Model Implementation Conformance Statement for the IEC 61850 interface in SEL-787

September 5, 2014

UCA International Users Group Testing Sub Committee

> Template version 1.0 Date: April 24, 2008

INDEX

IN	DEX		1
1	Intro	duction	2
2	Log	cal Node List	3
3	•		5
	3.1	5	5
		5	5
		3.1.2 MTHR: Thermal Metering	6
		3.1.3 SCBR: Circuit Breaker Supervision	6
	3.2	Extended Logical Nodes	7
		3.2.1 GGIO: Generic Process I/O	
		3.2.2 MMXU: Measurement	
		3.2.3 MSTA: Metering Statistics	
		3.2.4 XCBR: Circuit Breaker	0
4	Con	mon Data Class Extensions 1	2
	4.1	Extended Common Data Classes	2
		System	2

1. Introduction

This model implementation conformance statement is applicable for SEL-787 firmware R100:

This MICS document specifies the modelling extensions compared to IEC 61850 edition 1. For the exact details on the standardized model please compare the ICD substation configuration file: "0787-4 004.ICD", version R100.

Clause 2 contains the list of implemented logical nodes. Clause 3 describes the new and extended logical nodes. Clause 4 describes the new and extended common data classes.

2. Logical Node List

The following table contains the list of logical nodes implemented in the device:

C: Supervisory Control					
CSWI (Switch Controller)					
G: Generic Function References					
GGIO (Generic Process I/O)					
L: System Logical Nodes					
LLN0 (Logical Node Zero)					
LPHD (Physical Device Information)					
M: Metering and Measurement					
MDST (Demand Metering Statistics)					
MHAI (Harmonics or Interharmonics)					
MMXU (Measurement)					
MSQI (Sequence and Imbalance)					
MSTA (Metering Statistics)					
MTHR (Thermal Metering)					
P: Protection Functions					
PDIF (Differential)					
PDOP (Directional Overpower)					
PDUP (Directional Underpower)					
PHAR (Harmonic Restraint)					
PIOC (Instantaneous Overcurrent)					
POPF (Over Power Factor)					
PTOC (Time Overcurrent)					
PTOF (Overfrequency)					
PTOV (Overvoltage)					
PTRC (Protection Trip Conditioning)					

PTUV (Undervoltage)				
PVPH (Volts per Hz)				
R: Protection Related Functions				
RBRF (Breaker Failure)				
S: Sensors, Monitoring				
SCBR (Circuit Breaker Supervision)				
X: Switchgear				
XCBR (Circuit Breaker)				
Z: Further (power system) Equipment				
ZBAT (Battery)				

3. Logical Node Extensions

The following tables use:

- M: Data is mandatory in the IEC–61850–7–4.
- O: Data is optional in the IEC-61850-7-4 and is used in the device.
- E: Data is an extension to the IEC-61850-7-4.

3.1 New Logical Nodes

New logical nodes have the InNs attribute in the Name plate. The value of LnNs is a reference to the MICS document.

3.1.1 MDST: Demand Metering Statistics

This LN shall be used for calculation of demand currents and energy in a three-phase system.

MDST Class						
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks		
LNName		Shall be inherited from Logical Node Class.				
Data						
Mod	INC	Mode	М			
Beh	INS	Behavior	М			
Health	INS	Health	М			
NamPlt	LPL	Name plate	М			
PosVArh	MV	Reactive energy demand (energy flow out of bus)	Е			
DmdWh	MV	Real energy demand (energy flow out of bus)	E			

NegVArh	MV	Reactive energy supply (energy flow into bus)	E	
---------	----	---	---	--

3.1.2 MTHR: Thermal Metering

This LN shall be used to acquire values from RTDs and to calculate thermal capacity. This is mainly used for Thermal Monitoring.

MTHR Class						
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks		
LNName		Shall be inherited from Logical Node Class.				
Data						
Mod	INC	Mode	М			
Beh	INS	Behavior	М			
Health	INS	Health	М			
EEHealth	INS	External equipment health	Ш			
NamPlt	LPL	Name plate	М			
MaxWdgTmp	MV	Maximum winding temperature	Е			
MaxBrgTmp	MV	Maximum bearing temperature	Ш			
MaxAmbTmp	MV	RTD percent thermal capacity used	Е			
MaxOthTmp	MV	Maximum other temperature	E			
Ттр	MV	Temperature	Е			

3.1.3 SCBR: Circuit Breaker Supervision

SCBR Class						
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks		
LNName		Shall be inherited from Logical Node Class.				
Data						
Mod	INC	Mode	М			
Beh	INS	Behavior	М			
Health	INS	Health	М			
NamPlt	LPL	Name plate	М			
ColOpn	SPS	Open command of trip coil	Е			
AbrPrt	MV	Abrasion (in percent) of parts subject to wear	Е			

3.2 Extended Logical Nodes

The following logical nodes have been extended with extra data. All extra data has been highlighted in the tables and marked as "E" (Extended), these data contain the dataNs attribute.

3.2.1 GGIO: Generic Process I/O

For a description of this LN, see IEC 61850-5. This node shall be used to model in a generic way device processes that are not predefined by the groups S, T, X, Y, or Z.

GGIO Class							
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks			
LNName		Shall be inherited from Logical Node Class.					
Data							

Mod	INC	Mode	М	
Beh	INS	Behavior	М	
Health	INS	Health	М	
NamPlt	LPL	Name Plate	М	
AnIn	MV	Analogue input	0	
SPCSO	SPC	Single point controllable status output	0	
Ind	SPS	General indication (binary input)	0	
Ra	MV	Remote Analog	Е	

3.2.2 MMXU: Measurement

For a description of this LN, see IEC 61850–5. This LN shall be used for calculation of currents, voltages, powers and impedances in a three-phase system. The main use is for operative applications.

MMXU Class						
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks		
LNName		Shall be inherited from Logical Node Class.				
Data						
Mod	INC	Mode	М			
Beh	INS	Behavior	М			
Health	INS	Health	М			
NamPlt	LPL	Name Plate	М			
TotW	MV	Total Active Power (Total P)	0			
TotVAr	MV	Total Reactive Power (Total Q)	0			

TotVA	MV	Total Apparent Power (Total S)	0	
TotPF	MV	Average Power Factor (Total PF)	0	
Hz	MV	Frequency	0	
PPV	DEL	Phase to ground voltages (VL1VL2,)	0	
PhV	WYE	Phase to ground voltages (VL1ER,)	0	
А	WYE	Phase currents (IL1, IL2, IL3)	0	
VSyn	CMV	Synchronous voltage	E	
Vhz	MV	Synchronous frequency	E	

3.2.3 MSTA: Metering Statistics

MSTA Class						
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks		
LNName		Shall be inherited from Logical Node Class.				
Data						
Mod	INC	Mode	М			
Beh	INS	Behavior	М			
Health	INS	Health	М			
NamPlt	LPL	Name Plate	М			
MaxAmps	MV	Maximum current	0			
MinAmps	MV	Minimum current	0			
MaxVA	MV	Maximum apparent power	0			

MinVA	MV	Minimum apparent power	0	
MaxW	MV	Maximum real power	0	
MinW	MV	Minimum real power	0	
MaxVAr	MV	Maximum reactive power	0	
MinVAr	MV	Minimum reactive O		
MaxA	WYE	Maximum current	Ш	
MinA	WYE	Minimum current	Ш	
MaxPhV	WYE	Maximum phase voltage	Е	
MinPhV	WYE	Minimum phase voltage	Е	
MinP2PV	DEL	Minimum Phase to Phase Voltages	Е	
MaxP2PV	DEL	Maximum Phase to Phase Voltages	Е	

3.2.4 XCBR: Circuit Breaker

This LN is used for modeling switches with short circuit breaking capability. Additional LNs, for example SIMS, may be required to complete the logical modelling for the breaker being represented. The closing and opening commands shall be subscribed from CSWI or CPOW if applicable. If no services with real-time capability are available between CSWI or CPOW and XCBR, the opening anc closing commands are performed with a GSE-message.

XCBR Class					
Attribute Name	Attribute Type	Explanation	M/O/E	Remarks	
LNName		Shall be inherited from Logical Node Class.			
Data					
Mod	INC	Mode	М		

Beh	INS	Behavior	М	
Health	INS	Health	М	
NamPlt	LPL	Name Plate	М	
Loc	SPS	Local operation	М	
OpCnt	INS	Operation counter	М	
Pos	DPC	Switch position	М	
BlkOpn	SPC	Block opening	М	
BlkCls	SPC	Block closing	М	
CBOpCap	INS	Circuit breaker operating capability M		
OpCntEx	INS	Operation counter—external	Е	

4. Common Data Class Extensions

The following common data classes have been extended with extra data. All extra data has been highlighted in the tables and marked as "E" (Extended). Comments:

M: Data is mandatory in the IEC-61850-7-3.

- O: Data is optional in the IEC-61850-7-3 and is used in the device.
- E: Data is an extension to the IEC-61850-7-3.

4.1 Extended Common Data Classes

The following common data classes have been extended with extra data. All extra data has been highlighted in the tables and marked as "E" (Extended).

WYE Class						
Attribute Name	Attribute Type	FC	TrgOp	Value/Value Range	M/O/E	Remarks
phsA	CMV				0	
phsB	CMV				0	
phsC	CMV				0	
neut	CMV				0	
nseq	CMV				E	
res	CMV				0	
cdcNs	VisString255	EX			0	
cdcName	VisString255	EX			0	
dataNs	VisString255	EX			0	

4.1.1 WYE: Phase-to-Ground Related Measured Values of a Three Phase System