CrossTaskData
IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section1: CrossTaskData

INtrodUCHON. o e 3
Supported Firmware VEersionsoovvviiiiiiiiiiiiiiiiiiieieaeeieeeaaaeeaaans 4
Global Parametersooiiiiii it e 4
Function BIOCKSooiinii e e 4
Benchmarks. e 6
EXAMPIES .ttt 7
| NS (T R A\ (0] (1 10

CrossTaskData Instruction Manual Date Code 20180921

RTAC LIBRARY

CrossTaskData

Introduction

The purpose of this library is to take a mutual exclusion (mutex) implementation that
uses the SysSem semaphore library and wrap it into single function block calls to provide
simple function blocks. Mutex data region creation depends upon the size of a user-defined
structure.

In computer science, mutex refers to a basic concurrency control requirement that the
critical sections of two concurrent processes cannot occur simultaneously. This requirement
prevents race conditions.

In this particular case, the mutex allows one task to write the data and another to read the
data. The mutex guarantees that the data remain intact. This is important because Real-Time
Automation Controller (RTAC) automation and main tasks run with different priorities. To
illustrate this, imagine a structure containing a value “stVal” and a time stamp “t” and that
a low-speed task is writing periodically to this value and time stamp. Then imagine that
a high-speed task uses this information for some computation. If there were no mutex in
place, the lower priority main task may write only the “strVal” and be interrupted by the
higher priority automation task. The logic running on the automation task would then be
reading a newly updated “stVal” for which there is a “t” from the previous “stVal” instead
of the time stamp that should be associated with the value. The mutex protects the integrity
of the data, ensuring complete transfer of information.

The library contains a preset number of reserved mutexes defined by a global parameter.
Each mutex has an identification number (ID) that is an integer value between 1 and the
number the global parameter defines. Writer function blocks each claim one of the IDs,
define the size of the mutex, and then set aside memory for the mutex as necessary.

Initialization of the writer and reader function blocks results in verification to ensure that
only a single writer function block and a single reader function block exist per mutex ID.

After initialization, the only input necessary for the function block is the address of the data
set that you want to read from and write to.

Date Code 20180921 Instruction Manual CrossTaskData

4 | CrossTaskData
Function Blocks

Special Considerations

The writer function block should never be instantiated in a method or a function. Because
memory allocation occurs in order to create the mutex, writer function blocks must be
instantiated in a program or global variable list. Declaring a writer function block in either
a function or a method causes undesired behavior.

Each mutex ID may be referenced by no more than one writer function block.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.3 and older can be used on RTAC firmware version R132 and higher.

Global Parameters

The library applies the following values as maximums; they can be modified when the
library is included in a project.

Name IEC 61131 Type | Value | Description

g_p_N_CrossTaskIDs | UDINT 10 The number of mutexes available for
writer function blocks.

Function Blocks

fb_CrossTaskWrite

If data exist on one task to be shared with another, use this function block on the task
publishing the data. Only one writing function block may place data in a given mutex.

Initialization Inputs

Name IEC 61131 Type | Description

id UDINT The ID of the mutex that the writer will own
(range [1..g_p_N_CrossTaskIDs]).

sizeOfStruct | UDINT The size of the structure, as returned by the SIZEOF()
function.

CrossTaskData Instruction Manual Date Code 20180921

CrossTaskData | 5
Function Blocks

Inputs
Name IEC 61131 Type | Description
pt_Struct | DWORD The address of the variable from which to read, as returned by
the ADR() function.
Outputs

Name | IEC 61131 Type | Description

Error STRING(80) Any internal errors display here as a human-readable string. The
string is empty if no errors are present.

Processing

» You must call the function block body to obtain a lock on the mutex with the ID
specified.

» If the mutex is already locked (indicating another operation is in progress), the
operation waits until the lock is released and it obtains the mutex.

» After obtaining the mutex, this function block copies the data referenced by pt_Struct
into protected, internal memory and the lock is released.

fb_CrossTaskRead

If data exist on one task to be shared with another, use this function block on the task reading
the data. More than one reading function blocks may pull data from the same mutex.

Initialization Inputs

Name | IEC 61131 Type | Description

id UDINT The ID of the mutex from which this function block reads
(range [1..g_p_N_CrossTaskIDs]).

Inputs
Name IEC 61131 Type | Description
pt_Struct | DWORD The address of the variable to which the function block writes
the data, as returned by the ADR() function.
Outputs

Name | IEC 61131 Type | Description

Error STRING(80) Any internal errors display here as a human-readable string. The
string is empty if no errors are present.

Date Code 20180921 Instruction Manual CrossTaskData

6 | CrossTaskData
Benchmarks

Processing

» You must call the function block body to obtain a lock on the mutex with the ID
specified.

» If the mutex is already locked (indicating another operation is in progress), the
operation waits until the lock is released and it obtains the mutex.

» After obtaining the mutex, the function block copies the data from protected, internal
memory into the location referenced by pt_Struct and the lock is released.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms:
» SEL-3505
> R135-V2 firmware
» SEL-3530
> R135-V2 firmware
» SEL-3555
> Dual-core Intel i7-3555LE processor
> 4 GB ECC RAM
> R135-V2 firmware

Benchmark Test Descriptions

fb_CrossTaskWrite10

The posted time is the average execution time of 1000 calls in which a lock is obtained and
data are written into the mutex. This constitutes the worst case for this call. The variable
moved between tasks is an IEC 61131 dataset containing 10 UDINTSs.

fb_CrossTaskRead10

The posted time is the average execution time of 1000 calls in which a lock is obtained and
data are read from the mutex. This constitutes the worst case for this call. The variable
moved between tasks is an IEC 61131 dataset containing 10 UDINTs.

fb_CrossTaskWrite10000

The posted time is the average execution time of 1000 calls in which a lock is obtained and
data are written into the mutex. This constitutes the worst case for this call. The variable
moved between tasks is an IEC 61131 dataset containing 10000 UDINTs.

CrossTaskData Instruction Manual

Date Code 20180921

fb_CrossTaskRead10000

The posted time is the average execution time of 1000 calls in which a lock is obtained and
data are read from the mutex. This constitutes the worst case for this call. The variable

moved between tasks is an IEC 61131 dataset containing 10000 UDINTs.

Benchmark Results

Operation Tested Platform (time in ps)
SEL-3505 | SEL-3530 | SEL-3555
fb_CrossTaskWrite 10 13 8 1
fb_CrossTaskRead10 17 9 1
fb_CrossTaskWrite 10000 800 450 4
fb_CrossTaskRead 10000 780 450 4

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Moving Data From a High-Priority Task to a Low-Priority
Task

Objective

You have a structure called dt_myAStruct containing data from a high-speed, high-priority
task. You want to copy this data to a slow-speed, low-priority task.

Assumptions

You have declared your IEC 61131 datatype, dt_myAStruct; here we use the declaration
found in Code Snippet 1.

Code Snippet 1 dt_myAStruct

Date Code 20180921

TYPE dt_myAStruct :
STRUCT

a : UDINT;

b : BOOL;
END_STRUCT
END_TYPE

Instruction Manual

CrossTaskData | 7

Examples

CrossTaskData

8 | CrossTaskData
Examples

Solution

Create a writing program on the high-speed task, as shown in Code Snippet 2.

Code Snippet 2 prg_FastTask

PROGRAM prg_FastTask
VAR
_FastA : dt_myAStruct;
_FastWriter : fb_CrossTaskWrite (ID := 1, sizeOfStruct :=
SIZEQOF (dt_myAStruct));
_ErrorA : STRING(80);
END_VAR

// Populate the variable "_FastA" here.

_FastA.a := 20;

_FastA.b := TRUE;

// Send the data to the mutex.

_FastWriter(pt_Struct := ADR(_FastA), Error => _ErrorA);

Create a reading program on the slow-speed task, as shown in Code Snippet 3.

Code Snippet 3 prg_SlowTask

PROGRAM prg_SlowTask
VAR
_SlowA : dt_myAStruct;
_SlowReader : fb_CrossTaskRead (ID := 1);
_ErrorA : STRING(80);
_TheAvar : UDINT;
_TheBvar : BOOL;
END_VAR

// First, read in all the data from the mutex to the local variable.
_SlowReader (pt_Struct := ADR(_SlowA), Error => _ErrorA);

// Now use _SlowA structure information as you wish.

_TheAvar := _SlowA.a;

_TheBvar := _SlowA.Db;

Moving Data From a Low-Priority Task to a High-Priority
Task

Objective

You have a structure called dt_myBStruct containing data from a low-speed, low-priority
task. You want to copy these data to a high-speed, high-priority task.

Assumptions

You have declared your IEC 61131 datatype, dt_myBStruct; here we use the declaration
found in Code Snippet 4.

CrossTaskData Instruction Manual Date Code 20180921

CrossTaskData | 9
Examples

Code Snippet 4 dt_myBStruct

TYPE dt_myBStruct :
STRUCT

a : STRING(32);

b : INT;

c : REAL;
END_STRUCT
END_TYPE

Solution

Create a writing program on the slow-speed task, as seen in Code Snippet 5.

Code Snippet 5 prg_SlowTask

PROGRAM prg_SlowTask
VAR
_SlowB : dt_myBStruct;
_SlowWriter : fb_CrossTaskWrite(ID := 2, sizeOfStruct :=
SIZEQOF (dt_myBStruct));
_ErrorB : String(80);
END_VAR

// Populate the variable "_SlowB" here.
_SlowB.a := 'helloFastTask';

_SlowB.b := -5;

_SlowB.c := 6.25;

// Send the data to the mutex.
_SlowWriter(pt_Struct := ADR(_SlowB), Error => _ErrorB);

Create a reading program on the high-speed task, as seen in Code Snippet 6.

Code Snippet 6 prg_FastTask

PROGRAM prg_FastTask

VAR
_FastB : dt_myBStruct;
_FastReader : fb_CrossTaskRead(ID := 2);
_ErrorB : STRING(80);
_TheAvar : STRING(32);
_TheBvar : INT;
_TheCvar : REAL;
END_VAR

// First, read in all the data from the mutex to the local variable.
_FastReader (pt_Struct := ADR(_FastB), Error => _ErrorB);

// Now use _SlowB structure information as you wish.

_TheAvar := _FastB.a;
_TheBvar := _FastB.b;
_TheCvar := _FastB.c;

Date Code 20180921 Instruction Manual CrossTaskData

10 | CrossTaskData
Release Notes

Release Notes

Version | Summary of Revisions Date Code
3.5.1.0 | » Allows new versions of ACSELERATOR RTAC to compile projects 20180921
for previous firmware versions without SEL IEC types “Cannot

convert” messages.
» Must be used with R143 firmware or later.
3.5.03 » Copy operations between tasks have been optimized to be more 20160708
efficient for large cross task data sets.
3.5.0.2 » Corrected catching of SysMem internal errors. 20140828
3.5.0.1 » Initial release. 20140701

CrossTaskData

Instruction Manual

Date Code 20180921

	Section 1: CrossTaskData
	Introduction
	Special Considerations

	Supported Firmware Versions
	Global Parameters
	Function Blocks
	fb_CrossTaskWrite
	fb_CrossTaskRead

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fb_CrossTaskWrite10
	fb_CrossTaskRead10
	fb_CrossTaskWrite10000
	fb_CrossTaskRead10000

	Benchmark Results

	Examples
	Moving Data From a High-Priority Task to a Low-Priority Task
	Objective
	Assumptions
	Solution

	Moving Data From a Low-Priority Task to a High-Priority Task
	Objective
	Assumptions
	Solution

	Release Notes

