä Returns FALSE if the email address was not added.

AttachVector (Method)

This method allows the user to add a raw byte vector as an attachment. The vector does not
need to be encoded in base64-MIME because this will be performed internally, nor will
data be modified as a result of calling this function. This method may not be called and will
return false while Busy is TRUE and the client is busy sending an email.

Inputs/Outputs

Name IEC 61131 Type Description

data class_ByteVector A byte vector of data to be attached when email is sent.
name STRING The name for the attachment, as it shall appear in each recipient’s

email.

Return Value

IEC 61131 Type Description

BOOL TRUE if data was successfully stored with name.

Processing

The AttachVector() method does the following:

ä Verifies the client is not busy sending an email by checking that Busy is FALSE.

ä Verifies both data and name are non-empty.

ä Copies and encodes data in base64-MIME format, storing the encoded data as an
attachment to be appended to an email.

ä Returns FALSE if attachment was not added.

ClearAttachments (Method)

This method removes all stored attachments. Freeing large amounts of memory is expensive,
so this should be called infrequently. This method may not be called and will return FALSE
while Busy is TRUE and the client is busy sending an email.

Processing

The ClearAttachments() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Deletes all email attachments stored by the email client object.

Email Instruction Manual Date Code 20180926

Email 9

Classes

ClearRecipients (Method)

This method removes all stored recipients. This method may not be called and will return
false while Busy is TRUE and the client is busy sending an email.

Processing

The ClearRecipients() method does the following:

ä Verifies the class is not busy sending email by verifying Busy is FALSE.

ä Deletes all stored email recipients.

Run (Method)

Main state machine, which must be called every task cycle. It handles communication
with the socket to send emails over multiple scans. This method only performs work after
Send() is called and Busy is TRUE; otherwise, the call has no effect.

Processing

The Run() method does the following:

ä Sits idle until Send() is called.

ä Sets and clears the Busy state.

ä Opens communication with the email server.

ä Queues data for the email server.

ä Closes the connection with the email server when the send is complete.

Send (Method)

This method sends the presently configured email. It does not clear any internal state of the
class, so the same email could be sent a second time by calling Send() again.

Return Value

IEC 61131 Type Description

BOOL TRUE if the class will send the message to the email server.

Processing

The Send() method does the following:

ä Verifies that the class is not already busy sending email.

ä Verifies at least one recipient has been defined.

ä Verifies the sender has been set.

ä Sends a request to the email server to send the configured email.

ä Returns FALSE if any check fails.

Date Code 20180926 Instruction Manual Email

10 Email

Classes

NOTE: See the SELString Library

documentation for more details on

class_SELString objects.

SetBodyBytes (Method)

Sets the content of the body of the email to the provided bytes. This method may not be
called and will return FALSE while Busy is TRUE and the client is busy sending an email.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The bytes to use as the body of the email.
numBytes DINT The number of bytes to use as the body.

Return Value

IEC 61131 Type Description

BOOL TRUE if the body content of the email was successfully populated.

Processing

The SetBodyBytes() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Validates access to pt_data.

ä Copies numBytes worth of data into internal storage.

ä Replaces any periods beginning lines with two periods to prevent incorrect body
termination.

ä Returns false if the body construction failed.

SetBodySELString (Method)

Sets the body of the email to the content of the SELString provided. This method may not
be called and will return FALSE while Busy is TRUE and the client is busy sending an
email.

Inputs/Outputs

Name IEC 61131 Type Description

data class_SELString The string to use as the body of the email.

Return Value

IEC 61131 Type Description

BOOL TRUE if the body content of the email was successfully populated.

Email Instruction Manual Date Code 20180926

Email 11

Classes

NOTE: See the DynamicVectors

Library documentation for more

details on the I_Vector interface.

Processing

The SetBodySELString() method does the following:

ä Verifies the class is not busy sending email by verifying Busy is FALSE.

ä Copies the contents of data into internal storage.

ä Replaces any periods beginning lines with two periods to prevent incorrect body
termination.

ä Returns false if the body construction failed.

SetBodyString (Method)

Sets the body of the email to the provided string. This method may not be called and will
return FALSE while Busy is TRUE and the client is busy sending an email.

Inputs/Outputs

Name IEC 61131 Type Description

data STRING(255) The string to use as the body of the email.

Return Value

IEC 61131 Type Description

BOOL TRUE if the body content of the email was successfully populated.

Processing

The SetBodyString() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Copies the contents of data into internal storage.

ä Replaces any periods beginning lines with two periods to prevent incorrect body
termination.

ä Returns false if the body construction failed.

SetBodyVector (Method)

Sets the body of the email to the content of the vector provided. This method may not be
called and will return FALSE while Busy is TRUE and the client is busy sending an email.

Inputs

Name IEC 61131 Type Description

data I_Vector The content to use as the body of the email.

Date Code 20180926 Instruction Manual Email

12 Email

Classes

Return Value

IEC 61131 Type Description

BOOL TRUE if the body content of the email was successfully populated.

Processing

The SetBodyVector() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Validates the data provided can be used.

ä Copies the contents of data into internal storage.

ä Replaces any periods beginning lines with two periods to prevent incorrect body
termination.

ä Returns FALSE if the body construction failed.

SetSender (Method)

This method sets the sending email address for outgoing email. This method may not be
called and will return false while Busy is TRUE and the client is busy sending an email.

Inputs/Outputs

Name IEC 61131 Type Description

emailAddress STRING(254) The email address of the sender.
name STRING(255) The name of the sender.

Return Value

IEC 61131 Type Description

BOOL TRUE if emailAddress is valid and the sender was set.

Processing

The SetSender() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Checks that emailAddress contains only allowed characters. Allowed characters
include all alphanumeric characters, ., !, #, $, %, &, +, -, /, =, ?, ^, _, {, }, |, ~, and @.

ä Sets emailAddress as the originating email address for outgoing emails.

ä Returns FALSE if the sender was not set.

Email Instruction Manual Date Code 20180926

Email 13

Classes

NOTE: See the SELString Library

documentation for more details on

class_SELString objects.

SetSubjectBytes (Method)

Sets the subject of the email to the provided bytes. This method may not be called and will
return FALSE while Busy is TRUE and the client is busy sending an email.

Inputs

Name IEC 61131 Type Description

pt_data POINTER TO BYTE The bytes to use as the subject of the email.
numBytes DINT The number of bytes to use as the subject.

Return Value

IEC 61131 Type Description

BOOL TRUE if the subject content of the email was successfully populated.

Processing

The SetSubjectBytes() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Validates access to pt_data.

ä Copies numBytes worth of data into internal storage.

ä Returns FALSE if the subject construction failed.

SetSubjectSELString (Method)

Sets the subject of the email to the content of the SELString provided. This method may
not be called and will return FALSE while Busy is TRUE and the client is busy sending an
email.

Inputs/Outputs

Name IEC 61131 Type Description

data class_SELString The string to use as the subject of the email.

Return Value

IEC 61131 Type Description

BOOL TRUE if the subject content of the email was successfully populated.

Processing

The SetSubjectSELString() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

Date Code 20180926 Instruction Manual Email

14 Email

Classes

NOTE: See the DynamicVectors

Library documentation for more

details on the I_Vector interface.

ä Copies the contents of data into internal storage.

ä Returns FALSE if the subject construction failed.

SetSubjectString (Method)

Sets the subject of the email to the provided string. This method may not be called and will
return false while Busy is TRUE and the client is busy sending an email.

Inputs/Outputs

Name IEC 61131 Type Description

data STRING(255) The string to use as the subject of the email.

Return Value

IEC 61131 Type Description

BOOL TRUE if the subject content of the email was successfully populated.

Processing

The SetSubjectString() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Copies the contents of data into internal storage.

ä Returns false if the subject construction failed.

SetSubjectVector (Method)

Sets the subject of the email to the content of the vector provided. This method may not be
called and will return FALSE while Busy is TRUE and the client is busy sending an email.

Inputs

Name IEC 61131 Type Description

data I_Vector The content to use as the subject of the email.

Return Value

IEC 61131 Type Description

BOOL TRUE if the subject content of the email was successfully populated.

Email Instruction Manual Date Code 20180926

Email 15

Classes

Processing

The SetSubjectVector() method does the following:

ä Verifies the class is not busy sending email by verifying that Busy is FALSE.

ä Validates the data provided can be used.

ä Copies the contents of data into internal storage.

ä Returns false if the subject construction failed.

class_EmailClient2 (Class)

The functionality, properties, and behavior of this class are identical to that in class_-
EmailClient (Class) on page 6, with the exception of requiring two additional variables in
the class declaration: a local port number and a destination email server port number. These
inputs allow the user to define the outgoing local port as well as the destination email server
port. If the localPort parameter is zero, then the operating system will select an ephemeral
port number. The SMTP email server port should normally be set to 25, but may be set
otherwise if the SMTP email server is configured accordingly.

Extended Classes

Extending a class provides full inheritance of all that classes features (methods, variables,
properties). A class may only extend one other class directly, but class extension can be
tiered indefinitely.

ä class_EmailClient

Initialization Inputs

These inputs are necessary during instantiation of the class.

Initialization Inputs

Name IEC 61131 Type Description

localPort UINT The outgoing client port from which emails shall be sent.
Setting localPort to zero will allow the OS to select an
ephemeral port.

localIPAddr STRING(15) The IP address this RTAC should use to communicate
with the email server. Set this to 0.0.0.0 to leave From
IP information off of the message request and use an
arbitrary interface for communication.

mailServerPort UINT The port number of the email server. This is nearly al-
ways port 25 for SMTP, but the user may set it otherwise
if the server listening port is configured accordingly.

mailServerIP STRING(15) The IP address of the email server.

Date Code 20180926 Instruction Manual Email

16 Email

Benchmarks

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3505

â R134-V1 firmware

ä SEL-3530

â R134-V1 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V1 firmware

Benchmark Test Descriptions

fb_SimpleEmailClient Average Busy Time

The posted time is the average execution time of 100 calls of the function block body while
the Busy output is high. This benchmark is run with all inputs using maximum length
strings.

fb_SimpleEmailClient Average Longest Scan Busy Time

It takes multiple calls to the function block to send an email and each call while the function
block is busy will take a varying length of time. The posted time is the average time of the
longest call of the function block body while the function block is busy. The average is
taken over 100 emails with all inputs using maximum length strings.

fb_SimpleEmailClient2 Average Busy Time

The posted time is the average execution time of 100 calls of the function block body while
the Busy output is high. This benchmark is run with all inputs using maximum length
strings.

fb_SimpleEmailClient2 Average Longest Scan Busy Time

It takes multiple calls to the function block to send an email and each call while the function
block is busy will take a varying length of time. The posted time is the average time of the
longest call of the function block body while the function block is busy. The average is
taken over 100 emails with all inputs using maximum length strings.

Email Instruction Manual Date Code 20180926

Email 17

Benchmarks

class_EmailClient.AddRecipient()

The posted time is the average execution time of 100 method calls adding a recipient when
the class is not busy. The email address and name strings are the maximum length.

class_EmailClient.AttachVector()

The posted time is the average execution time of 100 method calls attaching a vector when
the class is not busy. The attachment name string is the maximum length and the content is
255 characters.

class_EmailClient.ClearAttachments()

The posted time is the average execution time of 100 method calls when clearing 10 file
attachments. To ensure the most work possible, the attachments must already be encoded as
Base64 before they are cleared. The class is not busy when the method is called.

class_EmailClient.ClearRecipients()

The posted time is the average execution time of 100 method calls when clearing 10 To
recipients, 10 Cc recipients, and 10 Bcc recipients. The class is not busy when the method
is called.

class_EmailClient.Run() Average Busy Time

The posted time is the average execution time of 100 method calls while the Busy output is
high. The email message contains an 80-character subject with a message body containing
255 characters.

class_EmailClient.Run() Average Busy Time With Event Report

The posted time is the average execution time of 100 method calls while the Busy output is
high. The email message contains an 80-character subject with a message body containing
a large event report.

class_EmailClient.Run() Average Longest Scan Time

It requires multiple calls to the Run() method to send an email and each call while the class
is busy will take a varying length of time. The posted time is the average time of the longest
call of the method while the method is busy. The average is taken over 100 emails with an
80-character subject and a message body containing 255 characters.

Date Code 20180926 Instruction Manual Email

18 Email

Benchmarks

class_EmailClient.Run() Average Longest Scan Time With Event

Report

It requires multiple calls to the Run() method to send an email and each call while the class
is busy will take a varying length of time. The posted time is the average time of the longest
call of the method while the method is busy. The average is taken over 100 emails with an
80-character subject and a message body containing a large event report.

class_EmailClient.Send()

The posted time is the average execution time of 100 method calls. The class is not busy
when the method is called.

class_EmailClient.SetBodyBytes()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient.SetBodyBytes() With Event Report

The posted time is the average execution time of 100 method calls when setting the email
body to the contents of a large event report. The class is not busy when the method is called.

class_EmailClient.SetBodySELString()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient.SetBodySELString With Event Report

The posted time is the average execution time of 100 method calls when setting the email
body to the contents of a large event report. The class is not busy when the method is called.

class_EmailClient.SetBodyString()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient.SetBodyVector()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

Email Instruction Manual Date Code 20180926

Email 19

Benchmarks

class_EmailClient.SetBodyVector() With Event Report

The posted time is the average execution time of 100 method calls when setting the email
body to the contents of a large event report. The class is not busy when the method is called.

class_EmailClient.SetSender()

The posted time is the average execution time of 100 method calls when setting a maximum
length email address and name. The class is not busy when the method is called.

class_EmailClient.SetSubjectBytes()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

class_EmailClient.SetSubjectSELString()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

class_EmailClient.SetSubjectString()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

class_EmailClient.SetSubjectVector()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

class_EmailClient2.AddRecipient()

The posted time is the average execution time of 100 method calls adding a recipient when
the class is not busy. The email address and name strings are the maximum length.

class_EmailClient2.AttachVector()

The posted time is the average execution time of 100 method calls attaching a vector when
the class is not busy. The attachment name string is the maximum length and the content is
255 characters.

Date Code 20180926 Instruction Manual Email

20 Email

Benchmarks

class_EmailClient2.ClearAttachments()

The posted time is the average execution time of 100 method calls when clearing 10 file
attachments. To ensure the most work possible, the attachments must already be encoded as
Base64 before they are cleared. The class is not busy when the method is called.

class_EmailClient2.ClearRecipients()

The posted time is the average execution time of 100 method calls when clearing 10 To
recipients, 10 Cc recipients, and 10 Bcc recipients. The class is not busy when the method
is called.

class_EmailClient2.Run() Average Busy Time

The posted time is the average execution time of 100 method calls while the Busy output is
high. The email message contains an 80-character subject with a message body containing
255 characters.

class_EmailClient2.Run() Average Busy Time With Event Report

The posted time is the average execution time of 100 method calls while the Busy output is
high. The email message contains an 80-character subject with a message body containing
a large event report.

class_EmailClient2.Run() Average Longest Scan Time

It requires multiple calls to the Run() method to send an email and each call while the class
is busy will take a varying length of time. The posted time is the average time of the longest
call of the method while the method is busy. The average is taken over 100 emails with an
80-character subject and a message body containing 255 characters.

class_EmailClient2.Run() Average Longest Scan Time With Event

Report

It requires multiple calls to the Run() method to send an email and each call while the class
is busy will take a varying length of time. The posted time is the average time of the longest
call of the method while the method is busy. The average is taken over 100 emails with an
80-character subject and a message body containing a large event report.

class_EmailClient2.Send()

The posted time is the average execution time of 100 method calls. The class is not busy
when the method is called.

Email Instruction Manual Date Code 20180926

Email 21

Benchmarks

class_EmailClient2.SetBodyBytes()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient2.SetBodyBytes() With Event Report

The posted time is the average execution time of 100 method calls when setting the email
body to the contents of a large event report. The class is not busy when the method is called.

class_EmailClient2.SetBodySELString()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient2.SetBodySELString With Event Report

The posted time is the average execution time of 100 method calls when setting the email
body to the contents of a large event report. The class is not busy when the method is called.

class_EmailClient2.SetBodyString()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient2.SetBodyVector()

The posted time is the average execution time of 100 method calls when setting the email
body to contain 255 characters. The class is not busy when the method is called.

class_EmailClient2.SetBodyVector() With Event Report

The posted time is the average execution time of 100 method calls when setting the email
body to the contents of a large event report. The class is not busy when the method is called.

class_EmailClient2.SetSender()

The posted time is the average execution time of 100 method calls when setting a maximum
length email address and name. The class is not busy when the method is called.

class_EmailClient2.SetSubjectBytes()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

Date Code 20180926 Instruction Manual Email

22 Email

Benchmarks

class_EmailClient2.SetSubjectSELString()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

class_EmailClient2.SetSubjectString()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

class_EmailClient2.SetSubjectVector()

The posted time is the average execution time of 100 method calls when setting the email
subject to 255 characters. The class is not busy when the method is called.

Benchmark Results

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

fb_SimpleEmailClient Busy Time 714 449 40
fb_SimpleEmailClient Longest Scan Busy Time 81 49 5
fb_SimpleEmailClient2 Busy Time 703 446 40
fb_SimpleEmailClient2 Longest Scan Busy Time 11 52 8
class_EmailClient.AddRecipient() 120 72 13
class_EmailClient.AttachVector() 1543 871 78
class_EmailClient.ClearAttachments() 836 335 24
class_EmailClient.ClearRecipients() 5 2 1
class_EmailClient.Run() Busy Time 178 98 17
class_EmailClient.Run() Busy Time w/ER 245 139 17
class_EmailClient.Run() Longest Scan Time 871 518 56
class_EmailClient.Run() Longest Scan Time w/ER 3839 1640 83
class_EmailClient.Send() 883 537 68
class_EmailClient.SetBodyBytes() 828 498 60
class_EmailClient.SetBodyBytes() w/ER 93158 51279 5579
class_EmailClient.SetBodySELString() 988 539 50
class_EmailClient.SetBodySELString w/ER 115792 61122 5855
class_EmailClient.SetBodyString() 861 581 60
class_EmailClient.SetBodyVector() 807 519 53
class_EmailClient.SetBodyVector() w/ER 93246 51173 5553
class_EmailClient.SetSender() 98 58 14
class_EmailClient.SetSubjectBytes() 49 31 9
class_EmailClient.SetSubjectSELString() 1091 498 48
class_EmailClient.SetSubjectString() 66 42 11
class_EmailClient.SetSubjectVector() 17 9 4
class_EmailClient2.AddRecipient() 118 72 12
class_EmailClient2.AttachVector() 1569 845 80
class_EmailClient2.ClearAttachments() 962 322 24
class_EmailClient2.ClearRecipients() 5 2 1

Email Instruction Manual Date Code 20180926

Email 23

Examples

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

class_EmailClient2.Run() Busy Time 183 97 16
class_EmailClient2.Run() Busy Time w/ER 245 142 16
class_EmailClient2.Run() Longest Scan Time 925 526 49
class_EmailClient2.Run() Longest Scan Time w/ER 3874 1628 86
class_EmailClient2.Send() 936 540 73
class_EmailClient2.SetBodyBytes() 842 518 55
class_EmailClient2.SetBodyBytes() w/ER 95720 52103 5609
class_EmailClient2.SetBodySELString() 988 537 49
class_EmailClient2.SetBodySELString w/ER 118489 62911 5864
class_EmailClient2.SetBodyString() 890 506 58
class_EmailClient2.SetBodyVector() 854 497 52
class_EmailClient2.SetBodyVector() w/ER 95879 52390 5596
class_EmailClient2.SetSender() 95 59 14
class_EmailClient2.SetSubjectBytes() 48 31 8
class_EmailClient2.SetSubjectSELString() 1306 531 48
class_EmailClient2.SetSubjectString() 68 43 11
class_EmailClient2.SetSubjectVector() 17 10 2

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Sending an Alert Email After a Failure

Objective

A user wants to notify correct team members of events occurring in the field.

Assumptions

The user has in some way defined triggers that will set Alarm1 or Alarm2 to TRUE when
appropriate events occur and allow them to return FALSE afterwards.

Solution

The user can create a fb_SimpleEmailClient to provide brief notifications as shown in Code
Snippet 1.

This example sends an email to different people determined by the alert received and also
sends a text message to an on-call telephone number using Short Message Service (SMS).

Date Code 20180926 Instruction Manual Email

24 Email

Examples

NOTE: See the FileIO Library

documentation for details on how to

access this area programmatically.

Code Snippet 1 prg_EmailAlerts

PROGRAM prg_EmailAlerts
VAR

Emailer : fb_SimpleEmailClient(localIPAddr := '0.0.0.0',
mailServerIP := '192.168.176.99');

FromEmail : STRING(254) := 'rtac6@myCompany.com';
FromName : STRING(255) := 'The automation RTAC';
//The number of the on call phone for an SMS message
OncallPhone : STRING(255) := '5095552321@txt.att.net';
DayEmail : STRING(254) := 'day_managers@myCompany.com';
NightEmail : STRING(254) := 'night_managers@myCompany.com';
ManagerEmail : STRING(254);
SubjectLine : STRING(255) := 'Plant on Backup Power';
BodyString : STRING(255);

Alarm1 : BOOL;
Alarm2 : BOOL;

END_VAR

IF Alarm1 THEN
ManagerEmail := DayEmail;
BodyString := 'The daytime plant has lost main power';

END_IF
IF Alarm2 THEN

ManagerEmail := NightEmail;
BodyString := 'The nighttime plant has lost main power';

END_IF
Emailer(Send := Alarm1 OR Alarm2,

ToEmail := OncallPhone, ToName := '',
CcEmail := ManagerEmail, CcName := '',
FromEmail := FromEmail, FromName := FromName,
Subject := SubjectLine, BodyStr := BodyString);

Forwarding a Text Report From the RTAC

Objective

After the RTAC receives confirmation of the completion of an automated task, a user wants
to receive a notice from the RTAC, including a log file of actions taken.

Assumptions

The user has a task that runs and builds a readable log file “details.txt” accessible through
the File Manager features of the RTAC.

The user has in some way defined a trigger that will set TaskDone to TRUE when appropriate
events occur and allow it to return false afterwards.

The user has included FileIo and DynamicVectors in their project.

Email Instruction Manual Date Code 20180926

Email 25

Examples

Solution

The user can create a class_EmailClient to provide brief notifications as seen in Code
Snippet 2.

This example sends an email containing the text of the log file to the user and a manager.

Code Snippet 2 prg_DailyReport

PROGRAM prg_DailyReport
VAR

Emailer : class_EmailClient(localIPAddr := '0.0.0.0',
mailServerIP := '192.168.176.99');

FromEmail : STRING(254) := 'rtac6@myCompany.com';
FromName : STRING(255) := 'The automation RTAC';
//Email addresses to receive the information.
SecretEmail : STRING(254) := 'TheBoss@myCompany.com';
DeveloperEmail : STRING(254) := 'developerLead@myCompany.com';
SubjectLine : STRING(255) := 'The Numbers for the Day';

Initialized : BOOL := FALSE;
TaskDone : BOOL;
FileRead : BOOL;

FileBuffer : class_ByteVector;
LogFileReader : class_FileReader;

END_VAR

IF NOT Initialized THEN
Emailer.SetSender(FromEmail, FromName);
Emailer.AddRecipient(MAIL_BCC, SecretEmail, 'Head Honcho');
Emailer.AddRecipient(MAIL_TO, DeveloperEmail, '');
Emailer.SetSubjectString(SubjectLine);
Initialized := TRUE;

END_IF
IF TaskDone THEN

LogFileReader.ReadFile('/details.txt');
TaskDone := FALSE;
FileRead := FALSE;

END_IF
IF NOT FileRead AND LogFileReader.BytesInBuffer > 0 THEN

FileBuffer.Recycle();
LogFileReader.AppendToVector(startByte := 0, vector := FileBuffer);
Emailer.SetBodyVector(FileBuffer);
Emailer.Send();
FileRead := TRUE;

END_IF
Emailer.Run();
LogFileReader.Run();

Attaching Raw Data to Send

Objective

A user wishes to directly forward raw data on the RTAC device to various technicians.

Date Code 20180926 Instruction Manual Email

26 Email

Examples

Assumptions

The user has configured Alarm to trigger on events of some manner, and has also written
data to ProcessControlData. The user has included DynamicVectors in their project.

Solution

The user can create a class_EmailClient to provide notifications with raw data attachments
as shown in Code Snippet 3.

This example sends an email with raw data attachments to various technicians or other field
personnel.

Code Snippet 3 prg_AttachData

PROGRAM prg_AttachData
VAR

Alarm : BOOL := FALSE;
Emailer : class_EmailClient(localIPAddr := '0.0.0.0',

mailServerIP := '192.168.176.7');
FromEmail : STRING(254) := 'rtac6@myCompany.com';
FromName : STRING(255) := 'The automation RTAC';
Email : STRING(254) := 'tech_leads@myCompany.com';
AttachmentName : STRING(255) := 'procData.raw';
ProcessControlData : STRING(255) := '01110110101010';
ControlData : class_ByteVector;
SubjectLine : STRING(255) := 'Current Process Control Data';
BodyString : STRING(255) := 'Raw process control data attached.';
Initialized : BOOL := FALSE;
trigger : R_TRIG;

END_VAR

Email Instruction Manual Date Code 20180926

Email 27

Troubleshooting

Code Snippet 3 prg_AttachData (Continued)

trigger(clk := Alarm OR Emailer.Busy);
//Send email when an alarm occurs and we have vector data to send.
IF trigger.Q AND (LEN(ProcessControlData) > 0) THEN

//Initializes the email parameters; assumes these do not change.
IF NOT Initialized THEN

Emailer.AddRecipient(MAIL_TO, Email, 'Lead Process Technicians');
Emailer.SetSender(FromEmail,FromName);
Emailer.SetBodyBytes(ADR(BodyString),LEN(BodyString));
Emailer.SetSubjectBytes(ADR(SubjectLine),LEN(SubjectLine));
Initialized := TRUE;

END_IF

// Clear any previous information from the vector
ControlData.Recycle();
// Append the new process information
ControlData.Append(ADR(ProcessControlData),

INT_TO_UDINT(LEN(ProcessControlData)));
// Clear any previous attachments and add the new data.
Emailer.ClearAttachments();
Emailer.AttachVector(ControlData,AttachmentName);

//Initiates the email send operation.
IF NOT Emailer.Busy THEN

Emailer.Send();
END_IF

END_IF

// Call Run() every scan to complete the email.
Emailer.Run();

Troubleshooting

As a communication module, this library depends several things:

1. Correct IP address entered for both the local host (either 0.0.0.0 or an IP that can
route to the mail server) and the mail server.

ä If using 0.0.0.0 as the local IP address, ensure the network that can reach the
mail server is set as the primary gateway. This is set via the RTAC web HMI.

ä If the local IP address is set to the real IP address rather than 0.0.0.0, the
primary gateway does not need to be set.

2. Access to the mail server via port 25.

3. The mail server must be configured to allow email from the RTAC. This may include
but is not limited to: allowing the RTACs IP address to send mail, permitting the
“from name” that the RTAC uses, as well as the “from email address.”

For full information as to what is happening to a sent message, check the logs on the mail
server handling the request.

Date Code 20180926 Instruction Manual Email

28 Email

Troubleshooting

To quickly check the behavior of a given setup, one can manually test the communications
from a computer on the same subnet as the RTAC by opening a raw TCP channel to the
mail server on port 25 and issuing the same sequence of commands issued by this library.
All sections in teal should be replaced with values from your environment. All new lines
are represented by the ASCII for carriage return followed by new line (many applications
will insert this just by pressing enter).

HELO RTAC_IP
MAIL FROM:<RTAC_EMAIL_ADDR>
RCPT TO:<TO_ADDR>
RCPT TO:<CC_ADDR>
DATA
From: "FROM_NAME"<RTAC_EMAIL_ADDR>
To: "TO_NAME"<TO_ADDR>
Cc: "CC_NAME"<CC_ADDR>
Subject: Email from RTAC

BODY OF MESSAGE
.
QUIT

Email Instruction Manual Date Code 20180926

Email 29

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.0.6 ä Full SMTP client/server handshaking implemented. 20150722

ä Added fb_SimpleEmailClient2 and class_EmailClient2. These
items extend the basic objects, providing destination and source
port initialization parameters.

ä Attachment functionality added for multiple files and raw data.
ä Very large emails, over 10 KB in size, send correctly.

3.5.0.3 ä Added correct HELO syntax when using local ip “0.0.0.0”. 20141212
ä Allow up to 10 seconds to connect with a mail server instead of a

single scan.
3.5.0.2 ä Improved sending of long emails. 20141110
3.5.0.1 ä Initial release. 20141010

Date Code 20180926 Instruction Manual Email

	Section 1: Email
	Introduction
	Special Considerations

	Supported Firmware Versions
	Enumerations
	enum_RecipientType

	Function Blocks
	fb_SimpleEmailClient (Function Block)
	fb_SimpleEmailClient2 (Function Block)

	Classes
	class_EmailClient (Class)
	AddRecipient (Method)
	AttachVector (Method)
	ClearAttachments (Method)
	ClearRecipients (Method)
	Run (Method)
	Send (Method)
	SetBodyBytes (Method)
	SetBodySELString (Method)
	SetBodyString (Method)
	SetBodyVector (Method)
	SetSender (Method)
	SetSubjectBytes (Method)
	SetSubjectSELString (Method)
	SetSubjectString (Method)
	SetSubjectVector (Method)

	class_EmailClient2 (Class)
	Extended Classes
	Initialization Inputs

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fb_SimpleEmailClient Average Busy Time
	fb_SimpleEmailClient Average Longest Scan Busy Time
	fb_SimpleEmailClient2 Average Busy Time
	fb_SimpleEmailClient2 Average Longest Scan Busy Time
	class_EmailClient.AddRecipient()
	class_EmailClient.AttachVector()
	class_EmailClient.ClearAttachments()
	class_EmailClient.ClearRecipients()
	class_EmailClient.Run() Average Busy Time
	class_EmailClient.Run() Average Busy Time With Event Report
	class_EmailClient.Run() Average Longest Scan Time
	class_EmailClient.Run() Average Longest Scan Time With Event Report
	class_EmailClient.Send()
	class_EmailClient.SetBodyBytes()
	class_EmailClient.SetBodyBytes() With Event Report
	class_EmailClient.SetBodySELString()
	class_EmailClient.SetBodySELString With Event Report
	class_EmailClient.SetBodyString()
	class_EmailClient.SetBodyVector()
	class_EmailClient.SetBodyVector() With Event Report
	class_EmailClient.SetSender()
	class_EmailClient.SetSubjectBytes()
	class_EmailClient.SetSubjectSELString()
	class_EmailClient.SetSubjectString()
	class_EmailClient.SetSubjectVector()
	class_EmailClient2.AddRecipient()
	class_EmailClient2.AttachVector()
	class_EmailClient2.ClearAttachments()
	class_EmailClient2.ClearRecipients()
	class_EmailClient2.Run() Average Busy Time
	class_EmailClient2.Run() Average Busy Time With Event Report
	class_EmailClient2.Run() Average Longest Scan Time
	class_EmailClient2.Run() Average Longest Scan Time With Event Report
	class_EmailClient2.Send()
	class_EmailClient2.SetBodyBytes()
	class_EmailClient2.SetBodyBytes() With Event Report
	class_EmailClient2.SetBodySELString()
	class_EmailClient2.SetBodySELString With Event Report
	class_EmailClient2.SetBodyString()
	class_EmailClient2.SetBodyVector()
	class_EmailClient2.SetBodyVector() With Event Report
	class_EmailClient2.SetSender()
	class_EmailClient2.SetSubjectBytes()
	class_EmailClient2.SetSubjectSELString()
	class_EmailClient2.SetSubjectString()
	class_EmailClient2.SetSubjectVector()

	Benchmark Results

	Examples
	Sending an Alert Email After a Failure
	Objective
	Assumptions
	Solution

	Forwarding a Text Report From the RTAC
	Objective
	Assumptions
	Solution

	Attaching Raw Data to Send
	Objective
	Assumptions
	Solution

	Troubleshooting
	Release Notes

