
AnalogCond

IEC 61131 Library for ACSELERATOR RTAC® Projects

SEL Automation Controllers

Table of Contents

Section 1: AnalogCond

Introduction . 1
Supported Firmware Versions . 1
Global Parameters . 1
Interface Definitions. 1
Public Class Definitions. 3
Benchmarks. 11
Examples . 13
Release Notes . 19

AnalogCond Instruction Manual Date Code 20180924

RTAC LIBRARY

AnalogCond

Introduction

This library contains classes that allow for simplified processing of analog quantities within
applications. Generally, measured analog quantities require filtering and checks before
being used. This library provides this filtering via encapsulated classes.

Supported Firmware Versions

You can use this library on any device configured using ACSELERATOR RTAC® SEL-5033
Software with firmware version R143 or higher.

Versions 3.5.1.1 and older can be used on RTAC firmware version R132 and higher.

Global Parameters

The library applies the following values as maximums; they can be modified when the
library is included in a project.

Name IEC 61131 Type Value Description

g_p_MaxFilterOrder UINT 4 The maximum order of the filter for
class_ArmaFilter. This determines the
maximum number of coefficients and
the maximum delay, in samples, for the
filter.

Interface Definitions

This section outlines the various interfaces defined within this library.

Date Code 20180924 Instruction Manual AnalogCond

2 AnalogCond

Interface Definitions

I_Filter

Classes implementing this interface provide a filter for analog values.

ConditionValue (Method)

This method takes inputValue as the next input for the filter and provides an output for the
new conditioned value.

Inputs

Name IEC 61131 Type Description

inputValue REAL The new raw input to the filter.

Outputs

Name IEC 61131 Type Description

conditionedValue REAL The filtered output.

Return Value

IEC 61131 Type Description

BOOL True when filter windup is complete and conditionedValue output is fully
filtered.

Reset (Method)

This method resets the filter and clears any internal state.

I_LimitedSplpf

This interface extends the I_Filter interface described in I_Filter on page 2, meaning that
classes implementing this interface also implement the I_Filter methods. This interface is
implemented by classes that condition analog values through a limited, single-pole, low-pass
filter (SPLPF).

Classes implementing this interface provide the following features:

ä Conditioning of the raw input through a low-pass filter controlled by a time constant
defined in the object.

ä Controlled output if the class is in Alarm. In the event that the conditioning class is
in alarm, the class provides a result which approaches a predefined default value.

ä Output bounded by the limits defined in the object.

ä An out-of-bounds alarm which asserts if the input exceeds the high limit or falls
below the low limit.

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 3

Public Class Definitions

Properties

Name IEC 61131 Type Access Description

Alarm BOOL R/W Sets an alarm when true. Clears the alarm state if
false.

Properties are internal values made visible through Get and Set accessors. Access is defined
as R (read), W (write), or R/W (read/write).

OutOfBoundsAlarm (Method)

Provides the out-of-bounds state of the ConditionValue() input.

Return Value

IEC 61131 Type Description

BOOL Returns true if the input value is out of the boundaries specified in the
object’s constructor.

Public Class Definitions

This section contains the basic definitions, descriptions, and public methods for the public
classes that can be instantiated by the user.

class_PassThroughFilter

This class implements a simple pass-through, where conditionedValue is set directly to
inputValue. It is meant to be used in place of a filter during testing phases of development
where it may be desirable to bypass a filtering stage.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Filter

Date Code 20180924 Instruction Manual AnalogCond

4 AnalogCond

Public Class Definitions

class_ArmaFilter

This class implements an AutoRegressive Moving Average (ARMA) filter, generally used
to filter oscillating signals. This implementation provides either Infinite Impulse Response
(IIR) or Finite Impulse Response (FIR) behavior, depending on the coefficients provided.
The filter implements the form:

H(z) = B(z)
A(z)

Where:

B(z) = b0 + b1z−1 + b2z−2 + . . . + bN z−N

A(z) = 1 − a1z−1 − a2z−2 − . . . − aM z−M

Obtaining the coefficients for low-pass, high-pass, band-pass, or band-stop filters is made
relatively simple using tools like Matlab or OCTAVE, but the mathematical methods for
obtaining these values are outside the scope of this document; the user of this library
should be aware that many filter designs used to obtain coefficients for this filter can produce
numerical instability. See the example in Section 1 for a brief discussion on how to determine
if the filter is numerically stable or not.

Once the coefficients b0 to bN and a1 to aM are determined, they are loaded as initialization
inputs to the class. These coefficients must be normalized, as the leading 1 in A(z) is assumed
in this class; in other words, a0 is always assumed to be exactly 1.

Figure 1 shows how the filter works when three (3) coefficients for A(z) and five (5) coeffi-
cients for B(z) are provided. Note how the depth of the filter is normalized so that there are
as many A(z) branches as there are B(z) branches. Because there is one less coefficient in
the A(z) array (when including the assumed a0 = 1) than in the B(z) coefficient array, the
coefficient of the last branch a4 is set to zero (0). In this particular example, there are five
B(z) coefficients, and because each z value is shifted in time, four previous intermediate
values must be stored in the filter. This means that the filter is not sufficiently primed
until the 5th input value is provided. For this set of coefficients, the first four calls to
ConditionValue() will yield a partially filtered output value, and the method will return
false. The 5th call of the method, and all subsequent calls, will return true.

−1 × + + + +

×a1 ×a2 ×a3 ×0

Input +

×b1 ×b2 ×b3 ×b4

b0 × + + + + Output

Z−1 Z−1 Z−1 Z−1

Figure 1 A Digital Filter Using Three (3) Coefficients for A(z) and Five (5) for B(z)

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 5

Public Class Definitions

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Filter

Initialization Inputs

Name IEC 61131 Type Description

aCoefficients ARRAY [1..g_p_MaxFilterOrder]
OF REAL

Coefficients for A(z). The coefficients
must be normalized, as the leading 1
is assumed and should not be entered
in this array.

bCoefficients ARRAY [0..g_p_MaxFilterOrder]
OF REAL

Coefficients for B(z).

numACoefficients UINT(1..g_p_MaxFilterOrder) The number of coefficients within the
aCoefficients array.

numBCoefficients UINT(1..g_p_MaxFilterOrder + 1) The number of coefficients within the
bCoefficients array.

class_ArmaFilter_LREAL

This class implements an AutoRegressive Moving Average (ARMA) filter, generally used
to filter oscillating signals. This implementation provides either Infinite Impulse Response
(IIR) or Finite Impulse Response (FIR) behavior, depending on the coefficients provided.
The filter implements the form:

H(z) = B(z)
A(z)

Where:

B(z) = b0 + b1z−1 + b2z−2 + . . . + bN z−N

A(z) = 1 − a1z−1 − a2z−2 − . . . − aM z−M

The implementation of this filter is the same as the class_ArmaFilter, class_ArmaFilter on
page 4, but it retains greater precision internally. This allows for greater stability.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_Filter

Date Code 20180924 Instruction Manual AnalogCond

6 AnalogCond

Public Class Definitions

Initialization Inputs

Name IEC 61131 Type Description

aCoefficients ARRAY [1..g_p_MaxFilterOrder]
OF LREAL

Coefficients for A(z). The coefficients
must be normalized, as the leading 1
is assumed and should not be entered
in this array.

bCoefficients ARRAY [0..g_p_MaxFilterOrder]
OF LREAL

Coefficients for B(z).

numACoefficients UINT(1..g_p_MaxFilterOrder) The number of coefficients within the
aCoefficients array.

numBCoefficients UINT(1..g_p_MaxFilterOrder + 1) The number of coefficients within the
bCoefficients array.

class_LimitedSplpfStepToDefault

Instantiate this class when a single-pole low-pass filter that has an imposed range of accept-
able values is desired. When in alarm, this class will cause the output to step, in a single
time step, to the defaultOutput set in the constructor method for the class.

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_LimitedSplpf

LimitedSplpfStepToDefault (Method)

This method acts as the constructor and must be called before the class can operate. It
initializes the characteristics of the filter.

Inputs

Name IEC 61131 Type Description

highLimit REAL The largest valid value for the input variable.
lowLimit REAL The smallest valid value for the input variable.
defaultOutput REAL The conditioned output defaults to this value if the input

is out of range or the alarm is high.
timeConstant UINT Range: 100–60000 ms. The time constant to use for the

low-pass filter within this method.

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 7

Public Class Definitions

Return Value

IEC 61131 Type Description

POINTER TO STRING Return a pointer to an error message if an error occurred. Return zero
if no errors exist.

Processing

This method:

ä Sets defaultOutput as the initial output and input to the filter in order to eliminate
“wind-up” during the first few scans.

ä Returns a pointer to an error message if lowLimit exceeds highLimit.

ä Returns a pointer to an error message if defaultOutput is less than lowLimit or greater
than highLimit.

bootstrap_SetInitialValue (Method)

This method may be called at startup if the user desires a value different than the default-
Output (set previously in the constructor method call) as the initial output.

Inputs

Name IEC 61131 Type Description

initialValue REAL Range: lowLimit ≤ initialValue ≤ highLimit. Sets the initial
value to be used by the filter at startup.

Return Value

IEC 61131 Type Description

POINTER TO STRING Return a pointer to an error message if an error occurred. Return zero
if no errors exist.

Processing

This method:

ä Bypasses all internal filtering and changes both the input and conditioned output to
be equal to initialValue.

ä Returns a pointer to an error message if the constructor has not been called.

ä Returns a pointer to an error message if initialValue is less than lowLimit or greater
than highLimit set in the constructor.

Processing of Interface Methods

This section provides specifics regarding the implementation of the methods required by
the implemented interface(s).

Date Code 20180924 Instruction Manual AnalogCond

8 AnalogCond

Public Class Definitions

I_LimitedSplpf—ConditionValue

This describes the behavior of this class when the ConditionValue() method is called.

ä When the constructor has not yet been called, then this method returns false and sets
the method output conditionedValue to zero (0).

ä The time between calls is limited to a minimum of 1 ms and a maximum of 60000 ms.
This section references the limited value as timeElapsedLimited.

ä The time constant used in calculating the output value, timeConstantUsed, is limited
such that it must exceed or equal five times the elapsed time between calls of this
method, timeElapsed.

ä When the inputValue is less than lowLimit, set in the constructor, then the input is
limited to lowLimit and the out-of-bounds internal flag is set.

ä When inputValue exceeds highLimit, set in the constructor, then the input is limited
to highLimit and the out-of-bounds internal flag is set.

ä When inputValue is within the limits outlined in the constructor, the input is filtered
through a low-pass filter in order to provide the output and the out-of-bounds internal
flag is reset.

ä When all of the following conditions are met:

â inputValue is less than highLimit

â inputValue is greater than the lowLimit

â Alarm property is false

this method computes the conditionedValue output equivalent to:
((inputValue – lastConditionedValue) • 0.632 • 1

timeConstantUsed •
timeElapsedLimited) + lastConditionedValue
where:

â inputValue is the current input to ConditionValue()

â lastConditionedValue is the input to ConditionValue() from the previous
scan

â timeConstantUsed is the range limited time constant

â timeElapsedLimited is the range limited elapsed time since the last scan

ä When the input is out of range, it is limited to the corresponding range value, and
on a subsequent call where the input is within the specified range, the conditioned
output ramps to that value from the limit where it was being held.

ä When the input is in alarm, the output, input, and any internal filtering values are set
to defaultOutput. Once the alarm is removed, the input is no longer overridden and
the output value ramps to the input value through the filter, i.e., steps to defaultOutput
when in alarm and ramps from defaultOutput back to inputValue after the alarm is
removed.

class_LimitedSplpfRampToDefault

Instantiate this class when single-pole low-pass filter that has an imposed range of acceptable
values is desired. When in alarm, this class ramps the conditioned value to defaultOutput,
set in the constructor method, at the same rate it would any other input.

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 9

Public Class Definitions

Implemented Interfaces

An interface defines a required set of functionality as methods and properties. As an
implementer of any interface all methods and properties declared in that interface must
exist as members of this class. This allows multiple generally unrelated classes to be used
interchangeably for a specific feature set.

ä I_LimitedSplpf

LimitedSplpfRampToDefault (Method)

This method acts as the constructor and must be called before the class can operate. It
initializes the characteristics of the filter.

Inputs

Name IEC 61131 Type Description

highLimit REAL The largest valid value for the input variable.
lowLimit REAL The smallest valid value for the input variable.
defaultOutput REAL The conditioned output defaults to this value if the input

is out of range or the alarm is high.
timeConstant UINT Range: 100–60000 ms. The time constant to use for the

low-pass filter within this method.

Return Value

IEC 61131 Type Description

POINTER TO STRING Return a pointer to an error message if an error occurred. Return zero
if no errors exist.

Processing

This method:

ä Sets defaultOutput as the initial output and input to the filter in order to eliminate
“wind-up” during the first few scans.

ä Returns a pointer to an error message if lowLimit exceeds highLimit.

ä Returns a pointer to an error message if defaultOutput is less than lowLimit or greater
than highLimit.

bootstrap_SetInitialValue (Method)

This method may be called at startup if something other than the defaultOutput (set previously
in the constructor method call) is desired as the initial value by the user.

Date Code 20180924 Instruction Manual AnalogCond

10 AnalogCond

Public Class Definitions

Inputs

Name IEC 61131 Type Description

initialValue REAL Range: lowLimit ≤ initialValue ≤ highLimit. Sets the initial
value to be used by the filter at startup.

Return Value

IEC 61131 Type Description

POINTER TO STRING Return a pointer to an error message if an error occurred. Return zero
if no errors exist.

Processing

This method:

ä Bypasses all internal filtering and changes both the input and conditioned output to
be equal to initialValue.

ä Returns a pointer to an error message if the constructor has not been called.

ä Returns a pointer to an error message if initialValue is less than lowLimit or greater
than highLimit set in the constructor.

Processing of Interface Methods

This section provides specifics regarding the implementation of the methods required by
the implemented interface(s).

I_LimitedSplpf—ConditionValue

This describes the behavior of this class when the ConditionValue() method is called.

ä When the constructor has not yet been called, then this method returns false and sets
the method output conditionedValue to zero (0).

ä The time between calls is limited to a minimum of 1 ms and a maximum of 60000 ms.
This section references the limited value as timeElapsedLimited.

ä The time constant used in calculating the output value, timeConstantUsed, is limited
such that it must exceed or equal five times the elapsed time between calls of this
method, timeElapsed.

ä When the inputValue is less than lowLimit, set in the constructor, then the input is
limited to lowLimit and the out-of-bounds internal flag is set.

ä When inputValue exceeds highLimit, set in the constructor, then the input is limited
to highLimit and the out-of-bounds internal flag is set.

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 11

Benchmarks

ä When inputValue is within the limits outlined in the constructor, the input is filtered
through a low-pass filter in order to provide the output and the out-of-bounds internal
flag is reset.

ä When all of the following conditions are met:

â inputValue is less than highLimit

â inputValue is greater than the lowLimit

â Alarm property is false

this method computes the conditionedValue output equivalent to:
((inputValue – lastConditionedValue) • 0.632 • 1

timeConstantUsed •
timeElapsedLimited) + lastConditionedValue
where:

â inputValue is the current input to ConditionValue()

â lastConditionedValue is the input to ConditionValue() from the previous
scan

â timeConstantUsed is the range limited time constant

â timeElapsedLimited is the range limited elapsed time since the last scan

ä When the input is out of range, it is limited to the corresponding range value, and
on a subsequent call where the input is within the specified range, the conditioned
output ramps to that value from the limit where it was being held.

ä When the input is in alarm, the input is overridden and set to defaultOutput. This
allows the output value to ramp to defaultOutput through the filter. Once the alarm is
removed, the input is no longer overridden and the output value ramps to the input
value through the filter, i.e. ramps to defaultOutput through the filter when in alarm
and ramps from defaultOutput back to inputValue after the alarm is removed.

Benchmarks

Benchmark Platforms

The benchmarking tests recorded for this library are performed on the following platforms:

ä SEL-3530

â R134 firmware

ä SEL-3555

â Dual-core Intel i7-3555LE processor

â 4 GB ECC RAM

â R134-V1 firmware

ä SEL-3505

â R134 firmware

Date Code 20180924 Instruction Manual AnalogCond

12 AnalogCond

Benchmarks

Benchmark Test Descriptions

Any time less than one microsecond was rounded up to one microsecond for this report.

class_LimitedSplpfStepToDefault—ConditionValue

The posted time is the average execution time of 100 consecutive calls.

class_LimitedSplpfRampToDefault—ConditionValue

The posted time is the average execution time of 100 consecutive calls.

class_ArmaFilter—ConditionValue

The posted time is the average execution time of 100 consecutive calls.

class_ArmaFilter_LREAL—ConditionValue

The posted time is the average execution time of 100 consecutive calls.

class_PassThroughFilter—ConditionValue

The posted time is the average execution time of 100 consecutive calls.

Benchmark Results

ConditionValue Timing Results

Platform (time in µs)
Operation Tested

SEL-3505 SEL-3530 SEL-3555

class_LimitedSplpfStepToDefault 15 11 2
class_LimitedSplpfRampToDefault 17 5 1
class_ArmaFilter 1 1 1
class_ArmaFilter_LREAL 1 1 1
class_PassThroughFilter 1 1 1

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 13

Examples

Examples

These examples demonstrate the capabilities of this library. Do not mistake them as sugges-
tions or recommendations from SEL.

Implement the best practices of your organization when using these libraries. As the user of
this library, you are responsible for ensuring correct implementation and verifying that the
project using these libraries performs as expected.

Filtering with class_LimitedSplpfStepToDefault

The example code shown in Code Snippet 1 demonstrates a very simple use of this library.
This code instantiates a simple filter with the following attributes:

1. The filter output has a range of 0–100 inclusive.

2. If the filter input goes out of range or the Alarm property is set, the output steps to
the default value of 50.

3. The filter time constant is 1000 ms.

4. The filter has an initial value of zero.

This code filters rawValue normally for 100 time steps. After 100 time steps, Alarm is set
to true.

Code Snippet 1 prg_FilterStepToDefault

PROGRAM prg_FilterStepToDefault
VAR

initialized : BOOL := FALSE;
filter : class_LimitedSplpfStepToDefault ;
rawValue : REAL := 75;
filteredValue : REAL;
step : UINT;

END_VAR

IF NOT initialized THEN // Only initialize the filter once.
// Initialize the filter with a range of 0-100, a default output
// of 50, and a time constant of 1000 ms.
filter.LimitedSplpfStepToDefault(highLimit := 100, lowLimit := 0,

defaultOutput := 50, timeConstant := 1000);
// Start the filter with an initial value of zero.
filter.bootstrap_SetInitialValue(0);
initialized := TRUE;

END_IF

IF step < 100 THEN
// Filter normally for 100 time steps.
filter.ConditionValue(rawValue, conditionedValue => filteredValue);
step := step + 1;

ELSE
// After 100 time steps, set the Alarm property.
filter.Alarm := TRUE;
filter.ConditionValue(rawValue, conditionedValue => filteredValue);

END_IF

Date Code 20180924 Instruction Manual AnalogCond

14 AnalogCond

Examples

When this code is executed, the filteredValue will start at zero and move towards the input
value of 75 with each time step, according to the filter and time constant. After 100 time
steps, the output steps directly to the default value of 50 because the Alarm property was
set. Figure 2 shows an example of the filtered output plotted against time, where each step
is 100 ms.

Figure 2 class_LimitedSplpfStepToDefault With a Time Constant of 1000 ms

Filtering with class_LimitedSplpfRampToDefault

The example code shown in Code Snippet 2 demonstrates a simple use of this library. This
code instantiates a simple filter with the following attributes:

1. The filter output has a range of 0–100 inclusive.

2. If the filter input goes out of range or the Alarm property is set, the output will ramp
to the default value of 50.

3. The filter time constant is 1000 ms.

4. The filter has an initial value of zero.

This code filters rawValue normally for 100 time steps. After 100 time steps, Alarm is set
to true.

Code Snippet 2 prg_FilterRampToDefault

PROGRAM prg_FilterRampToDefault
VAR

initialized : BOOL := FALSE;
filter : class_LimitedSplpfRampToDefault ;
rawValue : REAL := 75;
filteredValue : REAL;
step : UINT;

END_VAR

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 15

Examples

Code Snippet 2 prg_FilterRampToDefault (Continued)

IF NOT initialized THEN // Only initialize the filter once.
// Initialize the filter with a range of 0-100, a default

output
// of 50, and a time constant of 1000 ms.
filter . LimitedSplpfRampToDefault (highLimit := 100,

lowLimit := 0,
defaultOutput := 50, timeConstant := 1000);

// Start the filter with an initial value of zero.
filter . bootstrap_SetInitialValue (0);
initialized := TRUE;

END_IF

IF step < 100 THEN
// Filter normally for 100 time steps .
filter . ConditionValue (rawValue , conditionedValue =>

filteredValue);
step := step + 1;

ELSE
// After 100 time steps , set the Alarm property .
filter .Alarm := TRUE;
filter . ConditionValue (rawValue , conditionedValue =>

filteredValue);
END_IF

When this code is executed, the filteredValue will start at zero and move towards the input
value of 75 with each time step, according to the filter and time constant. After 100 time
steps, the output ramps to the default value of 50 because the Alarm property was set.
Figure 3 shows an example of the filtered output plotted against time, where each step is
100 ms.

Figure 3 class_LimitedSplpfRampToDefault With a Time Constant of 1000 ms

Date Code 20180924 Instruction Manual AnalogCond

16 AnalogCond

Examples

Filtering with class_ArmaFilter

The ARMA filter is best suited to filtering oscillating signals, and depending on the coeffi-
cients used, provides a high-pass, low-pass, band-pass, or band-stop filter. This example
shows a specific implementation of the ARMA filter, but the basic approach described is
general, and can be used to provide whatever filtering the user of this library requires.

Objective

An oscillating signal can be run through a low-pass filter to remove high-frequency noise,
leaving only the lower frequency signals of interest.

Assumptions

The signal provided to the filter is generated in IEC 61131 code by adding a high-frequency
component, a low-frequency component, and a mid-frequency component. This signal is
then sent through an ARMA filter, with coefficients set using the Butterworth method to
remove the high-frequency component, leaving the mid- and low-range frequencies.

The signal sent to the filter is comprised using the following equations:

Sample1n = 0.25 × COS((1/10) × 2πn)

Sample2n = 2 × SIN((1/100) × 2πn)

Sample3n = SIN((1/1000) × 2πn)

where n is the sample number.

These equations will provide one sample each time n is increased, and these discrete samples
are described as follows:

Sample1n will have a period of 10 samples (high-frequency), a period
sample ratio of 0.1, be

offset by 90 degrees from the other two waves and a magnitude of 1/8 of the primary
frequency.

Sample2n is the primary frequency. It will have a period of 100 samples (mid-frequency)
and a period

sample ratio of 0.01.

Sample3n will have a period of 1000 samples (low-frequency), a period
sample ratio of 0.001

and a magnitude that is half of the primary frequency.

The sum of these three sine waves is fed into the low-pass filter.

FilterInputn = Sample1n + Sample2n + Sample3n

Solution

Coefficients for a Butterworth low-pass filter(http://octave.sourceforge.net/ signal/func-
tion/butter.html), which will filter out the high-frequency noise with a filter depth of three
(3), are determined using OCTAVE (http://octave-online.net/), by entering the equation
defined in Code Snippet 3.

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 17

Examples

NOTE: An unstable filter will not

cause the filter to crash, but it will

cause the filtered output to become

Infinity. Because of the way the ARMA

model is constructed, the next output

after infinity is reached will be NaN

(Not a Number). Once this happens, all

future outputs of the filter will be NaN

until the filter is reset.

Code Snippet 3 OCTAVE Code to Design a Butterworth Filter

octave :1>[B,A] = butter (3, 0.05)
B =
4.1655e -04 1.2496e -03 1.2496e -03 4.1655e -04

A =
1.00000 -2.68616 2.41966 -0.73017

The number of coefficients required for a low-pass filter with depth three (3) is four (4),
so the global parameter g_p_MaxFilterOrder must be set to three (3) or greater, allowing
coefficients 0–3 to be provided.

This Butterworth filter is shown to be stable by checking that the roots of the A coefficients
have an absolute value less than 1. This can be done using the OCTAVE code shown in
Code Snippet 4.

Code Snippet 4 OCTAVE Code to Check Stability of Filter

octave :1> abs(roots ([1.00000 -2.68616 2.41966 -0.73017]))
ans =

0.92455
0.92455
0.85420

The program shown in Code Snippet 5 generates the signals, passes the sum of these signals
into the low-pass filter, and provides the outputs into an array.

Code Snippet 5 prg_LowpassFilter

PROGRAM prg_LowPassFilterDemo
VAR CONSTANT

c_Steps : UDINT := 1000;
c_Acoeff : ARRAY[1..g_p_MaxFilterOrder] OF REAL := [

-2.68616, 2.41966, -0.73017];
c_Bcoeff : ARRAY[0..g_p_MaxFilterOrder] OF REAL := [

4.1655e-04, 1.2496e-03, 1.2496e-03, 4.1655e-04];
END_VAR
VAR

Filter : class_ArmaFilter(c_Acoeff, c_Bcoeff, 3, 4);
Signals : ARRAY[1..3] OF ARRAY[1..c_Steps] OF REAL;
DesiredSignals : ARRAY[1..c_Steps] OF REAL;
TotalSignal : ARRAY[1..c_Steps] OF REAL;
FilterOutput : ARRAY[1..c_Steps] OF REAL;
Stage : UDINT := 0;

END_VAR
VAR_TEMP

i : UDINT;
END_VAR

Date Code 20180924 Instruction Manual AnalogCond

18 AnalogCond

Examples

Code Snippet 5 prg_LowpassFilter (Continued)

CASE Stage OF
0:

;// Do nothing on the first scan
1:

FOR i := 1 TO c_Steps DO
(* Calculate the samples used to create a compound signal *)
Signals[1][i] := 0.25 * COS(0.1*UDINT_TO_REAL(i)*2*PI);
Signals[2][i] := 2 * SIN(0.01*UDINT_TO_REAL(i)*2*PI);
Signals[3][i] := SIN(0.001*UDINT_TO_REAL(i)*2*PI);

(* Add the low and mid frequency components together to compare
against filtered output for accuracy. *)
DesiredSignals[i] := Signals[2][i] + Signals[3][i];

(* Add the high-frequency component to this signal to observe that
the Butterworth low-pass filter removes it, leaving just the
desired signal. *)
TotalSignal[i] := DesiredSignals[i] + Signals[1][i];

(* Pass the entire signal into the filter. *)
Filter.ConditionValue(TotalSignal[i],

conditionedValue => FilterOutput[i]);
END_FOR

2:
;// Add a way to print out the results to a file here if desired

ELSE
;// Done

END_CASE
Stage := Stage + 1;

When this code is executed, the low-pass filter removes the high-frequency components
imposed on the samples, leaving the desired Sample2n and Sample3n low-frequency
components alone.

The plot in Figure 4 shows the three waveforms added together and the result of the filter.
The resulting wave is shifted in time; this time delay is expected from a filter.

Figure 4 Plot of Total Signal and Filtered Output of the Low-Pass Filter

AnalogCond Instruction Manual Date Code 20180924

AnalogCond 19

Release Notes

Release Notes

Version Summary of Revisions Date Code

3.5.2.0 ä Allows new versions of ACSELERATOR RTAC to compile projects
for previous firmware versions without SEL IEC type “Cannot
convert” messages.

20180921

ä Must be used with R143 firmware or later.
3.5.1.1 ä Added class_ArmaFilter_LREAL. 20150722
3.5.1.0 ä Changed I_LimitedSplpf to inherit from I_Filter. 20141107

ä Modified class_LimitedSplpfStepToDefault to implement updated
I_LimitedSplpf.

ä Modified class_LimitedSplpfRampToDefault to implement updated
I_LimitedSplpf.

ä Added advanced ARMA filter.
ä Added dummy class_PassThroughFilter.

3.5.0.1 ä Initial release. 20140701

Date Code 20180924 Instruction Manual AnalogCond

	Section 1: AnalogCond
	Introduction
	Supported Firmware Versions
	Global Parameters
	Interface Definitions
	I_Filter
	ConditionValue (Method)
	Reset (Method)

	I_LimitedSplpf
	OutOfBoundsAlarm (Method)

	Public Class Definitions
	class_PassThroughFilter
	Implemented Interfaces

	class_ArmaFilter
	Implemented Interfaces

	class_ArmaFilter_LREAL
	Implemented Interfaces

	class_LimitedSplpfStepToDefault
	Implemented Interfaces
	LimitedSplpfStepToDefault (Method)
	bootstrap_SetInitialValue (Method)
	Processing of Interface Methods

	class_LimitedSplpfRampToDefault
	Implemented Interfaces
	LimitedSplpfRampToDefault (Method)
	bootstrap_SetInitialValue (Method)
	Processing of Interface Methods

	Benchmarks
	Benchmark Platforms
	Benchmark Test Descriptions
	class_LimitedSplpfStepToDefault—ConditionValue
	class_LimitedSplpfRampToDefault—ConditionValue
	class_ArmaFilter—ConditionValue
	class_ArmaFilter_LREAL—ConditionValue
	class_PassThroughFilter—ConditionValue

	Benchmark Results
	ConditionValue Timing Results

	Examples
	Filtering with class_LimitedSplpfStepToDefault
	Filtering with class_LimitedSplpfRampToDefault
	Filtering with class_ArmaFilter
	Objective
	Assumptions
	Solution

	Release Notes

