ChannelMonitoring
IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: ChannelMonitoring

INtrodUCHON. o e 1
Supported Firmware VEersionsoovvviiiiiiiiiiiiiiiiiiieieaeeieeeaaaeeaaans 3
Enumerationsoooouuiiiii i 3
FUNCHONS ..o 4
Function BIOCKS ... 5
Benchmarks. e 16
EXaMPIES ..ottt 20
S [T R (0 1 31

ChannelMonitoring Instruction Manual Date Code 20181001

RTAC LIBRARY

ChannelMonitoring

Introduction

This library provides function blocks for performing data channel processing and supervi-
sion. The function blocks provide an alert that some aspect of a channel or indicator has
deviated from the parameters defined by the user. Example applications include detecting
maintenance conditions in a 3-phase CT/PT, alerting on an IED hardware failure, monitoring
transformer through-fault current, or detecting protection communication channel failures.

The fb_MultiChannelAlert, fb_ChannelAlert, and fb_IndicatorAlert blocks focus on channel
supervision. Each adheres to the same principles of operation. An alert is generated when
a sustained excursion occurs or when repeated excursions are detected. An excursion is
defined as a channel, indicator, or function block output exceeding the threshold limit. For
function blocks that accept a Boolean data type input, an excursion begins with a transition
from a FALSE to TRUE state. For function blocks that accept measured values (MV) or
REAL data type inputs, the absolute difference is calculated between the instantaneous
values of two channels or a channel and a reference value. An excursion in this context is
when the absolute difference exceeds a threshold value. The excursion time is used to define
when an alert occurs. If a single excursion is sustained for a length of time defined by the
excursion time, an alert is generated (Figure 1 and Figure 2). If multiple excursions are
detected equal to the chatter count within the excursion time, an alert is generated (Figure 3
and Figure 4).

Each function block can be used to provide simple alerting or can be combined into more
complex monitoring schemes.

Exoursion Time

*]
Threshold | I
Absolute Channel Difference |

Alert

Figure 1 An Excursion Defined by the Absolute Channel Difference Equaling or Ex-
ceeding the Threshold Value for the Excursion Time Generates an Alert

Date Code 20181001 Instruction Manual ChannelMonitoring

2 | ChannelMonitoring
Introduction

Excursion Time

Indicator Signal J

Alert

Figure 2 An Excursion Defined by the Indicator Equaling a TRUE Value for the Ex-
cursion Time Generates an Alert

Excursion Time

-
r

Threshold]

Absolute Channel Difference _I_ |_

Alert

Figure 3 Multiple Excursions Defined by the Absolute Channel Difference Equaling
or Exceeding the Threshold Value Within the Excursion Time Generates an
Alert (Chatter Count = 3)

Excursion Time

L 4
Indicator Signal _l | ||

Alert

Figure 4 Multiple Excursion Defined by the Indicator Equaling a TRUE Value Within
the Excursion Time Generates an Alert (Chatter Count = 3)

Special Considerations

» Classes in this library have memory allocated inside them. As such, they should
only be created in environments of permanent scope (e.g., Programs, Global Variable
Lists, or VAR_STAT sections).

» Copying classes from this library causes unwanted behavior. This means the follow-
ing:

1. The assignment operator “:="" must not be used on any class from this library;
consider assigning pointers to the objects instead.

// This is bad and in most cases will provide a compiler error

such as:
// "C0328: Assignment not allowed for type
class_fb_MultiChannelAlertObject"
myfb_MultiChannelAlertObject :=
otherfb_MultiChannelAlertObject;

ChannelMonitoring Instruction Manual Date Code 20181001

// This is fine
:= myfb_MultiChannelAlertObject.value;

someVariable
// As is this

pt_myfb_MultiChannelAlertObject :=
ADR (myfb_MultiChannelAlertObject) ;

2. Classes from this library must never be VAR_INPUT or VAR_OUTPUT

members in function blocks, functions, or methods. Place them in the VAR_-

IN_OUT section or use pointers instead.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.0.0 and older can be used on RTAC firmware version R132 and higher.

Enumerations

Enumerations make code more readable by allowing a specific number to have a readable

textual equivalent.

enum_AlertType

This enumeration defines the type of events returned by the function block status output.

This enumeration can be used interchangeably with DINT data types.

Enumeration Value | Description

NO_DEVIATION 0 No alerts detected

CHATTER 1 Multiple excursions occurred within the excursion time

EXPIRATION 2 A sustained excursion equaled or exceeded the excursion time

EXCURSION 3 An instantaneous excursion. Used where ExcursionTime input is
not applicable.

BAD_QUALITY 4 Minimum number of inputs do not have good quality

RESET 5 Reset input is currently asserted

ERROR 6 Function block was unable to activate because of limited memory
resources

COMPLETE 7 Operation complete

Date Code 20181001 Instruction Manual

ChannelMonitoring | 3
Enumerations

ChannelMonitoring

4 | ChannelMonitoring
Functions

enum_ChannelAlert

This enumeration is used to define the channels responsible for a status alert and/or quality
alert. This enumeration can be used interchangeably with DINT data types.

Enumeration Value | Description
NO_ALERTS 0 No alerts detected
CHANNEL_1_ALERT
CHANNEL_2_ALERT
CHANNEL_1_2_ALERT
CHANNEL_3_ALERT
CHANNEL_1_3_ALERT
CHANNEL_2_3_ALERT
MULTIPLE_CHANNEL_ALERT

Channel 1 is the responsible channel

Channel 2 is the responsible channel

Channel 1 and 2 are the responsible channels

Channel 3 is the responsible channel

Channel 1 and 3 are the responsible channels

Channel 2 and 3 are the responsible channels

NN N || W N -

All available channels are responsible

Functions

fun_GetAlertString

This function takes the status returned by the function blocks in this library as an input and
returns a string value that can be used for logging.

Inputs

Name | IEC 61131 Type | Description
alert enum_AlertType Function block status value

Return Value

IEC 61131 Type | Description
STRING Value matching the enum_AlertType

Processing

» If the status is valid, the function returns a string corresponding to the enum_Alert-
Type.

» If the supplied status is not valid, the function returns Invalid Input.

fun_GetChannelString

This function takes as an input the alert returned by the fb_MultiChannel function block
and returns a string value that can be used for logging.

ChannelMonitoring Instruction Manual Date Code 20181001

ChannelMonitoring | 5
Function Blocks

Inputs
Name | IEC 61131 Type Description
status enum_ChannelAlert | Function block alert value

Return Value

IEC 61131 Type

Description

STRING

String value matching the enum_ChannelAlert

Processing

» If status is valid, the function returns a string corresponding to the enum_Chan-

nelAlert.

» If the supplied status is not valid, the function returns Invalid Input.

Function Blocks

fb_MultiChannelAlert

Compare two to three measured value (MV) tags to determine if one or more channels
deviate outside a threshold value for a time period or if repeated deviations occur within a
time period. This function block requires a minimum of two input channels.

Inputs
Name IEC 61131 Type | Description
EN BOOL Enable the function block
Channel_1 MV Data to monitor
Channel_2 MV Data to monitor
Channel_3 MV Data to monitor
ExcursionThreshold | REAL Limit at which a deviation is detected
ChatterCount UDINT Number of deviations allowed within a time period
defined by the ExcursionTime
ExcursionTime TIME Maximum time a sustained deviation is allowed
Reset BOOL Reset function block to default conditions
Outputs
Name IEC 61131 Type Description
ENO BOOL Indication that the function block is enabled
Alert SPS Alert condition and associated metadata
Status enum_AlertType Enumeration describing the function block state
Date Code 20181001 Instruction Manual ChannelMonitoring

6 | ChannelMonitoring
Function Blocks

Outputs

Name IEC 61131 Type Description

ChannelStatus | enum_ChannelAlert | Enumeration describing the channels that generated the

status alert

QualityAlert BOOL Channel quality alert

QualityStatus | enum_ChannelAlert | Enumeration describing the channels that generated the

quality alert

Processing

>

>

>

>

>

ExcursionThreshold, ChatterCount, and ExcursionTime are set the first time the
function block is called. They cannot be altered after that time.

On a rising edge of ENO, the tracked chatter count and excursion time are reset to
Zero.

Disabling the function block by setting EN to FALSE does not clear the function
block Alert.

When ENO is FALSE or Reset is TRUE, the Alert SPS quality reports as invalid.
The function block adheres to the following processing if ENO is TRUE.

Good channel quality is required for input processing. This is determined by the input
channel validity_t structure, i.e., AnalogQuantity.q.validity = good.

If a channel has bad quality, it is excluded from the excursion calculations and a
QualityAlert is generated.

Compare the instantaneous values of the input channels to determine if any channel
deviates from any other available channel.

If a QualityAlert is generated, the QualityStatus reports the offending channels as
described in enum_ChannelAlert.

If the minimum number of channels do not have good quality, Status is BAD_-
QUALITY as defined in the enum_AlertType.

If a channel deviates by more than ExcursionThreshold from any other channel for a
sustained period given by ExcursionTime, an Alert is generated.

If a channel repeatedly deviates by more than ExcursionThreshold from any other
channel and the number of deviations exceeds ChatterCount within a period given by
ExcursionTime, an Alert is generated.

If Alert is asserted, Status identifies the cause of the alert as described in enum_ -
AlertType.

If an Alert is generated, ChannelStatus identifies the offending channels as described
in enum_ChannelAlert.

Once an Alert is generated, the function block maintains its state at the time of the
alert until issued a Reset.

If Reset is asserted, the function block does not process any inputs and Starus is
RESET as defined in enum_AlertType.

A falling edge of Reset returns the function block to a default state.

ChannelMonitoring Instruction Manual

Date Code 20181001

fb_ChannelAlert

Compare one measured value (MV) tag against a reference value to determine if the channel
deviates outside a threshold value for a time period or if repeated deviations occur within a
time period.

Inputs
Name IEC 61131 Type | Description
EN BOOL Enable the function block
Channel MV Data to monitor

ChannelReference REAL

Channel reference value

ExcursionThreshold | REAL

Limit at which a deviation is detected

ChatterCount UDINT Number of deviations allowed within a time period
defined by the ExcursionTime

ExcursionTime TIME Maximum time a sustained deviation is allowed

Reset BOOL Reset function block to default conditions
Outputs

Name IEC 61131 Type | Description

ENO BOOL Indication that the function block is enabled

Alert SPS Alert condition and associated metadata

Status enum_AlertType Enumeration describing the function block state

QualityAlert | BOOL Channel quality alert

Processing

>

>

>

>

Date Code 20181001

ExcursionThreshold, ChatterCount, and ExcursionTime are set the first time the
function block is called. They cannot be altered after that time.

On arising edge of ENO, the tracked chatter count and excursion time are reset to
Zero.

Disabling the function block by setting EN to FALSE does not clear the function
block Alert.

When ENO is FALSE or Reset is TRUE, the Alert SPS quality is invalid.
The function block adheres to the following processing if ENO is TRUE.

Good channel quality is required for input processing. This is determined by the input
channel validity_t structure, i.e., AnalogQuantity.q.validity = good.

If Channel has bad quality, no excursion calculation occurs and QualityAlert is
asserted.

Compare the instantaneous values of Channel and ChannelReference to determine if
an excursion occurred.

If QualityAlert is asserted, Status is BAD_QUALITY, as defined in the enum_-
AlertType.

If Channel deviates by more than ExcursionThreshold from the reference for a sus-
tained period given by ExcursionTime, an Alert is generated.

Instruction Manual

ChannelMonitoring | 7
Function Blocks

ChannelMonitoring

8 | ChannelMonitoring
Function Blocks

» If Channel repeatedly deviates from the reference by more than ExcursionThresh-
old and the number of deviations exceeds ChatterCount within a period given by
ExcursionTime, an Alert is generated.

» If Alert is asserted, Status identifies the cause of the alert as described in enum_-
AlertType.

» Once an alert is generated, the function block maintains its state at the time of the
alert until issued a reset.

» If Reset is asserted, the function block does not process any inputs and Status is
RESET as defined in enum_AlertType.

» A falling edge of Reset returns the function block to a default state.

fb_IndicatorAlert

Monitors one Boolean value for a sustained or chattering TRUE value.

Inputs

Name IEC 61131 Type | Description

EN BOOL Enable the function block

Indicator BOOL Data to monitor

ChatterCount UDINT Number of deviations allowed within a time period de-

fined by ExcursionTime

ExcursionTime | TIME Maximum time a sustained deviation is allowed

Reset BOOL Reset function block to default conditions
Outputs

Name | IEC 61131 Type | Description

ENO BOOL Indication that the function block is enabled

Alert SPS Alert condition and associated metadata

Status | enum_AlertType Enumeration describing the function block state
Processing

» ChatterCount and ExcursionTime are set the first time the function block is called.

They cannot be altered after that time.

» On arising edge of ENO, the tracked chatter count and excursion time are reset to
Zero.

» Disabling the function block by setting EN to FALSE does not clear the function
block Alert.

» When ENO is FALSE or Reset is TRUE and an alert condition is not detected, the
Alert SPS quality is invalid.

» The function block adheres to the following processing if ENO is TRUE.
» Monitor Indicator for a TRUE value.

ChannelMonitoring Instruction Manual

Date Code 20181001

ChannelMonitoring | 9
Function Blocks

» If Indicator is TRUE for a sustained period given by ExcursionTime, an alert is
generated.

» If Indicator repeatedly switches between FALSE and TRUE and the number of
deviations exceed ChatterCount within a period given by ExcursionTime, an Alert is
generated.

» If Alert is asserted, Status identifies the cause of the alert as described in enum_-
AlertType.

» Once an Alert is generated, the function block maintains its state at the time of the
alert until issued a reset.

» If Reset is asserted, the function block does not process any inputs and Status is
RESET as defined in enum_AlertType.

» A falling edge of Reset returns the function block to a default state.

fb_ChannelDerivative

Calculates the time derivative (rate of change) of a channel using finite difference approxi-
mation and alerts upon excursion beyond a user-settable threshold.

Inputs

Name IEC 61131 Type | Description

EN BOOL Enable the function block

Reset BOOL Reset the function block to a default state

Channel MV Input signal to differentiate

DerivativeThreshold | REAL Threshold, over which the absolute value of Deriva-
tive will assert Alert. Must be greater than or equal
to 0.

PeriodicProcessing BOOL Set to TRUE to process Channel on a fixed interval.
Set to FALSE to process Channel based on changes
in the Channel time stamp.

Period TIME Channel evaluation period when
PeriodicProcessing = TRUE. Should be
greater than or equal to, and equally divisible by
the RTAC task time.

FilterLength INT The number of calculated derivatives to be aver-
aged in order to update the Derivative output. Can
be any odd integer between 1 and 21.

Outputs

Name IEC 61131 Type | Description

ENO BOOL Indication that the function block is enabled

Alert SPS Indication of derivative excursion beyond

threshold

Status enum_AlertType Enumeration describing the function block

state

QualityAlert BOOL Channel quality alert

Date Code 20181001 Instruction Manual ChannelMonitoring

10 | ChannelMonitoring
Function Blocks

Outputs
Name IEC 61131 Type | Description
Derivative MV Average derivative of Channel over
ConditionedFilterLength + 1 Channel
samples
ConditionedFilterLength | INT Adjusted FilterLength to ensure the filter
length used is an odd number bounded by 1
and 21.
Processing
» The Derivative output is given in units of X per second where X is the units of the

>

Channel.instMag input.

PeriodicProcessing and FilterLength are set the first time the function block is called,
regardless of the state of the EN input. They cannot be altered after that time.

ENO is true when EN = TRUE and the function block initialization is completed
successfully.

Successful function block initialization is dependent on user input validation. If the
function block fails to initialize, Status is set to ERROR.

If DerivativeThreshold represents a floating point value of NAN, Inf, or -Inf when
the function block is first called, the function block fails to initialize.

Disabling the function block by setting EN to FALSE does not clear the Alert function
block output variable.

While the Reset input is asserted, all internal variables and outputs are set to a default
value. The Status output is set to RESET.

When EN is FALSE or Reset is TRUE, the Alert SPS quality is invalid.

If the State output equals EXCURSION, Channel is not processed. The outputs are
held at their current state until a rising edge of the Reset input is detected.

The FilterLength input is evaluated against the requirements specified in the Inputs
table. If FilterLength does not conform to the requirements, ConditionedFilterLength
becomes a bounded version of FilterLength and is used for processing the Channel
input.

For PeriodicProcessing = FALSE, Channel processing is triggered by changes
in the Channel.t.value time stamp. For this mode, the incremental derivative is defined
as the change in Channel . instMag divided by the change in the Channel.t.value time
stamp between the current Channel sample (k) and previously processed Channel
sample (k - 1). The incremental derivative is assigned a time stamp equal to the k
sample t.value time stamp. This mode can be useful for real-time streaming data
sources such as IEEE C37.118 synchrophasors or off-line processing of data sets
containing time-stamped samples.

For PeriodicProcessing = TRUE, the Channel state is evaluated periodically at
the interval specified by the Period input. The timer runs while EN = TRUE AND
Reset = FALSE. In this mode, the incremental derivative is defined as the change in
Channel.instMag between the k and k - 1 samples divided by the Period input.
The incremental derivative is assigned a time stamp equal to the RTAC system time

ChannelMonitoring Instruction Manual

Date Code 20181001

ChannelMonitoring | 11
Function Blocks

of processing the k sample. This mode can be useful for real-time processing of
deadbanded data sources where no Channel update is meant to be interpreted as
a derivative of zero. When using this mode, the applied Period setting should be
greater than or equal to, and equally divisible by, the RTAC task time.

» The function block maintains a buffer of the ConditionedFilterLength most recent
incremental derivative results. The Derivative output represents the average of the
buffered results. The Derivative output updates only when the buffer is full. The
buffer is full once ConditionedFilterLength plus one Channel samples are processed.

» While EN = FALSE, Channel is not processed. The cached k - 1 sample is not
updated.

» While Channel.instMag represents a floating point value of NAN, Inf, or -Inf, Channel
is not processed. The Status is set to ERROR. The cached k - 1 sample is not
updated.

» Negative time-stamp differences between consecutive Channel samples are ignored
when PeriodicProcessing = FALSE. Channel is not processed. However, the
cached k - 1 sample is updated to avoid a negative calculated sample interval on
the next incremental derivative calculation. Status equals ERROR until a positive
time-stamp difference is detected or Reset is asserted.

» While Channel is not being processed, the output Derivative value and time stamp
are held at the last calculated result.

» Aspreviously noted, Channel is not processed when EN = FALSE, Channel.instMag
represents an invalid REAL quantity, or when a negative time-stamp difference is
detected while PeriodicProcessing = FALSE. However, the buffer is not cleared
in these cases. The next Channel sample that is processed causes the buffer to be
updated with the derivative between the current sample and the cached k - 1 sample.
While the resultant Derivative update in this case still represents the average derivative
over ConditionedFilterLength plus one samples, it may not accurately portray the
average derivative over ConditionedFilterLength plus one expected sample intervals.
It is the responsibility of the user to clear the buffer by asserting Reset if Channel
processing is inhibited for a duration deemed unacceptable.

» The output Derivative.t structure is set equal to the time stamp of the incremental
derivative result at the center position of the buffer. This is done for derivative
approximation accuracy.

» The output Derivative is assigned a quality that represents the lowest quality indicators
of all Channel samples processed in the calculation of the output derivative value.

» Ifthe Derivative.q.validity does not equal good then the output QualityAlert
is asserted.

» If the absolute value of the output Derivative.instMag exceeds the absolute value
of DerivativeThreshold, Alert .stVal is asserted. Alert.t is set equal to the RTAC
system time. Status is set to EXCURSION.

fb_Channellntegral

Calculates the area under the input channel magnitude and above a user-defined integration
bound using trapezoidal approximation between samples.

Date Code 20181001 Instruction Manual ChannelMonitoring

ChannelMonitoring
Function Blocks

Inputs

Name IEC 61131 Type | Description

EN BOOL Enable the function block

Reset BOOL Reset the function block to default conditions

Channel MV Signal to integrate

SetPoint REAL Channel threshold used to initiate integration.

PeriodicProcessing | BOOL Set to TRUE to process Channel on a fixed interval.
Set to FALSE to process Channel based on changes
in the Channel time stamp.

Period TIME Channel evaluation period when
PeriodicProcessing = TRUE. Should be
greater than or equal to, and equally divisible by the
RTAC task time.

LowerBound REAL Lower bound used in calculation of Integral. Must
be less than or equal to SetPoint.

DebounceTime TIME Time required for channel to be above or below Set-
Point in order for the associated SetPoint excursion
time to be considered the beginning or end of an
integration period.

Outputs

Name IEC 61131 Type | Description

ENO BOOL Indication that the function block is enabled

Alert SPS Indication of a completed integration period

Status enum_AlertType Enumeration describing the function block state

QualityAlert BOOL Asserts when channel quality is bad or integral output
accuracy is suspect

ExcursionTimeOn | dateTime_t Time stamp marking the start of an integration period

ExcursionTimeOff | dateTime_t Time stamp marking the end of an integration period

Integral MV The integral of Channel below Channel . instMag
and above LowerBound, bounded by Excursion-
TimeOn and ExcursionTimeOff

Peak MV Peak value of Channel between ExcursionTimeOn
and ExcursionTimeOff

Processing

» The Integral output is given in units of X*seconds where X is the units of the
Channel.instMag input.

» Period and PeriodicProcessing are set the first time the function block is called,
regardless of the state of the EN input. They cannot be altered after that time.

» ENO is true when EN = TRUE and the function block initialization is completed
successfully.

» Successful function block initialization is dependent on user input validation. If the
function block fails to initialize, Status is set to ERROR.

ChannelMonitoring Instruction Manual Date Code 20181001

ChannelMonitoring | 13
Function Blocks

» If any of the following conditions are true during the first call of the function block,
the function block fails to initialize.

1. SetPoint represents a floating point value of NAN, Inf, or -Inf.

2. LowerBound represents a floating point value of NAN, Inf, or -Inf or is a defined
number greater than SetPoint.

3. PeriodicProcessing = TRUE and Period is less than or equal to zero.
4. DebounceTime is less than zero.

» All inputs other than Period and PeriodicProcessing can be modified during run-time.
However, SetPoint, LowerBound, and DebounceTime are held static while State =
EXCURSION or EXPIRATION. While not held static, these inputs shall be validated
against the previously stated conditions.

» While Channel. instMag represents a floating point value of NAN, Inf, or -Inf or
any variable input is deemed invalid, the Status is set to ERROR. The cached k - 1
sample is not updated.

» While ENO is FALSE or Reset is TRUE, Alert.q.validity, Integral.q.validity,
and Peak.q.validity are set to invalid.

» While the Reset input is asserted, all outputs are reset to default values. The Status
output is set to RESET. A falling edge of the Reset input returns Status to NO_-
DEVIATION.

» While Alert.stVal = TRUE and Status is COMPLETE, the function block halts
data processing. Outputs are frozen until Reset is asserted.

» The function block adheres to the following processing if ENO is TRUE and Status is
not COMPLETE.

» For PeriodicProcessing = FALSE, Channel processing is triggered by changes
in the Channel.t.value time stamp. This mode can be useful for real-time streaming
data sources such as IEEE C37.118 synchrophasors or off-line processing of data sets
containing time-stamped samples.

» For PeriodicProcessing = TRUE, the Channel state is evaluated periodically at
the interval specified by the Period input. The timer runs while EN = TRUE AND
Reset = FALSE. In this mode, the input Channel is assigned time stamps from the
RTAC system clock. This mode can be useful for real-time processing of deadbanded
data sources where no time-stamp update is meant to be interpreted as a repeated
value. When PeriodicProcessing = TRUE, the applied Period setting should be
greater than and equally divisible by the RTAC task time.

» The incremental update to the Integral output is defined as the area of the trapezoid
bound by the following two points and the line defined by LowerBound:

> Channel.instMag at Channel.t time for the most recently processed sample

(k).
> Channel.instMag at the Channel. t time for the previously processed sample
xk - 1).

» Negative time-stamp differences between consecutive Channel samples are ignored.
In this scenario, the Channel sample is not used in the integral approximation. How-
ever, the cached k - 1 sample is updated to avoid a negative calculated sample
interval on the next incremental update to the Integral output. Status equals ERROR
until a positive time-stamp difference is detected or Reset is asserted.

Date Code 20181001 Instruction Manual ChannelMonitoring

14 | ChannelMonitoring
Function Blocks

>

The integration period begins when Channel . instMag is in excess of SetPoint. At
this time Status is set to EXCURSION.

Channel . instMag must exceed SetPoint for a minimum time equal to DebounceTime
in order for integration to complete.

If Channel.instMag is in excess of SetPoint, but becomes equal to or less than
SetPoint before DebounceTime is reached, the function block is reset on the first task
cycle for which Channel . instMag is not in excess of SetPoint.

If Channel . instMag exceeds SetPoint for a duration equal to DebounceTime, Status
is set to EXPIRATION and ExcursionTimeOn is assigned as described below.

While Status is set to EXPIRATION integration will continue until Channel . instMag
falls below SetPoint for time equal to DebounceTime.

If the preceding debounce time condition is met, Alert . stVal asserts, Alert.t.value

is set equal to the RTAC system time. Status is set to COMPLETE and Excursion-
TimeOff is assigned as described below.

ExcursionTimeOn and ExcursionTimeOff, respectively, are assigned a derived time-
stamp that is between the time stamp values associated with the two processed Channel
samples that straddle SetPoint. More specifically, this time stamp coincides with the
intersection of the line drawn between the . instMag values of these two samples
and SetPoint.

Integral.t.value is set equal to ExcursionTimeOn and will not be updated until
the function block is reset.

The Integral output represents the area under Channel . instMag and over Lower-
Bound between ExcursionTimeOn and ExcursionTimeOff as shown in Equation 1.

t=FEzcursionTimeO f f

Integral.instMag ~ / (Channel Process(t) — Lower Bound) dt

t=FExcursionTimeOn .
(Equation 1)
where ChannelProcess(t) is the physical process being measured and represented by
Channel.instMag measurements.

The function block updates the Infegral output continuously during the integration
period. This enables external evaluation the current integral result against an auxiliary
excursion threshold.

The Peak output contains the magnitude, quality and time-stamp information from
the Channel sample in which Channel . instMag was at a maximum value over the
integration period. For repeated maximums, the most recent maximum Channel
value is applied to Peak.

During integration, the Infegral output is assigned a quality that represents the lowest
quality indicators of all Channel samples used in the integration calculation.

If the Integral.q.validity does not equal good then the output QualityAlert is
asserted.

If Channel. instMag is already in excess of SetPoint when EN is asserted or after
a manual reset, ExcursionTimeOn is assigned the time stamp of the first processed
Channel sample. This time stamp is not expected to represent the approximate time
of SetPoint crossing. In this instance, the output QualityAlert is asserted.

ChannelMonitoring Instruction Manual

Date Code 20181001

fb_Indicator

TimeDelta

ChannelMonitoring
Function Blocks

Monitors the time-stamp difference between the assertions of two Single Point Status (SPS)
indicators and alerts upon time-difference excursion beyond a user-defined threshold.

15

Inputs
Name IEC 61131 Type | Description
EN BOOL Enable the function block
Reset BOOL Reset the function block to default conditions
Indicatorl SPS Indicator anticipated to assert first
Indicator2 SPS Indicator anticipated to assert second
TimeDiffThreshold | REAL Absolute time-stamp difference at which alert con-
dition is triggered. Must be greater than 0. Units
are in seconds.
WaitTime TIME Maximum time allowed between indicator .stVal
assertions before internal variables are cleared.
Must be greater than TimeDiffThreshold.
Outputs
Name IEC 61131 Type | Description
ENO BOOL Indication that the function block is enabled
Alert SPS Indication that the calculated TimeDifference has ex-
ceeded TimeDiffThreshold
QualityAlert BOOL Indicator quality alert
TimeDifference | REAL Signed time-stamp difference: Indicator2.t.value
minus Indicatorl.t.value. Units are in seconds
Status enum_AlertType Enumeration describing the function block state
Processing
» TimeDiffThreshold and WaitTime inputs are held static on the first task cycle. There-

>

Date Code 20181001

fore, they can not be changed during runtime.

ENO is true when EN = TRUE and the function block initialization is completed
successfully.

Successful function block initialization is dependent on user input validation. If the
function block fails to initialize, Status is set to ERROR.

If any of the following conditions are true during the first call of the function block,
the function block fails to initialize.

1. WaitTime is less than TimeDiffThreshold.
2. TimediffThreshold is less than zero seconds.

The function block can be reset either from a user asserted RESET or an internal

reset because of the expiration of WaitPeriod. If reset, outputs return to a default state.

Outputs are held in this state while RESET is TRUE.

Disabling the function block by setting EN to FALSE does not clear the function
block Alert.

Instruction Manual

ChannelMonitoring

16 | ChannelMonitoring
Benchmarks

>
>

When ENO is FALSE or Reset is TRUE, the Alert SPS quality is set to invalid.
The function block adheres to the following processing if ENO is TRUE.

Good Indicator quality is required for input processing. This is determined by the
input indicator validity_t structure, i.e., SPS.q.validity = good.

If either input indicator has bad quality, processing is halted, QualityAlert is asserted,
Status is set to BAD_QUALITY, and Alert.q.validity is set to invalid. Note that
this does not trigger a reset, nor does it require a reset to clear.

If Status is EXPIRATION, input processing stops until a user-initiated RESET is
executed.

The WaitPeriod timer is initiated by the rising edge of Indicatorl.stVal or
Indicator2.stVal while the other indicator’s .stVal is deasserted.

If the WaitPeriod timer expires before the remaining indicator . stVal asserts, a reset
is initiated and the function block returns to normal operation.

If the remaining indicator . stVal asserts before the WaitPeriod timer has elapsed,
the signed time difference between the input indicators is calculated and assigned to
TimeDifference.

TimeDifference is defined as Indicator2.t.value minus Indicatorl.t.value,
where each respective time stamp is recorded at the rising edge of the indicators’
.stVal.

The TimeDifference output is accurate to within plus or minus 500 microseconds.

If Indicator2.stVal asserts before Indicatorl.stVal, the output TimeDiffer-
ence represents a negative time difference.

If ABS(TimeDifference) > TimeDiffThreshold, Alert.stValassertsand Alert.t

is set equal to the RTAC system time.
If Alert.stVal is TRUE, Status is set to EXPIRATION.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms.

>

>

>

SEL-3530
> R135-V1 firmware
SEL-3505
> R135-V1 firmware
SEL-3555
> Dual-core Intel i7-3555LE processor
> 4 GB ECC RAM
> R135-V1 firmware

ChannelMonitoring Instruction Manual

Date Code 20181001

ChannelMonitoring | 17
Benchmarks

Benchmark Test Descriptions

Each benchmarking test is performed 1000 times and the average run time is recorded here.
Each test is intended to give insight into the expected cost of running the given command.

fun_GetAlertString

The cost of a call to fun_GetAlertString.

fun_GetChannelString

The cost of a call to fun_GetChannelString.

fb_MultiChannelAlert No Alert

The cost of a call to fb_MultiChannelAlert when all channels are active and no alert is
generated.

fb_MultiChannelAlert 1 Channel Timed

The cost of a call to fb_MultiChannelAlert when all channels are active and one channel
differs from the others long enough to generate an alert. This is the run time on the scan the
alert begins.

fb_MultiChannelAlert All Channel Timed

The cost of a call to fb_MultiChannelAlert when all channels are active and all three channels
differ from each other long enough to generate an alert. This is the run time on the scan the
alert begins.

fb_MultiChannelAlert 1 Channel Chatter

The cost of a call to fb_MultiChannelAlert when all channels are active and one channel
differs from the others often enough to generate an alert. This is the run time on the scan
the alert begins.

fb_MultiChannelAlert All Channel Chatter

The cost of a call to fb_MultiChannelAlert when all channels are active and all three channels
differ from each other often enough to generate an alert. This is the run time on the scan the
alert begins.

fb_ChannelAlert No Alert
The cost of a call to fb_ChannelAlert when no alert is generated.

Date Code 20181001 Instruction Manual ChannelMonitoring

18

ChannelMonitoring
Benchmarks

fb_ChannelAlert Timed

The cost of a call to fb_ChannelAlert when the input differs from the reference long enough
to generate an alert. This is the run time on the scan the alert begins.

fb_ChannelAlert Chatter

The cost of a call to fb_ChannelAlert when the input differs from the reference often enough
to generate an alert. This is the run time on the scan the alert begins.

fb_IndicatorAlert No Alert

The cost of a call to fb_IndicatorAlert when no alert is generated.

fb_IndicatorAlert Timed

The cost of a call to fb_IndicatorAlert when the input is true long enough to generate an
alert. This is the run time on the scan the alert begins.

fb_IndicatorAlert Chatter

The cost of a call to fb_IndicatorAlert when the input is true often enough to generate an
alert. This is the run time on the scan the alert begins.

fb_ChannelDerivative Active Periodic

The cost of a call to fb_ChannelDerivative during active derivative calculation on a Channel
input while in periodic processing mode (PeriodicProcessing = TRUE).

fb_ChannelDerivative Active Not Periodic

The cost of a call to fb_ChannelDerivative during active derivative calculation on a Channel
input while in not in periodic processing mode (PeriodicProcessing = FALSE). In this
mode sample processing is triggered by Channel time-stamp changes.

fb_ChannelDerivative Alert

The cost of a call to fb_ChannelDerivative while Status = EXCURSION and Alert.stVal
= TRUE.

ChannelMonitoring Instruction Manual

Date Code 20181001

ChannelMonitoring | 19
Benchmarks

fb_Channellntegral No Deviation Periodic

The cost of a call to fb_Channellntegral while it is in an idle state, and while it is in periodic
processing mode (PeriodicProcessing = TRUE).

fb_Channellntegral No Deviation Not Periodic

The cost of a call to fb_Channellntegral during an idle state while not in periodic processing
mode (PeriodicProcessing = FALSE). In this mode sample processing is triggered by
Channel time-stamp changes.

fb_Channellntegral Active Periodic

The cost of a call to fb_Channellntegral during an active integration state while in periodic
processing mode (PeriodicProcessing = TRUE).

fb_Channellntegral Active Not Periodic

The cost of a call to fb_Channellntegral during an active integration state while not in peri-
odic processing mode (PeriodicProcessing = FALSE). In this mode sample processing
is triggered by Channel time-stamp changes.

fb_Channellntegral Complete Periodic

The cost of a call to fb_Channellntegral during a Status = COMPLETE state while in
periodic processing mode (PeriodicProcessing = TRUE).

fb_Channellntegral Complete Not Periodic

The cost of a call to fb_Channellntegral during a Status = COMPLETE state while not
in periodic processing mode (PeriodicProcessing = FALSE). In this mode sample
processing is triggered by Channel time-stamp changes.

fb_IndicatorTimeDelta No Deviation

The cost of a call to fb_IndicatorTimeDelta while it is in a Status = NO_DEVIATION state
(Both indicators’ inputs are deasserted).

fb_IndicatorTimeDelta Bad Quality

The cost of a call to fb_IndicatorTimeDelta during a Status = BAD_QUALITY state (either
indicator input has .q.validity that is not equal to good).

Date Code 20181001 Instruction Manual ChannelMonitoring

20

ChannelMonitoring
Examples

fb_IndicatorTimeDelta Waiting For Second Indicator

The cost of a call to fb_IndicatorTimeDelta while one indicator input is asserted and the

function block is waiting for the second indicator input to assert.

fb_IndicatorTimeDelta Alert State

The cost of a call to fb_IndicatorTimeDelta during a Alert.stVal = TRUE state (time
difference has exceeded the threshold. Alert is held high until a user reset).

Benchmark Results

Operation Tested

Platform (time in us)

SEL-3530 | SEL-3505 | SEL-3555
fun_GetAlertString 7 18 1
fun_GetChannelString 8 16 1
fb_MultiChannelAlert No Alert 16 22 2
fb_MultiChannelAlert 1 Channel Timed 21 30 4
fb_MultiChannelAlert All Channel Timed 21 30 4
fb_MultiChannelAlert 1 Channel Chatter 24 34 4
fb_MultiChannelAlert All Channel Chatter 24 39 4
fb_ChannelAlert No Alert 10 14 2
fb_ChannelAlert Timed 16 22 3
fb_ChannelAlert Chatter 18 26 3
fb_IndicatorAlert No Alert 8 10 2
fb_IndicatorAlert Timed 14 19 3
fb_IndicatorAlert Chatter 16 22 3
fb_ChannelDerivative Active Periodic 56 123 10
fb_ChannelDerivative Active Not Periodic 105 138 18
fb_ChannelDerivative Alert 6 8 1
fb_Channellntegral No Deviation Periodic 26 90 5
fb_Channellntegral No Deviation Not Periodic 22 41 3
fbo_Channellntegral Active Periodic 31 111 4
fb_Channellntegral Active Not Periodic 28 78 3
fb_Channellntegral Complete Periodic 7 40 1
fb_Channellntegral Complete Not Periodic 7 8 1
fb_IndicatorTimeDelta No Deviation 9 12 1
fb_IndicatorTimeDelta Bad Quality 7 35 1
fb_IndicatorTimeDelta Waiting For Second Indicator 11 44 2
fb_IndicatorTimeDelta Alert State 5 6 1

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-

tions or recommendations from SEL.

ChannelMonitoring

Instruction Manual

Date Code 20181001

ChannelMonitoring | 21
Examples

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Monitor Phase-A Measurements for a Maintenance
Condition
Objective

Create a program to monitor and verify the measurements obtained from three protective
relays to determine if the components are functioning within expected limits.

Solution

This solution uses the fb_ChannelAlert function block to monitor for difference between
CTs. The Phase A measurements are obtained from the relays and compared against a
reference measurement (see Code Snippet I).

Date Code 20181001 Instruction Manual ChannelMonitoring

22

ChannelMonitoring
Examples

Code Snippet 1 prg_MonitorPhaseA_Components

PROGRAM prg_MonitorPhaseA_Components
VAR
(*Function block monitoring IED 1-3%)
IED_1_PhA : fb_ChannelAlert;
IED_2_PhA : fb_ChannelAlert;
IED_3_PhA : fb_ChannelAlert;
(*Function block parametersx)
PhA_Reference : MV; Allowed_Deviation : REAL; Allowed_Chatter : UDINT;
AlertTime : TIME; MonitorReset : BOOL;
(#Criterion to enable the monitoring blockx)
EnableMonitoring : BOOL;
(xAlert status*)
IED_1_Enabled : BOOL; IED_2_Enabled : BOOL; IED_3_Enabled : BOOL;
(*Placeholder for a data communications tagk)
IED_1_Data : MV; IED_2_Data : MV; IED_3_Data : MV;
(*Alert status*)
IED_1_Alert : SPS; IED_2_Alert : SPS; IED_3_Alert : SPS;
(xAlert conditionx)
IED_1_Status : DINT; IED_2_Status : DINT; IED_3_Status : DINT;
(*Quality statusx*)
IED_1_Quality : BOOL; IED_2_Quality : BOOL; IED_3_Quality : BOOL;
END_VAR

(*Check the quality of the reference signalx)
EnableMonitoring := (PhA_Reference.q.validity = good);

(*Configure and monitor the function block parameters)
IED_1_PhA(EN := EnableMonitoring, Channel := IED_1_Data,
ChannelReference := PhA_Reference.instMag,
ExcursionThreshold := Allowed_Deviation,
ChatterCount := Allowed_Chatter, ExcursionTime := AlertTime,
Reset := MonitorReset, ENO => IED_1_Enabled, Alert => IED_1_Alert,
Status => IED_1_Status, QualityAlert => IED_1_Quality);

IED_2_PhA(EN := EnableMonitoring, Channel := IED_2_Data,
ChannelReference := PhA_Reference.instMag,
ExcursionThreshold := Allowed_Deviation,
ChatterCount := Allowed_Chatter, ExcursionTime := AlertTime,
Reset := MonitorReset, ENO => IED_2_ Enabled, Alert => IED_2_Alert,
Status => IED_2_Status, QualityAlert => IED_2_Quality);

IED_3_PhA(EN := EnableMonitoring, Channel := IED_3_Data,
ChannelReference := PhA_Reference.instMag,
ExcursionThreshold := Allowed_Deviation,
ChatterCount := Allowed_Chatter, ExcursionTime := AlertTime,
Reset := MonitorReset, ENO => IED_3_Enabled, Alert => IED_3_Alert,
Status => IED_3_Status, QualityAlert => IED_3_Quality);

ChannelMonitoring Instruction Manual

Date Code 20181001

Creating an Object to Verify and Monitor IED Operation
Objective

Create a program to monitor for deviations between phases on the generator and load sides
of a breaker.

Solution

This solution uses the fb_MultiChannelAlert function block to monitor the three phases of
a CT. The phase measurements are obtained from the relays on both the generator and load
sides of a breaker. All the phases are compared against each other to detect damage or a
maintenance condition in CT/PT windings.

Code Snippet 2 prg_MonitorBreakerHighLoadSideComponents

PROGRAM prg_MonitorBreakerHighl.oadSideComponents
VAR
(*Function block monitoring generator side of breaker*)
Gen_Monitor : fb_MultiChannelAlert;
(*Function block monitoring bus side of breaker*)
Bus_Monitor : fb_MultiChannelAlert;
(*Generator nominal current*)
GenNominal : REAL;
(*Actual generator output*)
GenOutput : REAL;
(*Set the limit the channels are allowed to deviate byx*)
AllowedDeviation : REAL;
(*Criterion to enable the monitoring blockx)
Enable_FB : BOOL;
(*Placeholder for a data communications tagk)
PhaseA_X_Terminal : MV; PhaseB_X_Terminal : MV; PhaseC_X_Terminal : MV;
(*Placeholder for a data communications tagk)
PhaseA_Y_Terminal : MV; PhaseB_Y_Terminal : MV; PhaseC_Y_Terminal : MV;
(*Clear the alert condition and restore block to default condition*)
FB_Reset : BOOL;
(*Function block successfully enabledx)
GenFB_Enabled : BOOL; BusFB_Enabled : BOOL;
(*Gen_FB alert information*)
GenAlert : SPS; GenFB_Status : enum_AlertType; GenAlertCause
enum_ChannelAlert;
GenQualityAlert : BOOL; GenQualityCause : enum_ChannelAlert;
(¥Bus_FB alert information*)
BusAlert : SPS; BusFB_Status : enum_AlertType; BusAlertCause
enum_ChannelAlert;
BusQualityAlert : BOOL; BusQualityCause : enum_ChannelAlert;
(*¥Detect an alert condition*)
Gen_Alert_Generated : R_TRIG; Bus_Alert_Generated : R_TRIG;
Gen_Status_Message : STRING; Bus_Status_Message : STRING;
Gen_Channel_Message : STRING; Bus_Channel_Message : STRING;
END_VAR

Date Code 20181001 Instruction Manual

ChannelMonitoring | 23
Examples

ChannelMonitoring

24 | ChannelMonitoring
Examples

Code Snippet 2 prg_MonitorBreakerHighLoadSideComponents (Continued)

(*If the generator output exceeds 5% of nominal, enable the monitoring
blocks*)
Enable_FB := (GenOutput >= 0.05 * GenNominal);

(*Function block monitoring the X terminal - high sidex*)
Gen_Monitor(EN := Enable_FB, Channel_1 := PhaseA_X_Terminal,
Channel_2 := PhaseB_X_Terminal, Channel_3 := PhaseC_X_Terminal,
ExcursionThreshold := AllowedDeviation, ChatterCount := 3,
ExcursionTime := T#1M, Reset := FB_Reset, ENO => GenFB_Enabled,
Alert => GenAlert, Status => GenFB_Status, ChannelStatus =>
GenAlertCause,
QualityAlert => GenQualityAlert, QualityStatus =>
GenQualityCause) ;

(#*Function block monitoring the Y terminal - load sidex)
Bus_Monitor(EN := Enable_FB, Channel_1 := PhaseA_Y_Terminal,
Channel_2 := PhaseB_Y_Terminal, Channel_3 := PhaseC_Y_Terminal,
ExcursionThreshold := AllowedDeviation, ChatterCount := 3,
ExcursionTime := T#1M, Reset := FB_Reset, ENO => BusFB_Enabled,
Alert => BusAlert, Status => BusFB_Status, ChannelStatus =>
BusAlertCause,
QualityAlert => BusQualityAlert, QualityStatus =>
BusQualityCause);

//If an alert condition is detected, generate a message for logging
Gen_Alert_Generated(CLK := GenAlert.stVal);
Bus_Alert_Generated(CLK := BusAlert.stVal);

IF Gen_Alert_Generated.Q THEN
Gen_Status_Message := fun_GetAlertString(GenFB_Status);
Gen_Channel_Message := fun_GetChannelString(GenAlertCause);
END_IF

IF Bus_Alert_Generated.Q THEN
Bus_Status_Message := fun_GetAlertString(BusFB_Status);
Bus_Channel_Message := fun_GetChannelString(BusAlertCause) ;
END_IF

Creating an Object to Verify and Monitor
Communications Channels and Hardware Alarms

Objective

Monitor and verify that a communications channel is functioning properly and that no
hardware failures are detected for an IED.

ChannelMonitoring Instruction Manual Date Code 20181001

ChannelMonitoring | 25
Examples

Solution

This solution uses the fb_StatusAlert function block to detect a TRUE condition in either a
communications diagnostic or hardware indicator. An appropriate communications channel
diagnostic, such as the Offline bit in GOOSE, is monitored for communications channel
failure. The HALARM Relay Word bit in an IED is monitored for hardware failures only if
the communications channel is online.

Code Snippet 3 prg_MonitorIED_Components

PROGRAM prg_MonitorIED_Components

VAR
(*Monitor the HALARM Rely Word bitx)
IED_1_HardwareMonitor : fb_IndicatorAlert;
(*Monitor a Mirrored Bits or GOOSE communications channelx)
ProtectionChannelMonitor : fb_IndicatorAlert;
(*Criterion to enable the monitoring blockx)
EnableHardwareMonitoring : BOOL;
(*Reset after results are recordedx)
DailyReset : BOOL;
(*Placeholder for a data tagk)
HALARM : BOOL;
Communication_Client_Offline : BOOL;
ProtectionChannelDiagnostic : BOOL;
(*HALARM monitoring status*)
IED_1_HALARM_MonitorEnabled : BOOL;
IED_1_HALRM_Alert : SPS;
IED_1_HALRM_Status : DINT;
(*Protection monitoring statusx)
ProtectionChannelMonitor_Enabled : BOOL;
(*Alert statusx*)
ProtectionChannel_Alert : SPS;
(xAlert conditionx*)
ProtectionChannel_Status : DINT;

END_VAR

(*If the offline status is false, monitor the HALARM Relay Word bit.

Note this is a separate offline bit than that used in the
ProtectionChannelMonitor*)

EnableHardwareMonitoring := NOT Communication_Client_0ffline;

(*Configure and monitor the function block parametersx)
IED_1_HardwareMonitor (EN := EnableHardwareMonitoring, Indicator := HALARM,
ChatterCount := 1, ExcursionTime := T#10S,
Reset := DailyReset, ENO => IED_1_HALARM_MonitorEnabled,
Alert => IED_1_HALRM_Alert, Status =>
IED_1_HALRM_Status);

ProtectionChannelMonitor(EN := TRUE, Indicator :=
ProtectionChannelDiagnostic,
ChatterCount := 2, ExcursionTime := T#5S,
Reset := DailyReset,
ENO=>ProtectionChannelMonitor_Enabled,
Alert => ProtectionChannel_Alert,
Status => ProtectionChannel_Status);

Date Code 20181001 Instruction Manual ChannelMonitoring

26 | ChannelMonitoring
Examples

Creating an Object to Calculate Kilowatt-Hours Delivered
During a Peak Demand Period

Objective

Calculate kilowatt-hours delivered during a period of peak demand.

Solution

This solution uses the fb_Channellntegral function block to monitor a measured power
quantity and calculate the integral over time while the power is in excess of a user-defined
peak-demand threshold. This example assumes the following:

1. Power measurements are received from a SEL-351 Modbus client, using a holding
register named “KW3DI” (type = APC), polling interval of two seconds.

2. A virtual tag list called HMI_Controls was created for program control and status
outputs. Virtual tag list tags shown in this example are defined as the following data

types.

» Aggregation_Complete: SPS
Aggregator_Reset: SPC
Demand_Threshold: MV (Analog Control)
KWH_During_Peak: MV
MaxKWDuringPeak: MV
Monitor_Enabled: SPS
Monitor_Quality_Alert: SPS
Peak_End_Time: STR
Peak_Start_Time: STR
Peak_Time_Active: SPS

YYYYVYVYVYVYYVYY

Code Snippet 4 prg_KWH_Track

(*This example demonstrates the calculation of Kilowatt-hours over a
period of high demand, given a power measurement in units of Kilowatts.

This program sets the PeriodicProcessing input of the fb_ChannellIntegral
instance to TRUE since the Modbus source will not update the
Channel.t.value time-stamp on its own. The Period input is set to

two seconds which corresponds with the Modbus holding register poll
interval.

Kilowatts integrated over time will produce a result in units of Joules.
Where one Joule = one Watt-Second. To convert Joules to Kilowatt-Hours,
the result must be divided by (3600 seconds/hour * 1000Watts/KiloWatts)
= 3,600,000 Watt-Seconds/Kilowatt-Hour.*)

PROGRAM prg_KWH_Track
VAR
Enable : BOOL;
Aggregator : fb_Channellntegral;

ChannelMonitoring Instruction Manual

Date Code 20181001

ChannelMonitoring | 27
Examples

Joules_to_KWH : REAL := 3600000;
KWH_During_Peak : REAL;
Peak_Start_Time : dateTime_t;
Peak_End_Time : dateTime_t;
QualityAlert : BOOL;

END_VAR

//Determine Enable condition
Enable := NOT SEL_351_1_MODBUS_POU.Offline
AND SEL_351_1_MODBUS.KW3DI.status.q.validity = good;

//Run the Integrator function block

Aggregator(EN := Enable,

Reset := HMI_Controls.Aggregator_Reset.operSet.ctlVal,
Channel := SEL_351_1_MODBUS.KW3DI.status,

SetPoint := HMI_Controls.Demand_Threshold.oper.setMag,
PeriodicProcessing := TRUE,

Period := T#2S, //Set to 2 seconds to match the
//Holding Register poll interval.

LowerBound := O,

DebounceTime := T#10S);

//Load monitor status variables

HMI_Controls.Monitor_Enabled.stVal := Aggregator.ENO;

HMI_Controls.Monitor_Quality_Alert.stVal := Aggregator.QualityAlert;

HMI_Controls.Peak_Time_Active.stVal := Aggregator.Status = EXPIRATION
OR Aggregator.Status = EXCURSION;

HMI_Controls.Aggregation_Complete := Aggregator.Alert;

//Load outputs

KWH_During_Peak := Aggregator.Integral.instMag / Joules_to_KWH;
HMI_Controls.KWH_During_ Peak := Aggregator.Integral;
HMI_Controls.KWH_During_Peak.instMag := KWH_During_Peak;
HMI_Controls.KWH_During_Peak.mag := KWH_During_Peak;
HMI_Controls.MaxKWDuringPeak := Aggregator.Peak;

//Update Peak demand on and Peak demand off time-stamps
HMI_Controls.Peak_Start_Time.strVal :=
DT_TO_STRING (Aggregator.ExcursionTimeOn.dateTime) ;
HMI_Controls.Peak_End_Time.strVal :=
DT_TO_STRING(Aggregator.ExcursionTime0ff.dateTime) ;

//Force good quality on tags with no other quality source.
HMI_Controls.Peak_End_Time.q.validity := good;
HMI_Controls.Peak_Start_Time.q.validity := good;
HMI_Controls.Aggregator_Reset.status.q.validity :
HMI_Controls.Demand_Threshold.status.q.validity :
HMI_Controls.Monitor_Enabled.q.validity := good;
HMI_Controls.Monitor_Quality_Alert.q.validity := good;
HMI_Controls.Peak_Time_Active.q.validity := good;

good;
good;

Date Code 20181001 Instruction Manual ChannelMonitoring

28 | ChannelMonitoring
Examples
Creating an Object to Monitor a Client's Go-Online Time
Delay

Objective

Calculate the time delta between RTAC runtime initiation and the deassertion of a com-
munication client Offline POU pin. Assert an alert if the time delta exceeds a user-settable
threshold.

Solution

This solution uses the fb_IndicatorTimeDelta function block to monitor the state of the
Offline POU output pin of an SEL client. If a user-settable time period elapses before the
Offline pin deasserts, the function block will output an alert. This example assumes that an
SEL-735 SEL client named SEL_735_2_SEL was previously added to the RTAC project.

Code Snippet 5 prg_Go_Online_Timer
PROGRAM Go_online_timer

VAR
TimeTracker : fb_IndicatorTimeDelta;
Control . SPS;
OfflineTrack . SPS;
MaxAllowedTime : REAL := 30; //In seconds
TimeToGoOnline : REAL;
GoOnlineTimerAlert : BOOL;

END_VAR

//Set control variable

Control.q.validity := good;

Control.t := SYS_TIMEQ);

Control.stVal := TRUE; //Control should always be true to ensure that the
timer starts

//on the first cycle.

//Load variable to be monitored
OfflineTrack.q.validity := good;

OfflineTrack.stVal := NOT SEL_735_2_SEL_P0OU.QOffline;
0fflineTrack.t := SYS_TIMEQ);

//Run fb_IndicatorTimeDelta function block

TimeTracker (EN := TRUE,

RESET := FALSE,

Indicatorl := Control,

Indicator2 := O0fflineTrack,

TimeDiffThreshold := MaxAllowedTime,

WaitTime := T#5M); //If OfflineTrack.stVal hasn't asserted after 5 minutes
//assume something else is wrong and stop the timer.

//If client has gone online, load the outputs

IF NOT SEL_735_2_SEL_POU.0ffline THEN
TimeToGoOnline := TimeTracker.TimeDifference;
GoOnlineTimerAlert := TimeTracker.Alert.stVal;

END_IF

ChannelMonitoring Instruction Manual Date Code 20181001

ChannelMonitoring | 29
Examples

Creating an Object to Monitor the Rate of Remote
Access Failures

Objective

Monitor the number of failed attempts to log-in to the RTAC and assert an HMI alarm if
there have been more than five failed attempts within one minute.

Solution

This solution uses the fb_Derivative function block to monitor a the Number_Of_Logon_-
Errors system tag and set an alarm if the rate of change in logon errors exceeds a settable
threshold. This example assumes the following:

1. A virtual tag list called HMI_Controls was created for program control and status
outputs. Virtual tag list tags shown in this example are defined as the following data

types.
» RemoteAccessTracker_Reset: operSPC

» RemoteAccessAlarm: SPS
» RemoteAccessAlarmDetails: STR

Code Snippet 6 prg_AuthenticationAlarm

PROGRAM prg_AuthenticationAlarm

VAR
LoginErrorRateTracker : fb_ChannelDerivative;
ErrorAccumulator . MV;
Threshold : REAL := 0.08333; // In units of login
//failures per second. Equals 5 login
//failures divided by 60 seconds.

END_VAR

//Load the input Channel MV
ErrorAccumulator.q.validity := good;
ErrorAccumulator.instMag :=

UDINT_TO_REAL (SystemTags.Number_0f_Logon_Errors.stVal);

//Run the fb_ChannelDerivative block
LoginErrorRateTracker (EN := TRUE,

Reset := HMI_Controls.RemoteAccessTracker_Reset.status.stVal,
Channel := ErrorAccumulator,

DerivativeThreshold := Threshold,

PeriodicProcessing := TRUE,

Period := T#60S,

FilterLength := 1

Alert => HMI_Controls.RemoteAccessAlarm);

//Display alarm details while in alarm state, otherwise, clear alarm
details.
IF LoginErrorRateTracker.Alert.stVal THEN
HMI_Controls.RemoteAccessAlarmDetails :=
SystemTags.Unsuccessful _Log_On_Attempt;
ELSE

HMI_Controls.RemoteAccessAlarmDetails.strVal := '';

Date Code 20181001 Instruction Manual ChannelMonitoring

30 | ChannelMonitoring

Examples

END_IF I

ChannelMonitoring Instruction Manual Date Code 20181001

ChannelMonitoring | 31
Release Notes

Release Notes

Version | Summary of Revisions Date Code
3.5.1.1 » Allows new versions of ACSELERATOR RTAC to compile projects 20180921

for previous firmware versions without SEL IEC types “Cannot
convert” messages.

» Must be used with R143 firmware or later.

» Added fb_ChannelDerivative.

» Added fb_Channellntegral.

» Added fb_IndicatorTimeDelta.

3.5.0.0 » Initial release. 20151223

Date Code 20181001 Instruction Manual ChannelMonitoring

	Section 1: ChannelMonitoring
	Introduction
	Special Considerations

	Supported Firmware Versions
	Enumerations
	enum_AlertType
	enum_ChannelAlert

	Functions
	fun_GetAlertString
	fun_GetChannelString

	Function Blocks
	fb_MultiChannelAlert
	fb_ChannelAlert
	fb_IndicatorAlert
	fb_ChannelDerivative
	fb_ChannelIntegral
	fb_IndicatorTimeDelta

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	fun_GetAlertString
	fun_GetChannelString
	fb_MultiChannelAlert No Alert
	fb_MultiChannelAlert 1 Channel Timed
	fb_MultiChannelAlert All Channel Timed
	fb_MultiChannelAlert 1 Channel Chatter
	fb_MultiChannelAlert All Channel Chatter
	fb_ChannelAlert No Alert
	fb_ChannelAlert Timed
	fb_ChannelAlert Chatter
	fb_IndicatorAlert No Alert
	fb_IndicatorAlert Timed
	fb_IndicatorAlert Chatter

	fb_ChannelDerivative Active Periodic
	fb_ChannelDerivative Active Not Periodic
	fb_ChannelDerivative Alert
	fb_ChannelIntegral No Deviation Periodic
	fb_ChannelIntegral No Deviation Not Periodic
	fb_ChannelIntegral Active Periodic
	fb_ChannelIntegral Active Not Periodic
	fb_ChannelIntegral Complete Periodic
	fb_ChannelIntegral Complete Not Periodic
	fb_IndicatorTimeDelta No Deviation
	fb_IndicatorTimeDelta Bad Quality
	fb_IndicatorTimeDelta Waiting For Second Indicator
	fb_IndicatorTimeDelta Alert State
	Benchmark Results

	Examples
	Monitor Phase-A Measurements for a Maintenance Condition
	Objective
	Solution

	Creating an Object to Verify and Monitor IED Operation
	Objective
	Solution

	Creating an Object to Verify and Monitor Communications Channels and Hardware Alarms
	Objective
	Solution

	Creating an Object to Calculate Kilowatt-Hours Delivered During a Peak Demand Period
	Objective
	Solution

	Creating an Object to Monitor a Client's Go-Online Time Delay
	Objective
	Solution

	Creating an Object to Monitor the Rate of Remote Access Failures
	Objective
	Solution

	Release Notes

