DynamicVectors
IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section1: DynamicVectors

INtrodUCHON. o e 3
Supported Firmware VEersionsoovvviiiiiiiiiiiiiiiiiiieieaeeieeeaaaeeaaans 4
Global Parametersooiiiiii it e 4
Enumerationsooooiiiiii i e 4
FUNCHONS ..o e e e 5
It aCES oot e 6
0 T 9
Benchmarks.oooui i e 26
EXamples ... 29
REIEaSE NOLES . ..ottt e e 36

DynamicVectors Instruction Manual Date Code 20180925

RTAC LIBRARY

DynamicVectors

Introduction

This library provides a vector data type for storing objects of various types, including
arbitrary user-created objects. In general, a vector is an array of elements that is dynamically
sized. As such, a vector allows elements to be added or removed and can contain an arbitrary
number of elements. A vector also allows random access to its elements.

In addition to the vector classes, this library provides two factory functions for creating
vectors: fun_NewBaseVector () and fun_NewTypeVector (). Calling a factory function
creates a new object and returns a pointer to that object. For example, every call to fun_-
NewBaseVector () returns a pointer to a newly created class_BaseVector object.

See the ACSELERATOR RTAC Library Extensions Instruction Manual (LibraryExtension-

sIM) for an explanation of the concepts used by the object-oriented extensions to the
IEC 61131-3 standard.

Special Considerations

» Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:="" must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error

such as:
// "C0328: Assignment not allowed for type class_VectorObject"
myVectorObject := otherVectorObject;

// This is fine

someVariable := myVectorObject.value;

// As is this

pt_myVectorObject := ADR(myVectorObject);

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT
members in function blocks, functions, or methods. Place them in the VAR_-
IN_OUT section or use pointers instead.

Date Code 20180925 Instruction Manual DynamicVectors

4 | DynamicVectors
Enumerations

» Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.1.0 and older can be used on RTAC firmware version R132 and higher.

Global Parameters

The library applies the following values as maximums; they can be modified when the
library is included in a project.

Name IEC 61131 Type | Value | Description

g_p_DefaultVectorSize | UDINT 32 The default number of elements that
a vector can hold.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable
textual equivalent.

enum_DynamicVectorType

This enumeration is used for specifying the desired type of vector to the fun_NewVector ()

function.
Enumeration Description
BYTE_VECTOR Enumeration for class_ByteVector.
WORD_VECTOR Enumeration for class_WordVector.

DWORD_VECTOR Enumeration for class_DwordVector.
LWORD_VECTOR Enumeration for class_LwordVector.
REAL_VECTOR Enumeration for class_Real Vector.
LREAL_VECTOR Enumeration for class_Lreal Vector.
POINTER_VECTOR | Enumeration for class_PointerVector.

DynamicVectors Instruction Manual Date Code 20180925

DynamicVectors | 5
Functions

Functions

fun_NewBaseVector (Function)

This function creates a new class_BaseVector and returns a pointer to the newly created
vector. The returned POINTER TO BYTE must be cast to the correct type before it is used.
A vector created with this function must be destroyed with fun_DeleteVector () when it
is no longer needed.

Inputs
Name IEC 61131 Type | Description
elementSize | UDINT The size of each element in the vector.

Return Value

IEC 61131 Type Description

POINTER TO BYTE | Pointer to the newly created vector. This pointer is null if the vector could
not be created.

Processing

» Creates a new vector with the specified elementSize and returns a pointer to the newly
created vector.

» Returns a null pointer if the vector could not be created.

fun_NewTypeVector (Function)

This function creates a new vector of the type specified and returns a pointer to the newly
created vector. The returned POINTER TO BYTE must be cast to the correct type before it
is used. A vector created with this function must be destroyed with fun_DeleteVector ()
when it is no longer needed.

Inputs

Name IEC 61131 Type Description
vectorType | enum_DynamicVectorType | The desired type of vector.

Return Value

IEC 61131 Type Description
POINTER TO BYTE | Pointer to the newly created vector. This pointer is null if the vector could
not be created.

Date Code 20180925 Instruction Manual DynamicVectors

6 | DynamicVectors
Interfaces

Processin

» Creates a new vector of the type specified and returns a pointer to the newly created

g

vector.

» Returns a null pointer if the vector could not be created.

fun_DeleteVector (Function)

This function deletes a vector created with fun_NewBaseVector () or fun_NewTypeVector ().

After deletion, any pointers to the deleted vector are no longer valid.

Inputs
Name | IEC 61131 Type | Description
vector I_Vector The vector to delete.
Return Value

IEC 61131 Type

Description

BOOL

TRUE if vector is successfully deleted. False if an error occurs.

Interfaces

This library provides the following interface.

|_Vector

This interface is implemented by any class that provides a vector data type.

Properties
Name IEC 61131 Type Access | Description
pt_BaseVector | POINTER TO class_BaseVector | R Pointer to the class_BaseVector

used internally by this vector.

pt_Data POINTER TO BYTE R Pointer to the raw memory ar-
ray used internally by this vec-
tor.

ElementSize UDINT R The number of bytes required

for each element in the vector.

MaxSize

UDINT

R The number of elements this
vector can currently hold be-
fore a reallocation for addi-
tional memory is required.

DynamicVectors

Instruction Manual

Date Code 20180925

DynamicVectors | 7
Interfaces

Properties
Name IEC 61131 Type Access | Description
pt_Self POINTER TO BYTE R The THIS pointer for the class.
Size UDINT R The number of elements in the
vector.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/'W (read/write).

Append (Method)

This method appends an array of elements to the end of the vector.

Inputs
Name IEC 61131 Type Description
pt_array POINTER TO BYTE | Pointer to the first element to append to the vector.
numElements | UDINT The number of elements to copy from the array.

Return Value

IEC 61131 Type | Description

BOOL

an error occurs.

TRUE if the elements are successfully appended to the vector. FALSE if

Processing

» If pt_array is null, the vector is not modified and this method returns FALSE.

» If pt_array is valid and numElements is zero, the vector is not modified and this
method returns TRUE.

» If appending to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the

vector is not modified and this method returns false.

Clear (Method)

Deallocates all memory associated with the vector. Call this method only if the vector is
instantiated with limited scope (i.e., if it is instantiated as a local variable of a function or

method).

Date Code 20180925

Instruction Manual DynamicVectors

8

DynamicVectors
Interfaces

Return Value

IEC 61131 Type | Description

BOOL TRUE if the vector successfully deallocates its internal memory. FALSE if
an error Occurs.

Recycle (Method)

This method removes all elements from the vector without modifying the memory allocated
to the vector.

Return Value

IEC 61131 Type | Description

BOOL TRUE if the vector successfully removes all elements. FALSE if an error
occurs.

Processing

All elements are removed from the vector.
» After recycling, the Size property of the vector is zero.
» The MaxSize property is unchanged after a call to Recycle().

» This method neither allocates nor frees any memory.

Resize (Method)

This method resizes the vector so it can contain the number of elements specified without
requiring any additional memory allocations.

Inputs

Name IEC 61131 Type | Description

newSize | UDINT The desired number of elements for the resized vector to contain
without requiring a memory reallocation.

Return Value

IEC 61131 Type | Description
BOOL TRUE if the vector is successfully resized. FALSE if an error occurs.

DynamicVectors Instruction Manual Date Code 20180925

Processing
This method resizes the vector so it can contain the number of elements specified without
requiring any additional memory allocations.

» If the specified newSize is zero, then the vector is resized to g_p_DefaultVectorSize
or the present number of elements, whichever is greater.

» If the specified newSize is greater than zero and less than the present number of
elements, the vector is resized to the present number of elements.

» If the specified newSize is greater than the number of elements, the vector is resized
to the specified newSize.

» If the specified newSize equals the present maximum size of the vector, the vector is
not resized and the method returns TRUE.

Classes

class_BaseVector

This class implements a generic vector that internally handles dynamic allocation of memory.

This vector can handle objects of arbitrary size so long as the number of bytes required
for each element is the same. This vector stores its internal data in a contiguous block of
memory.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» 1 Vector

Initialization Inputs

Name IEC 61131 Type | Description

elementSize UDINT The number of bytes required for each element this vector
will hold. If zero, then default to one.

numElements | UDINT The number of elements to account for initially. If zero,
then use the default.

GetCopyOfElement (Method)

This method copies the element at the index specified from the vector to the destination
pointer.

Date Code 20180925 Instruction Manual

DynamicVectors | 9
Classes

DynamicVectors

10 | DynamicVectors

Classes
Inputs
Name IEC 61131 Type Description
index UDINT The index of the element to copy from the vector.
pt_destination | POINTER TO BYTE | A pointer to the destination to which the element is

copied.

Return Value

IEC 61131 Type | Description

BOOL

TRUE if the specified element is copied. FALSE if an error occurs.

Processing

If index or pt_destination are invalid, nothing is copied and false is returned.

PopTo (Method)

This method copies the last element in the vector to the provided pointer location and then
deletes the last element.

Inputs

Name

IEC 61131 Type

Description

pt_destination

POINTER TO BYTE

A pointer to the destination to which the element is
copied.

Return Value

IEC 61131 Type | Description

BOOL

TRUE if the last element is successfully copied and removed from the
vector. FALSE if an error occurs.

Processing

» Copies the last element in the vector to the provided pointer location.

» Removes the last element in the vector.

» If the vector does not contain any elements (i.e., the size is zero), the method returns
false without modifying the vector.

» If pt_destination is invalid or the element cannot be copied, then the vector is not
modified and false is returned.

DynamicVectors

Instruction Manual

Date Code 20180925

DynamicVectors | 11
Classes

PushFrom (Method)

Copies the bytes from the provided pointer location to a new element at the end of the vector.
Allocates additional memory if the vector does not have enough memory to contain the new
element.

Inputs

Name IEC 61131 Type Description
pt_source | POINTER TO BYTE | A pointer to the source from which the element is copied.

Return Value

IEC 61131 Type | Description
BOOL TRUE if the new element is added to the vector. FALSE if an error occurs.

Processing

» Copies the element at pt_source to a new element at the end of the vector.

» If the vector Size is MaxSize before the addition of the new element, the vector
allocates additional memory. If the memory allocation fails, FALSE is returned and
the vector is not modified.

» If pt_source is invalid, FALSE is returned and the vector is not modified.

SetElement (Method)

This method sets the element in the vector, specified by the index, to the contents of the
source pointer.

Inputs
Name IEC 61131 Type Description
index UDINT The index of the vector element to set.

pt_source | POINTER TO BYTE | A pointer to the source from which the element is copied.

Return Value

IEC 61131 Type | Description
BOOL TRUE if the specified element is set. FALSE if an error occurs.

Processing

» Sets the element in the vector at index to the contents of pt_source.

» If index or pt_source is invalid, FALSE is returned and the vector is not modified.

Date Code 20180925 Instruction Manual DynamicVectors

12

DynamicVectors
Classes

class_ByteVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | BYTE The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description
BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | BYTE A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual

Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs
Name IEC 61131 Type | Description
element | BYTE The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

occurs.

TRUE if element is successfully added to the vector. FALSE if an error

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is
not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value BYTE The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 13
Classes

DynamicVectors

14 | DynamicVectors
Classes

class_WordVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | WORD The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description

BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | WORD A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs
Name IEC 61131 Type | Description
element | WORD The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

occurs.

TRUE if element is successfully added to the vector. FALSE if an error

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is
not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value WORD The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 15
Classes

DynamicVectors

16

DynamicVectors
Classes

class_DwordVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | DWORD The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description
BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | DWORD A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual

Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs
Name IEC 61131 Type | Description
element | DWORD The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

occurs.

TRUE if element is successfully added to the vector. FALSE if an error

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is
not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value DWORD The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 17
Classes

DynamicVectors

18

DynamicVectors
Classes

class_LwordVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | LWORD The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description
BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | LWORD A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual

Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs
Name IEC 61131 Type | Description
element | LWORD The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

occurs.

TRUE if element is successfully added to the vector. FALSE if an error

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is
not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value LWORD The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 19
Classes

DynamicVectors

20

DynamicVectors
Classes

class_RealVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | REAL The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description
BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | REAL A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual

Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs
Name IEC 61131 Type | Description
element | REAL The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

occurs.

TRUE if element is successfully added to the vector. FALSE if an error

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is
not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value REAL The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 21
Classes

DynamicVectors

22

DynamicVectors
Classes

class_LrealVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type | Description

element | LREAL The element at the specified index. If the return value is FALSE,
this value is undefined.

Return Value

IEC 61131 Type | Description
BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type | Description

element | LREAL A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual

Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs
Name IEC 61131 Type | Description
element | LREAL The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

occurs.

TRUE if element is successfully added to the vector. FALSE if an error

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is
not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs
Name | IEC 61131 Type | Description
index UDINT The index at which to set the value of an element.
value LREAL The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector
is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 23
Classes

DynamicVectors

24 | DynamicVectors
Classes

class_PointerVector

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

» I_Vector

GetAt (Method)

Provides a copy of the element at the specified index.

Inputs

Name | IEC 61131 Type | Description

index UDINT The index of the desired element in the vector.
Outputs

Name IEC 61131 Type Description

element | POINTER TO BYTE | The element at the specified index. If the return value is
FALSE, this value is undefined.

Return Value

IEC 61131 Type | Description
BOOL TRUE if index is valid and the element is copied. FALSE if index is invalid
Or an error occurs.

Pop (Method)

This method provides a copy of the last item in the vector and removes that element from
the vector.

Outputs

Name IEC 61131 Type Description

element | POINTER TO BYTE | A copy of the former last element in the vector. If the return
value is FALSE, this value is undefined.

DynamicVectors Instruction Manual Date Code 20180925

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully copied and removed from the vector.
FALSE if the size is zero or an error occurs.

Push (Method)

This method appends a copy of the provided element to the end of the vector.

Inputs

Name IEC 61131 Type Description

element | POINTER TO BYTE | The element to copy to the end of the vector.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if element is successfully added to the vector. FALSE if an error
occurs.

Processing

If pushing element to the vector requires more memory than is currently available in the
vector, the library allocates additional memory. If the memory allocation fails, the vector is

not modified and this method returns FALSE.

SetAt (Method)

This method provides write access to any element within the vector.

Inputs

Name | IEC 61131 Type Description

index UDINT

The index at which to set the value of an element.

value POINTER TO BYTE | The new element value.

Return Value

IEC 61131 Type

Description

BOOL

TRUE if the element is successfully modified. If index is invalid, the vector

is not modified and FALSE is returned.

Date Code 20180925

Instruction Manual

DynamicVectors | 25
Classes

DynamicVectors

26

DynamicVectors
Benchmarks

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

>» SEL-3530
> R134 firmware
» SEL-3354
> Intel Pentium 1.4 GHz
> 1 GB DDR ECC SDRAM
> SEL-3532 RTAC Conversion Kit
> R132 firmware
» SEL-3555
> Dual-core Intel i7-3555LE processor
> 4 GB ECC RAM

> R134 firmware

Benchmark Test Descriptions

As benchmarks are designed to provide more information about speed of operation in known
environments, only tests on the five pre-configured vectors are recorded here. Vectors on
objects of varying sizes may have varying performance.

All benchmark tests shall be performed 100 times with the average result recorded here. In
an attempt to allow other usage of system memory, only one iteration of each test is run per
scan.

Append

The time to append 1000 objects to the vector.

Clear

The time to clear a vector of 1000 objects.

GetAt

The worst case time for retrieving an arbitrary index out of a vector of length 1000.

DynamicVectors Instruction Manual

Date Code 20180925

DynamicVectors | 27
Benchmarks

SetAt

The worst case time for setting an arbitrary index in a vector of length 1000.

Push32

The performance of Push when Size = MaxSize = 32.

Push1024

The performance of Push when Size = MaxSize = 1024.

Pop

The performance of a pop of the 1000th element of a vector.

Recycle

The time to remove all data from a vector of 1000 objects.

Resize Down

The performance of a manual resize from 2048 elements to 32 elements.

Resize Up

The performance of a manual resize from 32 elements to 2048 elements.

NewVector

The performance of requesting a new vector of the desired type.

Benchmark Results

Operation Tested Platform (time in us)
SEL-3530 | SEL-3354 | SEL-3555
Append
Byte 67 9 6
Dword 58 6 3
Lreal 88 10 4
Lword 63 4
Pointer 44 5 3

Date Code 20180925 Instruction Manual DynamicVectors

28 | DynamicVectors

Benchmarks

DynamicVectors

Operation Tested

Platform (time in pus)

SEL-3530 | SEL-3354 | SEL-3555
Real 57 5 3
Word 43 5 3
Clear
Byte 41 4 3
Dword 40 4 2
Lreal 40 4 2
Lword 43 4 2
Pointer 39 4 2
Real 39 4 2
Word 37 4 2
GetAt
Byte 17 2 1
Dword 6 2 1
Lreal 7 2 1
Lword 9 1 1
Pointer 6 1 1
Real 8 1 1
Word 6 2 1
New
Byte 73 23 10
Dword 43 6 4
Lreal 40 6 4
Lword 41 6 4
Pointer 37 6 4
Real 37 5 4
Word 42 6 4
Pop
Byte 4 1 1
Dword 5 1 1
Lreal 4 1 1
Lword 4 1 1
Pointer 4 1 1
Real 5 1 1
Word 4 1 1
Push1024
Byte 22 4 3
Dword 23 4 3
Lreal 36 5 3
Lword 33 5 3
Pointer 23 4 3
Real 22 4 3
Word 27 4 3
Push32
Byte 32 5 3
Dword 33 5 3
Lreal 33 5 3
Lword 35 5 3
Pointer 31 5 3

Instruction Manual

Date Code 20180925

DynamicVectors | 29

Examples

Operation Tested Platform (time in pus)

SEL-3530 | SEL-3354 | SEL-3555
Real 30 5 3
Word 31 4 3
Recycle
Byte 2 1 1
Dword 2 1 1
Lreal 3 1 1
Lword 2 1 1
Pointer 2 1 1
Real 2 1 1
Word 2 1 1
ResizeDown
Byte 23 4 3
Dword 23 4 3
Lreal 23 4 3
Lword 21 4 3
Pointer 20 4 3
Real 22 4 3
Word 23 4 3
ResizeUp
Byte 35 5 3
Dword 35 4 3
Lreal 28 4 3
Lword 24 4 3
Pointer 24 4 3
Real 24 4 3
Word 30 5 3
SetAt
Byte 5 2 1
Dword 6 2 1
Lreal 7 1 1
Lword 5 2 1
Pointer 6 2 1
Real 7 1 1
Word 8 1 1

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Date Code 20180925 Instruction Manual DynamicVectors

30

DynamicVectors
Examples

Creating and Using a class_ByteVector

Objective

This example shows how a basic class_ByteVector is instantiated and used. Code Snippet 1
shows some simple manipulations of a byte vector. These include appending an array to the
vector, popping bytes off the end of the vector, and checking the size of the vector.

Solution

Code Snippet 1 prg_ByteVector

PROGRAM prg_ByteVector
VAR
// Flag to only run the program once.
initialized : BOOL := FALSE;
// A dynamically sized vector of bytes.
byteVector : DynamicVectors.class_ByteVector();
// A fixed size array of bytes to append to the vector.
appendArray : ARRAY[1..5] OF BYTE := [1, 2, 3, 4, 5];
// A fixed size array of bytes to pop off the vector.
popArray : ARRAY[1..5] OF BYTE;
// The size of the vector after appending.
sizeAfterAppend : UDINT;
// The size of the vector after popping.
sizeAfterPop : UDINT;
// Loop counter.
i : UINT;
END_VAR

Code Snippet 1 prg_ByteVector (Continued)

// Only run the program once.
IF NOT initialized THEN
initialized := TRUE;

// Append the array to the empty vector.
byteVector.Append (ADR (appendArray), 5);

// The size after appending five bytes is five.
sizeAfterAppend := byteVector.Size;

// Pop all five elements off the vector and store in an array.
FOR i :=1 TO 5 DO

byteVector.Pop(element => popArray[i]);
END_FOR

// The size after popping the bytes off the vector is zero.
sizeAfterPop := byteVector.Size;
END_IF

DynamicVectors Instruction Manual

Date Code 20180925

DynamicVectors | 31
Examples

Creating a class_ByteVector with fun_NewByteVector()

Objective

This example shows how a basic class_ByteVector is created when using the factory function
fun_NewTypeVector (). Code Snippet 2 shows some simple manipulations of a byte vector
created with a factory. These include appending an array to the vector, popping bytes off
the end of the vector, and checking the size of the vector.

Solution

Code Snippet 2 prg_ByteVectorFactory

PROGRAM prg_ByteVectorFactory

VAR
// Flag to only run once.
initialized : BOOL := FALSE;
// A pointer to a dynamically sized vector of bytes.
pt_byteVector : POINTER TO DynamicVectors.class_ByteVector();
// A fixed size array of bytes to append to the vector.
appendArray : ARRAY[1..5] OF BYTE := [1, 2, 3, 4, 5];
// A fixed size array of bytes to pop off the vector.
popArray : ARRAY[1..5] OF BYTE;
// The size of the vector after appending.
sizeAfterAppend : UDINT;
// The size of the vector after popping.
sizeAfterPop : UDINT;
// Loop counter.
i : UINT;

END_VAR

Code Snippet 2 prg_ByteVectorFactory (Continued)

// Only run the program once.
IF NOT initialized THEN
initialized := TRUE;

(* Create the byte vector with the factory. fun_NewTypeVector creates a
* byte vector and returns a pointer to the new vector. *)
pt_byteVector := fun_NewTypeVector (BYTE_VECTOR) ;

// Append the array to the empty vector.
pt_byteVector™.Append (ADR(appendArray), 5);

// The size after appending five bytes is five.
sizeAfterAppend := pt_byteVector™.Size;

// Pop all five elements off the vector and store in an array.
FOR i := 1 TO 5 DO

pt_byteVector™.Pop(element => popArray[i]);
END_FOR

// The size after popping the bytes off the vector is zero.
sizeAfterPop := pt_byteVector™.Size;
END_IF

Date Code 20180925 Instruction Manual DynamicVectors

32

DynamicVectors
Examples

Creating and Using a class_BaseVector

Objective
This example shows how a class_BaseVector is instantiated and used. Code Snippet 4 shows

some simple manipulations of a base vector. These include appending an array to the vector,
popping elements off the end of the vector, and checking the size of the vector.

Assumptions

This example assumes that there is a user-specified IEC 61131 data type defined as shown
in Code Snippet 3.

Code Snippet 3 struct_UserObject

TYPE struct_UserObject :

STRUCT
name : STRING;
value : INT;
END_STRUCT
END_TYPE

DynamicVectors Instruction Manual

Date Code 20180925

Solution

Code Snippet 4 prg_BaseVector

PROGRAM prg_BaseVector
VAR
// Flag to only run once.
initialized : BOOL := FALSE;
(* A dynamically sized vector of struct_UserObects. This instantiates a
* vector of elements, where each element requires
* SIZEOF (struct_UserObject) bytes of memory and to reserve memory for
* 32 elements before a memory allocation is required. *)
baseVector : DynamicVectors.class_BaseVector (SIZEOF (struct_UserObject),
32);
// A fixed size array to append to the vector.
appendArray : ARRAY[1..5] OF struct_UserObject := [

(name := 'number 1', value := 1),
(name := 'number 2', value := 2),
(name := 'number 3', value := 3),
(name := 'number 4', value := 4),
(name := 'number 5', value := 5)

1
// A fixed size array to pop off the vector.
popArray : ARRAY[1..5] OF struct_UserObject;
// The size of the vector after appending.
sizeAfterAppend : UDINT;
// The size of the vector after popping.
sizeAfterPop : UDINT;
// Loop counter.
i : UINT;

END_VAR

// Only run the program once.
IF NOT initialized THEN
initialized := TRUE;

// Append the array to the empty vector.
baseVector.Append (ADR (appendArray), 5);

// The size after appending five bytes is five.
sizeAfterAppend := baseVector.Size;

// Pop all five elements off the vector and store in an array.
FOR i :=1 TO 5 DO

baseVector.PopTo (ADR(popArray([il));
END_FOR

// The size after popping the bytes off the vector is zero.
sizeAfterPop := baseVector.Size;
END_IF

Date Code 20180925 Instruction Manual

DynamicVectors | 33
Examples

DynamicVectors

34 | DynamicVectors
Examples

Resizing a Vector

Objective

This example demonstrates resizing a vector. Resizing a vector changes how much memory
the vector reserves for the addition of new elements.

Addition of elements to a vector when it does not have space forces the vector to allocate
additional memory. Memory allocation is a relatively slow operation, so it can be useful to
have extra memory reserved by the vector to avoid unnecessary memory allocations. If it is
known how many elements the vector will store, it can be resized once to avoid multiple
slow memory allocations.

Resizing a vector is also useful for releasing memory from the vector. If a vector contained
100 elements previously, but currently only contains 10, the vector will still reserve memory
for the previously removed 90 elements. If the vector no longer needs to store 90 additional
elements, that memory can be returned to the system. A vector will not automatically release
memory back to the system.

Code Snippet 5 shows the resizing of a vector to return memory to the system.

Solution

Code Snippet 5 prg_VectorResize

PROGRAM prg_VectorResize

VAR
// Flag to only run once.
initialized : BOOL := FALSE;
// A dynamically sized vector of bytes.
byteVector : DynamicVectors.class_ByteVector();
// A fixed size array of bytes to append to the vector.
appendArray : ARRAY[1..5] OF BYTE := [1, 2, 3, 4, 5];
// A fixed size array of bytes to pop off the vector.
popArray : ARRAY[1..5] OF BYTE;
// The size of the vector after appending.
sizeAfterAppend : UDINT;
// The size of the vector after popping.
sizeAfterPop : UDINT;
// The maximum vector size before resizing.
maxSizeBeforeResize : UDINT;
// The maximum vector size after resizing.
maxSizeAfterResize : UDINT;
// Loop counter.
i : UINT;

END_VAR

DynamicVectors Instruction Manual Date Code 20180925

Code Snippet 5 prg_VectorResize (Continued)

// Only run the program once.
IF NOT initialized THEN
initialized := TRUE;
// Append the array to the empty vector.
byteVector. Append (ADR (appendArray), 5);
// The size after appending five bytes is five.
sizeAfterAppend := byteVector.Size;
// Pop all five elements off the vector and store in an array.
FOR i := 1 TO 5 DO
byteVector.Pop(element => popArray[il);
END_FOR
// The size after popping the bytes off the vector is zero.
sizeAfterPop := byteVector.Size;
// The maximum size before resizing is 32 elements.
maxSizeBeforeResize := byteVector.MaxSize;
// Resize the vector so it can hold 10 bytes before a memory allocation
// is required.
byteVector.Resize(10);
(* The maximum size after resizing is 10 elements. The memory required
* for 22 elements is returned to the system, but if the vector needs
* to store more than 10 elements in the future, it will need to
* allocate additional memory. *)
maxSizeAfterResize := byteVector.MaxSize;
END_IF

Date Code 20180925 Instruction Manual

DynamicVectors | 35
Examples

DynamicVectors

36 | DynamicVectors
Release Notes

Release Notes

Version | Summary of Revisions Date Code
3.5.2.0 | » Allows new versions of ACSELERATOR RTAC to compile projects 20180921
for previous firmware versions without SEL IEC types “Cannot

convert” messages.
» Must be used with R143 firmware or later.
3.5.1.0 » Added typed vectors for REAL, LREAL, LWORD, and POINTER. 20150511
3.5.0.2 » Initial release. 20140811

DynamicVectors

Instruction Manual

Date Code 20180925

	Section 1: DynamicVectors
	Introduction
	Special Considerations

	Supported Firmware Versions
	Global Parameters
	Enumerations
	enum_DynamicVectorType

	Functions
	fun_NewBaseVector (Function)
	fun_NewTypeVector (Function)
	fun_DeleteVector (Function)

	Interfaces
	I_Vector
	Append (Method)
	Clear (Method)
	Recycle (Method)
	Resize (Method)

	Classes
	class_BaseVector
	Implemented Interfaces
	GetCopyOfElement (Method)
	PopTo (Method)
	PushFrom (Method)
	SetElement (Method)

	class_ByteVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	class_WordVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	class_DwordVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	class_LwordVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	class_RealVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	class_LrealVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	class_PointerVector
	Implemented Interfaces
	GetAt (Method)
	Pop (Method)
	Push (Method)
	SetAt (Method)

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	Append
	Clear
	GetAt
	SetAt
	Push32
	Push1024
	Pop
	Recycle
	Resize Down
	Resize Up
	NewVector

	Benchmark Results

	Examples
	Creating and Using a class_ByteVector
	Objective
	Solution

	Creating a class_ByteVector with fun_NewByteVector()
	Objective
	Solution

	Creating and Using a class_BaseVector
	Objective
	Assumptions
	Solution

	Resizing a Vector
	Objective
	Solution

	Release Notes

