
Dictionaries

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: Dictionaries

Introduction . 3
Supported Firmware Versions . 4
Global Parameters . 4
Aliases . 4
Structure Definitions . 4
Classes . 5
Benchmarks. 9
Examples . 11
Release Notes . 15

Dictionaries Instruction Manual Date Code 20180924

RTAC LIBRARY

Dictionaries

Introduction

This library implements a collection of data structures for storing key value pairs. This
allows for storing of information indexed by a unique key string.

Determine which data structure to use by looking at the characteristics of the available
structures, and choose the one best suited to the job and environment at hand.

This library supplies a single implementation. It is a self-balancing binary search tree as
described in class_BinaryTreeDictionary on page 5.

The iterators in this document all refer to being locked out. This refers to the state of the
object being such that a non NULL(0) value cannot be retrieved from Next() without a
new call to Begin().

Special Considerations

ä Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

ä Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:=” must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error
such as:

// "C0328: Assignment not allowed for type class_Object"
myObject := otherObject;

// This is fine
someVariable := myObject.value;
// As is this
pt_myObject := ADR(myObject);

Date Code 20180924 Instruction Manual Dictionaries

4 Dictionaries

Structure Definitions

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT
members in function blocks, functions, or methods. Place them in the VAR_-
IN_OUT section or use pointers instead.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.1 and older can be used on RTAC firmware version R132 and higher.

Global Parameters

The library applies the following values as maximums; they can be modified when the
library is included in a project.

Name IEC 61131 Type Value Description

g_p_KeyStringLength UINT 80 The maximum string length for a key.

Aliases

This section lists aliases defined by this library.

DATA_VAL

ALIAS IEC 61131 Type

DATA_VAL __XWORD

Structure Definitions

This section lists structures defined by this library.

struct_KeyValuePair

This structure is a simple storage object for holding key-value pairs.

Name IEC 61131 Type Description

Key STRING(g_p_KeyStringLength) A key associated with a value.
Data DATA_VAL Data storage.

Dictionaries Instruction Manual Date Code 20180924

Dictionaries 5

Classes

Classes

This section contains the basic definitions, descriptions, and public methods for the public
classes that can be instantiated by the user.

class_BinaryTreeDictionary

This class provides a self-balancing binary search tree that stores key-value pairs. To allow
this class to accommodate various data types, the value stored is a DATA_VAL, which can
store a single 32-bit value or a pointer to a user-defined data structure.

A binary search tree ensures arrangement of all nodes in order by key such that, given a
node, all keys in the left subtree are less than the key of the given node and all keys in the
right subtree are greater than the key of the given node (Figure 1).

Figure 1 A Binary Search Tree Holding Integer Values

Binary search trees provide insert, search, and deletion times that are related to the number
of items in the tree(N) by log(N) on average. Under some circumstances, the organization
of the simple tree yields much worse performance. Consider a tree created by inserting the
keys C, K, and then L (as shown in Figure 2).

Figure 2 An Unbalanced Binary Search Tree

Note that the nodes are arranged linearly, rather than as one parent with two children. This
causes the behavior of all operations to tend toward a linear performance curve, as opposed to
the log(N) described previously. To prevent the performance degradation of an unbalanced
tree, the binary tree supplied implements a self-balancing algorithm. If inserting or deleting
a node leaves the tree unbalanced, the self-balancing tree performs rotations and moves of
the nodes in the tree to maintain balance. (Figure 3).

Date Code 20180924 Instruction Manual Dictionaries

6 Dictionaries

Classes

Figure 3 A Balanced Binary Search Tree Node

Properties

Name IEC 61131 Type Access Description

Size UDINT R The number of key-value pairs stored in this tree.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

GetData (Method)

This method provides the data associated with the provided key.

Inputs

Name IEC 61131 Type Description

key STRING(g_p_KeyStringLength) The key for the desired value.

Outputs

Name IEC 61131 Type Description

data DATA_VAL The value stored at this key. This value is only valid if the return
value is TRUE.

Return Value

IEC 61131 Type Description

BOOL TRUE if the key provided is found in the binary tree, FALSE otherwise.

Processing

Returns the data associated with the provided key.

Insert (Method)

This method inserts a new value into the binary tree.

Dictionaries Instruction Manual Date Code 20180924

Dictionaries 7

Classes

Inputs

Name IEC 61131 Type Description

key STRING(g_p_KeyStringLength) The key for the desired value.
data DATA_VAL Data to store in the binary tree.

Return Value

IEC 61131 Type Description

BOOL TRUE if the key-value pair was successfully added to the tree. FALSE
otherwise.

Processing

If key already exists in the tree, data replaces the data stored in key. If key does not already
exist in the tree, a new node that stores both key and data is inserted into the tree. Depending
on the state of the tree, the insertion may cause the tree to rebalance.

Delete (Method)

This method removes the key-value pair from the binary tree.

Inputs

Name IEC 61131 Type Description

key STRING(g_p_KeyStringLength) The key for the desired value.

Return Value

IEC 61131 Type Description

BOOL TRUE if the key-value pair was found and deleted.

Processing

This method deletes a key-value pair from the binary search tree. Depending on the state of
the tree after deletion, the tree may be rebalanced to maintain lookup performance.

Clear (Method)

This method empties the binary tree.

Date Code 20180924 Instruction Manual Dictionaries

8 Dictionaries

Classes

Processing

This method completely empties the binary tree. It frees any memory allocated to the binary
tree. Upon completion of this method, the binary tree object is of size zero and cannot be
iterated over.

Begin (Method)

Use this method in conjunction with Next(), NextValue(), and NextKey(). This method
places the internal iterator on the first key-value object.

Processing

After this method completes, the following are true:

ä The iterator is not locked out.

ä A subsequent Next() outputs the first key-value object.

ä For an empty tree, Next() returns FALSE and leaves the iterator locked out.

Next (Method)

Use this method in conjunction with Begin(). Next() returns the key-value pair at the
present internal iterator position and then increments the iterator.

Outputs

Name IEC 61131 Type Description

entry struct_KeyValuePair The key-value pair at the present iterator position. If the end of
the iterator has been reached, key is an empty string and data is
zero.

Return Value

IEC 61131 Type Description

BOOL TRUE if a key-value pair was found. FALSE otherwise.

NextKey (Method)

Use this method in conjunction with Begin(). NextKey() returns the key at the present
internal iterator position and then increments the iterator.

Outputs

Name IEC 61131 Type Description

key STRING(g_p_KeyStringLength) The key at the present iterator position. If the end
of the iterator has been reached, key is an empty
string.

Dictionaries Instruction Manual Date Code 20180924

Dictionaries 9

Benchmarks

Return Value

IEC 61131 Type Description

BOOL TRUE if a key-value pair was found. FALSE otherwise.

NextValue (Method)

Use this method in conjunction with Begin(). NextValue() returns the value at the
present internal iterator position and then increments the iterator.

Outputs

Name IEC 61131 Type Description

value DATA_VAL The value at the present iterator position. If the end of the iterator
has been reached value is zero.

Return Value

IEC 61131 Type Description

BOOL TRUE if a key-value pair was found. FALSE otherwise.

Size (Property)

This method provides the number of nodes within the tree.

Return Value

IEC 61131 Type Description

UDINT The number of nodes within the tree.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

ä SEL-3530

â R134 firmware

ä SEL-3354

â Intel Pentium 1.4 GHz

â 1 GB DDR ECC SDRAM

Date Code 20180924 Instruction Manual Dictionaries

10 Dictionaries

Benchmarks

â SEL-3532 RTAC Conversion Kit

â R132 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V0 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V0 firmware

Benchmark Test Descriptions

Each of these tests is run on a tree of 1024 entries. The test attempts to make an unbalanced
tree by inserting values in order, forcing the tree to continually rebalance itself. Each of the
following tests is repeated 100 times, and the total average of all samples is recorded.

For example, the test in Insert records the average of the 1024 • 100 insertions.

Insert

This records the average time taken to insert 1024 sorted key-value pairs into the tree. The
test is repeated 100 times and the average time taken for a single execution of Insert() is
recorded.

GetData

This test calls GetData() on each of 1024 entries in the tree. The test is repeated 100
times and the average time taken for a single execution of GetData() is recorded.

Delete

This test calls Delete() 1024 times on a populated tree. The test is repeated 100 times
and the average time taken for a single execution of Delete() is recorded.

Clear

This test records the average time required to clear the tree populated with 1024 nodes. The
test is repeated 100 times and the average time taken for a single execution of Clear() is
recorded.

Dictionaries Instruction Manual Date Code 20180924

Dictionaries 11

Examples

Begin

This test records the time required to reset the iterator. Begin() is called 1024 times on
a populated tree. The test is repeated 100 times and the average time taken for a single
execution of Begin() is recorded.

Next

This test iterates across a full tree of 1024 nodes. The test is repeated 100 times and the
average time taken for a single execution of Next() is recorded.

NextKey

This test iterates across a full tree of 1024 nodes. The test is repeated 100 times and the
average time taken for a single execution of NextKey() is recorded.

NextValue

This test iterates across a full tree of 1024 nodes. The test is repeated 100 times and the
average time taken for a single execution of NextValue() is recorded.

Benchmark Results

Values less than one microsecond have been rounded up.

Platform (time in µs)
Operation Tested

SEL-3530 SEL-3354 SEL-3555

GetData 14 2 1
Insert 796 59 47
Delete 799 53 42
Clear 779128 51891 42171
Begin 3 1 1
Next 2 1 1
NextKey 4 1 1
NextValue 1 1 1

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Date Code 20180924 Instruction Manual Dictionaries

12 Dictionaries

Examples

Ordered Data Retrieval

A user has data that she needs to present in an ordered fashion. She can define the order she
needs through the keys, update the values as needed, and then present the data, all while
maintaining the same order.

Solution

First the user initializes the full tree. Later, she can iterate across the entire structure to
receive those data in key alphabetical order.

Code Snippet 1 prg_SortedLookup

PROGRAM prg_SortedLookup
VAR

MyBinaryLookupTree : class_BinaryTreeDictionary;
CurrentData : struct_KeyValuePair;
Initializing : BOOL := TRUE;
Check : BOOL := TRUE;

END_VAR

Code Snippet 1 prg_SortedLookup (Continued)

IF Initializing THEN
//First put the data into the tree as key value pairs

MyBinaryLookupTree.Insert('Boxes', 1250);
MyBinaryLookupTree.Insert('TapeRolls', 200);
MyBinaryLookupTree.Insert('Pallets', 13);
MyBinaryLookupTree.Insert('BubbleWrap', 75);
Initializing := FALSE;

ELSE
MyBinaryLookupTree.Begin();
WHILE Check DO

Check := MyBinaryLookupTree.Next(entry => CurrentData);
IF CurrentData.data <> 0 THEN

; // Do some meaningful work
END_IF

END_WHILE
END_IF

Creating a Quick Lookup Table

Objective

A user has a collection of data he desires to look up quickly based on unique description
strings. He needs to store it now and use parts of it later based on system state.

Dictionaries Instruction Manual Date Code 20180924

Dictionaries 13

Examples

Assumptions

This example assumes that there is a user-specified IEC 61131 data type that is defined as
shown in Code Snippet 2 and a function using that particular structure as shown in Code
Snippet 3.

Code Snippet 2 struct_JobDefinition

TYPE struct_JobDefinition:
STRUCT

JobName : STRING(32);
Duration : UDINT;
Input : REAL;

END_STRUCT
END_TYPE

Code Snippet 3 fun_DoWork

FUNCTION fun_DoWork : BOOL
VAR_IN_OUT

pt_currentCommand : POINTER TO struct_JobDefinition;
END_VAR

; //Program the work that should be done here

Solution

First the user initializes the full tree. Later, based on some request, the required data can be
retrieved.

Date Code 20180924 Instruction Manual Dictionaries

14 Dictionaries

Examples

Code Snippet 4 prg_BinaryTree

PROGRAM prg_BinaryTree
VAR

CurrentData : BOOL;
JobSelector : INT;
Initializing : BOOL := TRUE;
Working : BOOL := FALSE;

MyBinaryLookupTree : class_BinaryTreeDictionary;
CurrentJob : STRING(g_p_KeyStringLength);
pt_CurrentData : POINTER TO struct_JobDefinition;

Job1Data : struct_JobDefinition :=
(JobName := 'My First Job', Duration := 10, Input := 17.5);

Job2Data : struct_JobDefinition :=
(JobName := 'My Second Job', Duration := 5, Input := 31.75);

Job3Data : struct_JobDefinition :=
(JobName := 'My Third Job', Duration := 30, Input := 3.25);

IdleData : struct_JobDefinition :=
(JobName := 'No Current Job', Duration := 0, Input := 0);

END_VAR

IF Initializing THEN
//First put the data into the tree as key value pairs
MyBinaryLookupTree.Insert('Job1', ADR(Job1Data));
MyBinaryLookupTree.Insert('Job2', ADR(Job2Data));
MyBinaryLookupTree.Insert('Job3', ADR(Job3Data));
MyBinaryLookupTree.Insert('Idle', ADR(IdleData));
Initializing := FALSE;
Working := TRUE;

END_IF

CASE JobSelector OF
1: CurrentJob := 'Job1';
2: CurrentJob := 'Job2';
3: CurrentJob := 'Job3';

ELSE
CurrentJob := 'Idle';

END_CASE

IF Working THEN
CurrentData := MyBinaryLookupTree.GetData(CurrentJob, data =>

pt_CurrentData);
fun_DoWork(pt_currentData);

END_IF

Dictionaries Instruction Manual Date Code 20180924

Dictionaries 15

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.1.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC types “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.0.1 ä Initial release. 20140811

Date Code 20180924 Instruction Manual Dictionaries

	Section 1: Dictionaries
	Introduction
	Special Considerations

	Supported Firmware Versions
	Global Parameters
	Aliases
	DATA_VAL

	Structure Definitions
	struct_KeyValuePair

	Classes
	class_BinaryTreeDictionary
	GetData (Method)
	Insert (Method)
	Delete (Method)
	Clear (Method)
	Begin (Method)
	Next (Method)
	NextKey (Method)
	NextValue (Method)
	Size (Property)

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	Insert
	GetData
	Delete
	Clear
	Begin
	Next
	NextKey
	NextValue

	Benchmark Results

	Examples
	Ordered Data Retrieval
	Solution

	Creating a Quick Lookup Table
	Objective
	Assumptions
	Solution

	Release Notes

