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Performance Comparison Between Mho 
Elements and Incremental Quantity-Based 

Distance Elements 
Gabriel Benmouyal, Normann Fischer, and Brian Smyth, Schweitzer Engineering Laboratories, Inc. 

Abstract—Mho elements constitute the main component of 
transmission line protection in North America and many 
countries overseas. Distance elements based on incremental 
quantities and derived from the same base equations as mho 
elements emerged about two decades ago as a way to improve the 
speed of distance elements. This paper compares the intrinsic 
protective properties of mho and incremental distance elements, 
irrespective of the ways they are implemented. 

I.  INTRODUCTION 
Mho distance elements have been the mainstay of 

impedance-based transmission line protection for decades, and 
their use is practically standard practice in North America and 
internationally. Distance elements based on incremental 
quantities (called simply “incremental distance elements” in 
this paper) and derived from the same base equations as mho 
elements as shown in this paper, have recently been used in 
high- and ultra-high-speed applications in parallel with, or 
independent of, mho elements. This paper provides an answer 
to this question: Do incremental distance elements perform 
exactly the same as conventional mho distance elements? In 
other words, is the incremental distance element more 
sensitive or less sensitive than a conventional distance 
element? 

For the purpose of performance comparison between the 
two elements, this paper makes extensive use of their 
respective characteristics in the loop impedance plane. The 
paper discusses the respective limitations imposed by the 
requirements for each element’s implementation, such as 
voltage polarization using voltage memory for conventional 
mho elements and using incremental or delta quantities for 
incremental distance elements. Applications such as the 
protection of series-compensated lines require conventional 
mho distance elements to be polarized with the correct voltage 
(voltage memory) in order to perform correctly. Incremental 
distance elements, on the other hand, require the calculation of 
superimposed voltage and current components that are 
processed by delta filters. Incremental distance elements only 
perform correctly if they are supplied with the correct 
incremental voltage and current components. 

The focus of this paper is not how to implement a 
conventional mho or incremental distance element in terms of 
filter design and speed of operation. The main focus is the 
performance of the two distance elements with respect to 
providing protection for a transmission line. 

The derivations of the incremental distance element 
equations are a result of the superposition principle applied to 
power systems: a faulted network can be resolved by defining 
a prefault and a pure-fault circuit [1]. This paper begins by 
revisiting this important principle. 

II.  THE SUPERPOSITION PRINCIPLE APPLIED TO FAULTED 
POWER NETWORKS 

A.  The Superposition Principle Applied to Three-Phase 
Faults 

Consider the elementary power system shown in Fig. 1. 
Assume that a three-phase fault occurs at a distance d in per 
unit (pu) of the line length from Bus L. 

L R

ZR1
ZR0

ZS1
ZS0

VM

Relay

VN (θ°)ZL1
ZL0

d

 
Fig. 1. Elementary power system network 

The superposition principle can be applied to resolve the 
equations of the faulted circuit voltages and currents [1]. Let 
EfA be the A-phase prefault voltage at the fault point on the 
line. The value of this voltage is provided by (1). 
 A LDEf VM (ZS1 d • ZL1) • I= − +   (1) 

The A-phase prefault current (IAPF), also called load 
current (ILD), is given in (2). 

 LD PF
VM VNI IA

(ZS1 ZR1 ZL1)
−

= =
+ +

  (2) 



2 

 

Fig. 2 represents the pure-fault sequence network for three-
phase faults [1]. The driving voltage EfA corresponds to the 
A-phase prefault voltage at the fault location. RF is the fault 
resistance. The quantities existing in the prefault network and 
belonging to the pure-fault circuit are represented with a 
∆ prefix, which represents a change or an increment. The 
prefix ∆, in front of any voltage or current belonging to the 
pure-fault network, indicates that the corresponding change in 
voltage or current is due to the fault only. 

N1

∆I1F

–

+
ZS1

RF

d ZL1

ZR1

(1 – d) ZL1

∆I1

EfA

 
Fig. 2. Pure-fault sequence network of a three-phase fault 

Any voltage or current of the faulted circuit can be resolved 
as the sum of the prefault voltage or current and the pure-fault 
circuit voltage or current increment, as shown in (3). 

 PF

PF

V V V
I I I

= + ∆
= + ∆

  (3) 

In Fig. 2, the incremental positive-sequence current at the 
relay location is shown with the ∆ prefix because it is a pure-
fault current. It is expressed in (4) as a function of the 
positive-sequence current at the fault point. 
 I1 C1• I1F∆ = ∆   (4) 

In (4), C1 is the positive-sequence current distribution 
factor. It is expressed in (5) as a function of the network 
impedances. 

 (1 d) • ZL1 ZR1C1
ZS1 ZL1 ZR1
− +

=
+ +

  (5) 

By virtue of the superposition principle, the positive-
sequence current at the relay is provided by the sum of the 
prefault current plus the incremental positive-sequence 
current. This is shown in (6). 

 2
LD

1I1 I I1 • (IA a • IB a • IC)
3

 = + ∆ = + + 
 

  (6) 

In (6), a is the operator defined in (7). 
 a 1 120= ∠ °   (7) 

For three-phase faults, the relationship shown in (8)
between the A-phase voltage and current is at the relay 
location. 
 FVA d • ZL1• IA R • I1F= + ∆   (8) 

By applying (3) to (8), the relationship between the prefault 
and pure-fault A-phase quantities can be derived as shown in 
(9). 

 A PF LD

F

Ef VA d • ZL1• I
VA d • ZL1• IA R • I1F

= − =
− ∆ + ∆ + ∆

  (9) 

Expressions equivalent to (8) and (9) can also be derived 
for the B- and C-phases. 

The pure-fault or incremental A-phase current at the relay 
is equal to the positive-sequence current distribution factor 
multiplied by the pure-fault positive-sequence current at the 
fault, as shown in (10). 
 IA C1• I1F∆ = ∆   (10) 

The incremental A-phase voltage ∆VA is as shown in (11). 
 VA ZS1• C1• I1F ZS1• IA∆ = − ∆ = − ∆   (11) 

B.  The Superposition Principle Applied to Single-Phase-to-
Ground Faults 

The analysis carried out in Section II, Subsection A for the 
three-phase fault sequence network can be applied to any 
fault-type sequence network. Fig. 3 shows the pure-fault 
sequence network for single A-phase-to-ground faults. 

EfA

ZR0

RF

ZS0

I0F

N0

d ZL0 (1– d ) ZL0

RF

I2F

N2

ZS1 ZR1

 d ZL1 (1– d ) ZL1

ZR1

 d ZL1

RF

N1

ZS1

(1– d ) ZL1

∆I1F

–

+

 
Fig. 3. Pure-fault sequence network of an A-phase-to-ground fault 

For the single A-phase-to-ground fault network represented 
in Fig. 3, the relationship between the phase voltage and the 
loop current at the relay during the fault is provided by [2] and 
shown in (12). 
 0 FVA d • Z1L • (IA K • I0) 3R • I1F= + + ∆   (12) 
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In (12), the zero-sequence compensation factor K0 is 
expressed as a function of the line impedances as shown in 
(13). 

 0
ZL0 ZL1K

ZL1
−

=   (13) 

Applying the superposition principle to the voltage VA and 
current IA results in (14). 

 PF

PF LD

VA VA VA
IA IA IA I IA

= + ∆
= + ∆ = + ∆

  (14) 

Substituting the expressions of VA and IA as given by (14) 
into (12) results in (15). 

 PF

LD 0 F

VA VA
d • Z1L • ((I IA) K • I0) 3R • I1F

+ ∆ =
+ ∆ + + ∆

  (15) 

From (15), the relationship between the prefault and pure-
fault quantities for the single A-phase-to-ground faults can be 
derived as shown in (16). 

 A PF LD

0 F

Ef VA d • ZL1• I
VA d • ZL1• ( IA K • I0) 3R • I1F

= − =
− ∆ + ∆ + + ∆

  (16) 

In (16), ∆VA (the incremental A-phase voltage) and ∆IA 
(the incremental current) can be expressed as shown in (17). 

 
VA (2 • C1• ZS1 C0 • ZS0) I1F
IA (2 • C1 C0) I1F

∆ = − + ∆
∆ = + ∆

  (17) 

In (17), the zero-sequence current distribution factor C0 is 
defined as shown in (18). 

 (1 d) • ZL0 ZR0C0
ZS0 ZL0 ZR0

− +
=

+ +
  (18) 

C.  The Superposition Principle Applied to Double-Phase and 
Double-Phase-to-Ground Faults 

The same analysis can be carried out for a double-phase 
fault. The pure-fault sequence network for a B-phase-to-C-
phase fault is shown in Fig. 4. 

∆I1F

– +

ZS1

d ZL1

ZR1

(1 – d) ZL1

EfA

ZS2

d ZL2

ZR2

(1 – d) ZL2

N1 N2

I2F

RF/2RF/2

∆I1

 
Fig. 4. Pure-fault sequence network for a phase-to-phase fault 

From Fig. 4, the relationship between the prefault and pure-
fault voltage and current quantities with respect to the A-phase 
is provided by (19). 

A PF LD

F

Ef VA d • ZL1• I
R

(ZS1 d • ZL1) • (C1• I1F• C2 • I2F) ( I1F I2F)
2

= − =

+ ∆ − + ∆ −
  (19) 

where: 

 (1 d) • ZL1 ZRC2 C1
ZS1 ZL1 ZR1

− +
= =

+ +
  (20) 

For a phase-to-phase fault, (21) is true. 
 I1F I2F∆ = −   (21) 

Therefore, (19) can be reduced to (22). 
 A FEf (ZS1 d • ZL1) • 2C1• I1F R I1F= + ∆ + ∆   (22) 

Equivalent relationships can be derived for the B- and 
C-phases. For the B-phase, the voltages and currents have to 
be multiplied by a2, with a defined by (7). For the C-phase, 
they have to be multiplied by a. 

III.  CONVENTIONAL MHO ELEMENT IMPLEMENTATION 

A.  Implementation of Mho Elements 
In a transmission line relay, six impedance loops are 

required to cover all the possible shunt-type faults [2] [3] [4] 
[5]. Each of these fault loops has its own distance element. 
The six loops correspond to the three phase-to-ground fault 
loops (AG, BG, and CG) and the three phase-to-phase fault 
loops (AB, BC, and CA). 

Protecting a fault loop with a mho element requires an 
operating quantity SOP and a polarizing quantity SPOL as 
defined in (23). 

 OP

POL POL

S r • ZL1• IR VR

S V

= −

=
  (23) 

where: 
r is the element reach 
IR is the particular loop current 
VR is the particular loop voltage 
VPOL is a polarizing voltage 

One of the most popular polarization methods is to use 
positive-sequence voltage memory (PSVM), typically 
processed through a dedicated filter [5]. Polarization with 
positive-sequence voltage (PSV) is readily accessible as an 
alternative, but it results in decreased sensitivity to resistive 
faults, problematic performance with three-phase bolted faults, 
and voltage inversion with series compensation. 
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The mho element asserts when the scalar product SP 
between the operating quantity and the polarizing quantity is 
positive or when it satisfies the inequality in (24). 

 POLSP real (r • ZL1• IR VR) • conj(V ) 0= − ≥     (24) 

In (24), real represents “real part of” and conj stands for 
“complex conjugate of.”  

Performing a scalar product is tantamount to implementing 
an angle comparator: if the angle between the polarizing 
quantity and the operating quantity becomes smaller than 
90 degrees, then the element asserts. 

B.  Alternative Solution to Using the Scalar Product 
An alternate solution to performing the scalar product in 

(24) is to calculate a distance m, as indicated in (25), and then 
compare the calculated m value with the different reach setting 
thresholds [5]. 

 POL

POL

real VR • conj(V )
m

real ZL1• IR • conj(V )
  =

  
  (25) 

The advantage of this alternative solution is that m is 
calculated once for all the fault loops and is compared with the 
reach settings of any of the zones. Another advantage for 
small values of fault resistance is that m equals a value close 
to the distance to the fault d.  

C.  Loop Apparent Impedance and Distance Element 
Characteristic in the Loop Impedance Plane 

When distance protection is applied to the elementary 
power network shown in Fig. 1, the apparent impedance seen 
from Bus L and calculated for any of the six possible faulted 
impedance loops can be expressed by the generic equation 
(26), assuming that a prefault load current exists [2]. 

 R
APP F

I

KVRZ d • ZL1 R
IR K

= = +   (26) 

In (26), KI is the ratio of the faulted loop current over the 
change of the same current, as shown in (27). 

 I
PF

IR IRK
IR IR IR

= =
− ∆

  (27) 

KR is a factor involving network parameters. Table I 
provides the expression of KR as a function of the fault type 
[2]. Table II in [2] provides additional information about the 
location of the fault resistance RF for the different fault types.

 

TABLE I 
EXPRESSIONS OF KR 

Fault Type KR 

Single-phase-to-ground 
(KRAG, KRBG, KRCG) 0

3
2C1 C0(1 K )+ +

 

Double-phase  
(KRAB, KRBC, KRCA) 

1
2 • C1

 

Three-phase  
(KRABC) 

1
C1

 

The loop apparent impedance with no load current (ILD = 0) 
will simply be (26) with KI = 1, as shown in (28). 
 APP _ NLD F RZ d • ZL1 R • K= +   (28) 

When applied to conventional mho elements, the apparent 
impedance can always be calculated and the characteristics 
always exist in the impedance plane, whether or not the 
network is healthy. When the apparent impedance with respect 
to a particular impedance loop plots within the area delimited 
by the corresponding element characteristic in the impedance 
plane, the conventional mho element operates [3] [4]. The 
same is not true with incremental distance elements; the 
characteristic only exists in the impedance plane if the 
incremental voltage and current quantities are non-zero. 
Subsequent sections in the paper explain that, following a 
fault, the incremental quantities are non-zero only for a short 
interval of time. Checking the location of the apparent 
impedance against any characteristic in the impedance plane 
can only be performed during that short interval of time and 
cannot be performed when the incremental quantities are zero. 
This paper compares the characteristics of the conventional 
mho and incremental distance elements as the base 
representation in order to evaluate their respective 
performances. 

IV.  DISTANCE ELEMENT BASED ON INCREMENTAL 
QUANTITIES 

A.  Ground Incremental Distance Element 
Starting with (16), which provides the relationship between 

the prefault and pure-fault quantities for single A-phase-to-
ground faults, we equate the distance to the fault d with the 
reach r as shown in (29). 

 PF LD

0 F

VA r • ZL1• I
VA r • ZL1• ( IA K • I0) 3R • I1F

− =
− ∆ + ∆ + + ∆

  (29) 
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Assuming that RF is zero, two new quantities can be 
defined: VfAG and VdAG. Equation (29) can then be rewritten 
as shown in (30). 

 AG PF PF

AG 0

Vf VA r • Z1L • IA
Vd VA r • Z1L • ( IA K • I0)

= −

= −∆ + ∆ +
  (30) 

VfAG is simply the prefault voltage at the reach location. 
VdAG can be defined as an incremental voltage drop at the 
reach location. It is importance to note that EfAG and VfAG are 
defined differently. EfAG is the prefault A-phase voltage at the 
fault location, and VfAG is the prefault A-phase voltage at the 
reach location. Equivalent expressions are defined for B- or 
C-phase-to-ground faults. 

Assuming an RF equal to zero and a reach r equal to 
80 percent, Fig. 5 shows the locus of the absolute values of 
VfAG (solid red line) and VdAG (solid blue line) as the fault is 
applied with the distance d varying from 0 to 1 pu of the line 
length for an element installed on Bus L of the power circuit 
in Fig. 6. Obviously, VfAG is a constant and the incremental 
voltage drop VdAG is decreasing. From Fig. 5, the three 
conditions in (31) can be inferred. 

 
AG AG

AG AG

AG AG

d r Vd Vf

d r Vd Vf

d r Vd Vf

< ⇒ >

= ⇒ =

> ⇒ <

  (31) 
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Fig. 5. Prefault voltage at the reach location and incremental voltage drop as 
seen from Bus L of the circuit in Fig. 6 for an A-phase-to-ground fault 

L R

ZL1 = 17.47 (86°) ohms
ZL0 = 62.47 (75.38°) ohms

ZR1 = 20 (78°) ohms
ZR0 = 62.08 (71°) ohms

ZS1 = 10 (73°) ohms
ZS0 = 33 (68.5°) ohms

VM

Relay

VN (θ°)

d

230 kV SystemCT Ratio: 240/1
VT Ratio: 2,000/1
All impedances in primary values

 

Fig. 6. Single-line, 230 kV system 

The three conditions in (31) determine the principle for 
fault detection using a distance element based on incremental 
quantities. Whereas with a conventional mho element, the sign 
of a scalar product between an operating and a polarizing 
vector determines if there is a fault or not, a magnitude 
comparison between a prefault voltage at the reach location 
and an incremental voltage drop at the reach location plays the 
same role with a distance element based on incremental 
quantities. VdAG can be called an operating quantity and VfAG 

can be called a restraining quantity. The element asserts when 
the operating quantity is greater than the restraining quantity. 

In Fig. 5, VdAG has also been plotted with the dashed blue 
line for an RF of 1.2 ohms secondary. Given that VfAG does not 
change, as the fault resistance increases, the incremental 
distance element starts to underreach. The element covers only 
approximately 55 percent of the power line when RF equals 
1.2 ohms. If we keep increasing RF, a maximum resistance 
value will be reached for which the fault will not be detected 
at distance d equal to zero. 

In Fig. 6, impedances are shown in primary values, but 
they are indicated in secondary values throughout the text and 
in all other figures. 

B.  Phase Incremental Distance Element 
The derivation for phase incremental distance elements is 

identical to the one performed for ground incremental distance 
elements. For A-phase-to-B-phase faults or A-phase-to-B-
phase-to-ground faults, the prefault voltage at the reach point 
and the incremental voltage drop are as shown in (32). 

 AB PF PF PF PF

AB

Vf (VA VB ) r • Z1L • (IA IB )
Vd ( VA VB) r • Z1L • ( IA IB)

= − − −
= − ∆ − ∆ + ∆ − ∆

  (32) 

Equivalent expressions are derived for B-phase-to-C-phase 
and C-phase-to-A-phase faults. 

V.  MHO AND INCREMENTAL DISTANCE ELEMENT 
CHARACTERISTICS IN THE LOOP IMPEDANCE PLANE 

A.  Case of Three-Phase Faults 

    1)  Mho Element Characteristic for Three-Phase Faults 
With No Load 
The representation of the conventional mho expansion or 

its characteristic in the loop impedance plane depends on the 
polarization type. It is well known that the maximum 
expansion occurs when the PSVM is used for the polarizing 
voltage [6]. For three-phase faults, any phase voltage and 
current or any difference of phase voltage and current can be 
used to determine the characteristic. For simplicity, the 
A-phase voltage and current are used, as shown in (33). 

 OP _ ABC

POL _ ABC MEM

S r • ZL1• IA VA

S VA1

= −

=
  (33)
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In (33), VA1MEM is the PSVM referenced to the A-phase. 
In order to define the characteristic circle in the impedance 
plane, both the operating SOP and polarizing SPOL quantities 
need to be divided by the fault current IA, as shown in (34). 

 

OP _ ABC '
OP _ ABC

POL _ ABC ' MEM
POL _ ABC

S VAS r • ZL1
IA IA

S VA1
S

IA IA

= = −

= =

  (34) 

The ratio of VA over IA is simply the apparent impedance 
measured at the relay. For a system with no load (ILD = 0), the 
ratio is as given by (35). 

 F
APP _NLD

RVA Z d • ZL1
IA C1

= = +
∆

  (35) 

VA1MEM is equal to the prefault voltage VAPF. Starting 
with (9) and applying the identity in (11) results in (36) for a 
system with no load. 
 MEM PF FVA1 VA (ZS1 d • ZL1) • IA R • I1F= = + ∆ + ∆   (36) 

Dividing (36) by ∆IA produces (37). 

 
MEM F

APP _ NLD

VA1 R
(ZS1 d • ZL1)

IA C1
ZS1 Z

= + +
∆

= +
  (37) 

The operating and polarizing quantities in (34) for a system 
with no load can then be expressed as shown in (38). 

 
'
OP _ ABC APP _ NLD

'
POL _ ABC APP _ NLD

S r • ZL1 Z

S ZS1 Z

= −

= +
  (38) 

The operating and polarizing vectors in (38) translate 
geometrically into the well-known circle characteristic, which 
is also commonly dubbed the mho dynamic expansion 
because the circle does not cross the origin point, as shown in 
Fig. 7. The circle diameter is the segment corresponding to the 
sum of ZS1 plus the reach r multiplied by ZL1. The circle 
center is at the middle of this segment. The operating vector 
dZ is perpendicular to the polarizing vector ZS1 + ZAPP_NLD, 
where the apparent impedance ZAPP_NLD falls exactly on the 
diameter of the circle. 

jX

R

dZ

ZAPP_NLD

ZS1

ZS1 + ZAPP_NLD

ZS1 + r ZL1

r ZL1

 
Fig. 7. Expanded mho element characteristic for three-phase faults with 
PSVM polarization 

When PSV is used as the polarizing quantity, the operating 
and polarizing quantities in (34) are expressed as (39). 

 
'
OP _ ABC APP _ NLD

'
POL _ ABC APP _ NLD

S r • ZL1 Z

S Z

= −

=
  (39) 

Using PSV for the polarizing quantity results in a 
characteristic corresponding to the well-known, self-polarized 
mho circle, as shown in Fig. 8. In this instance, the mho circle 
encompasses the origin point. The expansion of the PSVM-
polarized mho element is determined by comparing it with the 
PSV-polarized mho element. 

jX

R

dZ

ZAPP

r ZL1

 

Fig. 8. Mho element characteristic for three-phase faults with PSV 
polarization 

In many applications, PSVM polarization is implemented 
using a memory filter. The output immediately after the fault 
inception is the prefault PSV, and the voltage memory slowly 
decays until the filter output reaches the value of the present 
PSV [6]. Under these conditions, following a three-phase 
fault, we must understand that the mho element characteristic 
starts with the maximum expansion, as shown in Fig. 7, and 
ends up with the self-polarization characteristic of Fig. 8 [6]. 
This feature allows the element to detect bolted three-phase 
faults and close to the relaying point when the PSV goes to 
zero following the fault.  

    2)  Impact of Load on the Mho Element Characteristic 
When load is taken into account, VA1MEM is again equal to 

VAPF, and (36) has to be rewritten as shown in (40). 

MEM PF FVA1 VA ZS1• IA d • ZL1• IA R • I1F= = ∆ + + ∆   (40) 

As a result, (38) becomes equal to (41). 

 

OP _ ABC '
OP _ ABC APP

POL _ ABC ' MEM
POL _ ABC APP

I

S VAS r • ZL1 r • ZL1 Z
IA IA

S VA1 ZS1S Z
IA IA K

= = − = −

= = = +
  (41) 

When load is taken into account, the mho element 
characteristic at no load is modified so that the source 
impedance behind the relay has to be divided by KI, and the 
apparent impedance is the one incorporating the factor KI, as 
provided by (27). 
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    3)  Incremental Distance Element Characteristic in the 
Loop Impedance Plane for Three-Phase Faults 
Starting with the expression of EfA in (9), the incremental 

distance element characteristic in the impedance plane for 
three-phase faults can be obtained by expressing the prefault 
voltage at the fault location and the incremental voltage drop 
at the element reach for the A-phase as shown in (42). 

 A F

A

Ef VA d • ZL1• IA R • I1F
Vd VA r • ZL1• IA

= −∆ + ∆ + ∆
= −∆ + ∆

  (42) 

As was done for the mho element, both terms of (42) are 
divided by ∆IA. By virtue of applying identities (10), (11), 
and (28), the result is (43). 

 

' A f
A APP _ NLD

' A
A

Ef R
Ef ZS1 d • ZL1 ZS1 Z

IA C1
Vd

Vd ZS1 r • Z1L
IA

= = + + = +
∆

= = +
∆

  (43) 

Because the incremental distance element is an amplitude 
comparator as expressed in (31), it is necessary to have the 
next condition shown in (44) for the element to pick up. 

 APP _ NLDZS1 r • Z1L ZS1 Z+ ≥ +   (44) 

The vector magnitude inequality in (44) indicates that the 
incremental distance element characteristic in the impedance 
plane during a three-phase fault is simply an offset mho 
element; the center coordinates (x0, y0) and radius R are 
provided by (45). 

 
0

0

x real(ZS1)
y imag(ZS1)
R abs(ZS1 r • ZL1)

= −

= −

= +

  (45) 

In order for the three-phase fault incremental distance 
element to pick up, the apparent impedance with no load 
corresponding to (28) has to fall inside the circle characteristic 
corresponding to (45). As noted previously, in order to carry 
out this check, the incremental voltage and current (∆VA and 
∆IA) have to be non-zero. 

    4)  Impact of the Load on the Incremental Distance 
Element Characteristics 
When the load current ILD is non-zero, the three-phase fault 

incremental distance characteristic does not change in the loop 
impedance plane. It is therefore immune to load variations. 

    5)  Comparison of Mho and Incremental Distance 
Element Characteristics for Three-Phase Faults 
With zero load, both the mho and incremental distance 

elements have the same apparent impedance in the loop 
impedance plane. With a reach r equal to 80 percent of the 
line length, Fig. 9 shows the following three characteristics for 
a distance element installed at Bus L of the network in Fig. 6: 

• The mho element characteristic with PSVM 
polarization (solid blue line). 

• The mho element characteristic with PSV polarization 
(dashed blue line). 

• The incremental distance element characteristic (solid 
red line). 

Fig. 9 shows that the incremental distance element has an 
intrinsic expansion that is superior to the mho element even 
with the best possible polarization (PSVM polarization). 
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Fig. 9. Three-phase fault mho and incremental distance element 
characteristics for a relay installed at Bus L of the network in Fig. 6 

Another significant aspect to evaluate is the impact of each 
characteristic with respect to the resistance coverage of each 
element as a function of fault distance. This resistance 
coverage is represented in Fig. 10 for all of the elements for 
the network in Fig. 6 with no load, as seen by the elements 
installed at Bus L. Obviously, the larger characteristic for the 
incremental distance function translates into a greater 
resistance coverage and, consequently, improved sensitivity. 
As could be expected, resistance coverage of the mho element 
with PSV polarization is degraded for faults close to the 
substation. 
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Fig. 10. Resistance coverage for three-phase faults as a function of the 
distance to the fault 
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For the network in Fig. 6, when the distance to the fault is 
0.1 pu, the maximum fault resistance that can be detected by 
the three-phase incremental distance element (as indicated in 
Fig. 10) is 1.65 ohms. The loop apparent impedance, using the 
A-phase voltage and current, is verified in (46). 

 
APP _ NLD F

F

Z (d 0.1, R 1.6465)

RVA d • ZL1 (2.199 j0.147)
IA C1

= = =

= + = + Ω
∆

  (46) 

This apparent impedance is plotted in Fig. 9 and falls 
exactly on the incremental distance element characteristic 
circle. This verifies that the characteristic is valid. Should RF 
be increased, the loop apparent impedance would fall outside 
the characteristic circle, and this would be an indication that 
the detector does not see the fault any longer, as would be 
expected. 

It might be expected that the resistance coverage of both 
elements, conventional mho and incremental distance, would 
be smaller if the line length were reduced. Fig. 11 represents 
the new characteristics for both elements, with the line 
impedance reduced to 1/10 of its original value. Note that both 
characteristics are much smaller in the impedance plane. This 
translates into significantly smaller resistance coverage, as 
shown in Fig. 12. Note that the incremental distance element 
still has superior coverage. 
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Fig. 11. Three-phase fault mho and incremental distance element 
characteristics with ZL1 equal to 1/10 of its original value 
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Fig. 12. Resistance coverage for three-phase faults with ZL1 equal to 1/10 
its original value as a function of the distance to the fault 

If the source impedance behind the relay were very small 
compared with the line impedance, the mho element 
characteristic would be very close to the origin point and the 
resistance coverage for faults close to Bus L would be very 
small, even with a voltage polarization with a memory effect. 
Fig. 13 shows both characteristics with a value of ZS1 equal 
to 1/20 of its original value. The source impedance is very 
small and is now located between the incremental distance 
element characteristic center and the origin. The mho element 
characteristics with either PSV or PSVM polarization have 
become almost identical, and the voltage memory does not 
help much in this case. Fig. 14 shows the resistance coverage 
for both elements. Even if the mho element lost its capacity to 
cover resistive faults close to the origin, the incremental 
distance is still capable of covering practically the same 
amount of resistance as it does in Fig. 10. The mho element 
resistance coverage is substantially degraded with faults close 
to the substation, even with the best possible PSVM 
polarization. 
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Fig. 13. Three-phase fault mho and incremental distance element 
characteristics with ZS1 equal to 1/20 its original value 
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Fig. 14. Resistance coverage for three-phase faults with ZS1 equal to 1/20 
its original value as a function of the distance to the fault 

B.  Case of Single-Phase Faults 

    1)  Mho Element Characteristic for Single A-Phase-to-
Ground Faults With PSVM Polarization 
For a single A-phase-to-ground fault with PSVM 

polarization, the conventional mho distance element using a 
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phase-angle comparator has the operating and polarizing 
quantities shown in (47). 

OP _ AG AG 0

POL _ AG MEM

S r • ZL1• IR VA r • ZL1• (IA K I0) VA

S VA1

= − = + −

=
  (47) 

Using the same method for three-phase faults and assuming 
a system with no load (ILD = 0) allows (47) to be expressed in 
the loop impedance plane as (48). 

 
'
OP _ AG APP _ NLD

'
POL _ AG SL0 APP _ NLD

S r • ZL1 Z

S K • ZS1 Z

= −

= +
  (48) 

In (48), KSL0 is equal to (49). 

 S0 C
SL0

0 C

1 K • K
K

1 K • K
+

=
+

  (49) 

In (49), the zero-sequence compensation factor K0 is 
provided by (13), and KS0 and KC are as shown in (50) and 
(51). 

 S0
ZS0 ZS1K

ZS1
−

=   (50) 

 C
C0K

2 • C1 C0
=

+
  (51) 

Keep in mind that the comparator in (48) for a single 
A-phase-to-ground fault is identical to the comparator for 
three-phase faults in (38), with the exception of the term KSL0 
that multiplies ZS1. 

Fig. 15 shows the variation of KSL0 when the fault is 
applied at a distance d varying from 0 to 1 pu and for a 
distance element installed at Bus L for the system in Fig. 6. 
Obviously, there is little variation in the magnitude and phase 
angle of KSL0. 
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Fig. 15. Magnitude and phase angle of the coefficient KSL0 when the fault 
distance varies from 0 to 1 pu for the system in Fig. 6 

    2)  Mho Element Characteristic for Single A-Phase-to-
Ground Faults With PSV Polarization  
When the polarizing voltage is equal to the PSV without 

any memory, the polarization becomes (52). 

 OP _ AG 0

POL _ AG

S r • ZL1• (IA K I0) VA

S VA1

= + −

=
  (52) 

 The development for a single A-phase-to-ground fault is 
similar to that of a three-phase fault. The operating and 
polarizing quantities for the A-phase-to-ground fault loop in 
the impedance plane are shown in (53). 

 
'
OP _ AG APP

'
POL _ AG SL0 CC APP

S r • ZL1 Z

S ZS1• (K K ) Z

= −

= − +
  (53) 

In (53), the variable KCC is equal to (54). 

 RAG
CC

0

C1• KC1K
2C1 C0(1 K ) 3

= =
+ +

  (54) 

Fig. 16 shows the variation of (KSL0 – KCC) for a distance 
element located at Bus L in Fig. 6 when a fault is applied a 
distance d varying from 0 to 1 pu. As expected, there is little 
variation in the magnitude and phase angle of the factor (KSL0 
– KCC). 
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Fig. 16. Magnitude and phase angle of the coefficient (KSL0 – KCC) when the 
fault distance varies from 0 to 1 pu for the system in Fig. 6 

    3)  Incremental Distance Element Characteristic in the 
Impedance Plane for Single A-Phase-to-Ground Faults 
Just as in the three-phase fault case, the prefault voltage at 

the fault location and the incremental voltage drop at the reach 
point for the single A-phase-to-ground loop are given by (55). 

 AG PF LD

AG AG

Ef VA d • ZL1• I
Vd VA r • ZL1• IR

= −

= −∆ + ∆
  (55) 

In (55), ∆IRAG is equal to (56). 
 AG 0IR IA K • I0∆ = ∆ +   (56) 
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Following the same procedure applied for the three-phase 
fault case provides (57) for an unloaded system. 

 

' AG
AG SL0 APP _ NLD

AG

' AG
AG SL0

AG

Ef
Ef K • ZS1 Z

IR
Vd

Vd K • ZS1 r • ZL1
IR

= = +
∆

= = +
∆

  (57) 

    4)  Comparison of Mho and Incremental Distance 
Element Characteristics for Single-Phase Faults 
For distance elements installed at Bus L for the power 

system shown in Fig. 6, Fig. 17 plots the three distance 
element characteristics for faults in the middle of the line 
(d = 0.5 pu). Again, the incremental distance element is the 
one that exhibits the largest mho expansion. 

Fig. 18 shows the resistance coverage of the mho element 
with PSV and PSVM polarizations and the incremental 
distance element. Again, the incremental distance element has 
the best coverage. Note that the conventional mho element 
with PSV polarization has a better resistance coverage than 
the same element applied to three-phase faults, as shown in 
Fig. 10. This is due to the fact that there is still PSV (provided 
by the two remaining healthy phases), even for a single 
A-phase-to-ground fault at the substation. 
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Fig. 17. Single-phase-to-ground fault mho and incremental distance element 
characteristics for a relay installed at Bus L of the network in Fig. 6 at d = 
0.5 pu 
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Fig. 18. Single A-phase-to-ground fault resistance coverage as a function of 
the distance to the fault 

Fig. 18 shows that for the power system in Fig. 6, the 
maximum fault resistance for a fault 50 percent down the line 
from Bus L that the incremental distance element can detect is 
1.43 ohms. The apparent impedance for the A-phase-to-
ground fault is verified in (58). 

 
APP _ NLD F

F RAG
AG

Z (d 0.5, R 1.43)

VA d • ZL1 R • K (1.356 j1.19)
IA

= = =

= + = + Ω
∆

  (58) 

This apparent impedance is plotted in Fig. 17 and falls 
exactly on the incremental distance characteristic circle. Just 
as in the three-phase fault case, if the fault resistance is 
increased, the loop apparent impedance falls outside the 
characteristic circle. 

C.  Case of Phase-to-Phase Faults 

    1)  Mho Element Characteristic for B-Phase-to-C-Phase 
and B-Phase-to-C-Phase-to-Ground Faults With PSVM 
Polarization  
For a B-phase-to-C-phase fault, the operating and 

polarizing quantities with PSVM polarization for a 
conventional mho element can be expressed as (59). 

 OP _ BC

POL _ BC MEM MEM

S r • ZL1• (IB IC) (VB VC)

S VB1 VC1

= − − −

= −
  (59) 

With an approach similar to the three-phase fault analysis 
and assuming a system with no load (ILD = 0), (59) can be 
expressed in the loop impedance plane as (60). 

 

' OP
OP _ BC APP _ NLD

' POL
POL _ BC APP _ NLD

S
S r • ZL1 Z

IBC
S

S ZS1 Z
IBC

= = −

= = +
  (60) 

This characteristic is the same as that of the three-phase 
faults in (38). 

    2)  Mho Element Characteristic for B-Phase-to-C-Phase 
and B-Phase-to-C-Phase-to-Ground Faults With PSV 
Polarization 
When the polarization voltage is equal to the PSV without 

any memory, (59) becomes (61). 

 OP _ BC

POL _ BC

S r • ZL1• (IB IC) (VB VC)

S VB1 VC1

= − − −

= −
  (61) 

Just as in the previous three-phase fault case, the operating 
and polarizing quantities in the loop impedance plane are 
determined as shown in (62).  

 

'
OP _ BC APP _ NLD

'
POL _ BC APP _ NLD

S r • ZL1 Z

ZS1S Z
2

= −

= +
  (62) 

The comparator in (62) for a phase-to-phase or phase-to-
phase-to-ground fault is identical to the comparator for the 
three-phase fault in (38), with the exception of the divide by 
two term for ZS1.  



11 

 

    3)  Incremental Distance Element Characteristic in the 
Impedance Plane for B-Phase-to-C-Phase and B-Phase-to-
C-Phase-to-Ground Faults 
The prefault voltage and incremental voltage drop for the 

phase-to-phase B-phase-to-C-phase fault loop are provided by 
(63). 

 
2 2

BC PF LD

BC

Ef VA • (a a) d • I • (a a)
Vd ( VB VC) r • ZL1• ( IB IC)

= − − −

= − ∆ − ∆ + ∆ − ∆
  (63) 

Finally, applying the same procedure as that for the three-
phase fault case results in (64). 

 

' BC
BC APP _ NLD

' BC
BC

Ef
Ef ZS1 Z

IBC
Vd

Vd ZS1 r • ZL1
IBC

= = +
∆

= = +
∆

  (64) 

Equation (64) is identical to the three-phase fault equation 
in (43). 

    4)  Comparison of the Conventional Mho and 
Incremental Distance Element Characteristics for Phase-
to-Phase Faults 
The distance element characteristics in Fig. 19 for a relay 

installed at Bus L on the power system shown in Fig. 6 
demonstrate that the incremental distance element once again 
provides the greatest expansion.  
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Fig. 19. Phase-to-phase fault mho and incremental distance element 
characteristics for a relay installed at Bus L of the network in Fig. 6 

Fig. 20 shows the resistance coverage for all three 
elements; again, the incremental distance element provides the 
best resistance coverage. 
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Fig. 20. B-phase-to-C-phase fault resistance coverage as a function of the 
distance to the fault 

VI.  COMPARISON BETWEEN MHO AND INCREMENTAL 
DISTANCE ELEMENT CHARACTERISTICS 

A.  Characteristics comparison 
When comparing Fig. 9, Fig. 17, and Fig. 19, it is clear that 

all three mho element characteristics with PSVM as the 
polarizing voltage for three-phase, single-phase, and double-
phase faults are almost equal to one another. The same 
observation is true for the three corresponding characteristics 
of the incremental distance elements. The only characteristic 
that exhibits some significant change in its expansion is the 
conventional mho element with PSV polarization. In all cases, 
the conventional mho element with PSV always exhibits the 
smallest expansion of the mho element characteristic. 

In all cases, the incremental distance element exhibits 
superior mho expansion when compared with the conventional 
mho element for all fault types, in the sense that they cover a 
larger area without overreaching in the loop impedance plane. 
This translates to better resistance coverage, and therefore 
increased sensitivity. Furthermore, the incremental distance 
element is immune to load. Section VIII explains that because 
the incremental distance element covers a larger portion of the 
impedance plane, which also includes the capacitive 
reactance, it allows this element to handle both voltage and 
current inversion when applied to series-compensated 
systems. 

B.  Limits of mho and incremental distance element modeling 
in this paper 

The characteristics presented in this paper are derived from 
models that each include a single comparator. A single phase 
comparator is used to model the mho elements, and a single 
amplitude comparator is used to model the incremental 
distance elements. In reality, the single comparator for each 
element could be one among a few others in a practical 
implementation. Other potential conditions could include 
minimum signal levels for directional supervision or 
overcurrent supervision, and these conditions could affect the 
characteristics presented in this paper. This paper does not 
address the issue of the impact of these possible additional 
conditions. 
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VII.  IMPLEMENTATION OF INCREMENTAL DISTANCE ELEMENT 
USING DELTA FILTERS 

A.  The Base Delta Filter 
In order to extract incremental voltage and current 

components, most applications have made use of so-called 
delta filters. The simplest form of a delta filter is represented 
in Fig. 21. 

v(t)

Reference Signal

∆v = v(t) – v(t – τ)

Delay τ 

+

–

 

Fig. 21. Simple delta filter 

Fig. 21 shows the original delta filter as applied to time 
varying signals (instantaneous quantities). The incremental 
quantity is obtained by subtracting the present instantaneous 
value (voltage or current) from the same quantity delayed by a 
time interval, typically equal to one power system cycle. The 
one-cycle-old signal (delayed signal) is the reference signal. 
The result of this calculation is the incremental change (∆) as 
experienced by the input signal for a time interval equal to  τ 
(τ determines the duration of the filter output for a disturbance 
to the input signal). During the steady-state condition defined 
by the constant magnitude and phase angle for voltages and 
currents, the output of the delta filter is zero. Typically, the 
delta filters are supervised by a disturbance detector that 
enables the delta filters should it detect a disturbance in the 
input signals. If the disturbance is due to a fault, the output of 
the delta filter corresponds to the change in voltage or current 
as a result of the fault for an interval of time equal to the 
delay τ. This change in voltage or current following a fault is 
commonly called the incremental voltage or current, or the 
superimposed component of voltage or current. 

Fig. 21 represents an application where the incremental 
quantity calculation is performed in the time domain. 
Applications of delta filters in the time domain lead to 
elements typically operating at ultra-high speed [7]. The same 
delta filter could be applied in the frequency domain where the 
time signal v(t) is simply replaced by a phasor quantity that 
has been obtained from the output of a filter. Because of the 
filtering delay, operating times are slower than they would be 
if time-domain signals are used. 

Conventional mho element implementation does not 
require the use of delta filters, and the element processing is 
continuous, so it does not require disturbance detectors. 

B.  Delta Filter Characteristics 

    1)  Delta Filter Delay or Observation Window 
Fig. 21 shows that the delay τ determines the output 

duration of the delta filter. The delay τ is therefore the time 
interval following the fault inception during which any 
element consuming incremental quantities is operational. This 
delay τ is typically between 1 to 2 power system cycles [1] [7] 
[8]. 

The operational availability of a conventional mho element 
is theoretically infinite. The only factor that could influence 
the operational availability of a conventional mho element is 
the availability of the PSVM polarization. For close-in three-
phase faults, the requirement is that the PSVM must be 
available longer than the breaker failure time. In an 
application of series-compensated lines where voltage 
inversion is possible, the PSVM must be available longer than 
the operating time of the reverse-looking conventional mho 
distance element. 

    2)  Delta Filter Reset Time 
When applying the superposition principle as embodied in 

(3), it is necessary to define a new prefault voltage and current 
value every time a topological change has occurred on the 
power system. Practically, during a cascade of events that may 
occur over a short period of time, the nature of the delta filter 
is such that the succession of changes could become 
intractable. One solution to this issue is to block the delta 
filters for a brief interval of time, from a few cycles after a 
first event or fault has been detected to after the delay τ has 
expired. This interval of time corresponds to the delta filter 
reset time. Any function based on incremental quantities is not 
operational during the delta filter reset time. 

Conventional mho elements do not have any reset time. 

C.  Limitations of Incremental Quantities 

    1)  Lack of Signals During Switch on to Fault Situations 
When a line is open and the line breaker is switched on an 

existing fault, measured prefault voltages and currents 
conditions are zero and do not correspond to the real prefault 
network values. During a switch on to fault situation, 
therefore, proper incremental quantities are not available. 

The only limitation of the conventional mho element 
during switch on to fault situations is that only PSV is 
available, and PSVM polarization could be missing after the 
fault inception.  

    2)  Incremental Quantities During Cascading Events 
As explained previously, during a cascade of events, the 

delta filters could be in their reset time interval and the 
incremental quantities would not be available. 

Conventional mho elements are normally not affected by 
cascading events. 

    3)  Evolving Faults 
An evolving fault is a fault for which the fault type changes 

with time. For example, a fault could evolve from A-phase-to-
ground to A-phase-to-B-phase-to-ground. Evolving faults that 
evolve with a time span greater than the delay τ are not 
detected by elements that consume incremental quantities. 

Conventional mho elements are not affected by evolving 
faults and should be able to track them. 

D.  Interpretation of the Distance Element Characteristic in 
the Loop Impedance Plane 

In order for any incremental distance element characteristic 
in the loop impedance plane to exist, it is necessary that the 
corresponding voltage and current incremental quantities be 



13 

 

different from zero. Whether the network is heathy or faulted, 
the output of a delta filter is zero in steady state. Following a 
fault, incremental quantities are non-zero only during an 
interval of time equal to the filter delay τ. It is only during this 
interval of time that the element characteristic in the 
impedance plane exists and that the location check of the 
apparent impedance can be performed. As explained 
previously, the conventional mho element characteristics in 
the impedance plane always exist. 

In steady state, when the incremental quantities are zero by 
definition, situations can develop where the apparent 
impedance of a particular impedance loop is inside a mho 
element characteristic and the mho element asserts. Because 
an incremental distance element characteristic is not defined in 
steady state, this element does not assert in the same situation. 

A good example of the proposition in the previous 
paragraph is an apparent impedance that is sitting still inside a 
phase mho element characteristic because of an overload 
condition. The mho element asserts, but the phase incremental 
distance elements do not pick up because the system is in 
steady state.  

E.  Speed of Functions Based on Incremental Quantities 
The technological trend has been to design incremental 

quantities-based functions and, particularly, incremental 
distance elements with operation time of a few milliseconds to 
less than one cycle [1] [7] [8]. Under these conditions, 
incremental distance elements are typically supplemented by 
slower, more dependable conventional mho elements. The 
combination of the two is arguably optimal in terms of speed 
and dependability. 

VIII.  MHO AND INCREMENTAL DISTANCE ELEMENTS WITH 
SERIES-COMPENSATED LINES 

Three well-known difficulties are associated with the 
application of distance elements to the protection of series-
compensated lines: Zone 1 overreaching, voltage inversion, or 
current inversion [9] [10]. Consider the system shown in 
Fig. 22 as an example. Note that the relay voltages are 
measured at Bus L behind the capacitor and that the fault 
distance is taken from the capacitor outer extremity to the fault 
point on the line. 

In Fig. 22, impedances are shown in primary values, but 
secondary values are used throughout the text and for all other 
figures. 
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Fig. 22. Series-compensated, 500 kV network 

A.  Capacitor-MOV Equivalent Circuit 
It has been demonstrated in [11] that the combination of a 

series capacitor with a metal-oxide varistor (MOV) in parallel 
can be represented by the linearized equivalent impedance of a 
resistance in series with a capacitance, as shown in Fig. 23. 
The values of the equivalent resistance and capacitor depend 
on the current IC flowing in the equivalent impedance. For the 
system shown in Fig. 22, Fig. 24 and Fig. 25 show the 
measured equivalent capacitance and resistance as a function 
of the fault secondary current. These plots have been obtained 
by calculating the ratio of the fundamental voltage phasor 
across the capacitor over the fundamental current phasor for 
different current fault levels. 
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Fig. 23. Series capacitor equivalent circuit 

2 4 6 8 10 12 14 16
–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

 Current (secondary A)

R
ea

ct
an

ce
 (o

hm
s)

 

Fig. 24. Equivalent capacitance XCEQ as a function of secondary current 
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Fig. 25. Equivalent resistance RCEQ as a function of secondary current 

B.  Sequence Network of Series-Compensated Circuit 
In order to derive the characteristic of either a conventional 

mho or incremental distance element in the loop impedance 
plane, it is necessary to build the fault sequence network. 
When it comes to a network similar to Fig. 22 with series 
compensation, [9] has demonstrated that this can be done only 
if the capacitor value is the same for all three phases. 
Otherwise, coupling develops between the positive-sequence, 
negative-sequence, and zero-sequence networks. The 
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following two conditions exist for which all three phases see 
the same capacitor value: 

• The MOV is removed. Therefore, the capacitor in each 
sequence network is equal to the original capacitor 
value. 

• The MOV is operating and a three-phase fault is 
applied. The capacitor in the positive-sequence 
network is equal to the equivalent impedance ZCEQ, 
which varies with the fault current. 

Fig. 26 shows the pure-fault sequence network for a three-
phase fault on the network shown in Fig. 22. The voltages and 
currents of this circuit can be resolved using an iterative 
technique in order to take into account the nonlinearity of the 
equivalent resistance and capacitance as provided by the plots 
shown in Fig. 24 and Fig. 25. RCEQ and XCEQ are changed 
iteratively until their calculated values correspond to the 
computed fault current. 

 d ZL1

–

+
ZS1 ZR1

 (1 – d) ZL1

RF

EfA

∆I1F

N1

RCEQ

–jXCEQ

 
Fig. 26. Pure-fault sequence network for three-phase fault on network in 
Fig. 22 

C.  Zone 1 Overreaching 
The overreaching issue associated with Zone 1 of a 

conventional mho element is also present in incremental 
distance elements. The same Zone 1 pull-back solution 
applied to conventional mho elements has to be applied to 
incremental distance elements. This is demonstrated by 
resolving the sequence network of Fig. 26 for a three-phase 
fault located at distance d, which varies from 0 to 1 pu. Two 
Zone 1 reach settings are tested at 40 and 80 percent of the 
line length. Fig. 27 shows the secondary fault current as the 
fault distance moves from 0 to 100 percent of the line length. 
The fault current determines XCEQ and RCEQ for the capacitor-
MOV combination, as provided by Fig. 24 and Fig. 25. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Distance to Fault (pu)

S
ec

on
da

ry
 F

au
lt 

C
ur

re
nt

 (A
)

 
Fig. 27. Three-phase fault current as a function of the distance to the fault 

Fig. 28 shows the scalar product relative to the mho AB 
impedance loop. Obviously, with a reach of 80 percent, the 
mho element overreaches for a fault at 100 percent because 
the scalar product is positive. With the Zone 1 reach set at 
40 percent, the mho element covers a little less than 80 percent 
of the line. 
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Fig. 28. AB loop mho element scalar product with reach equal to 40 and 
80 percent of ZL1 as a function of the distance to the fault 

 Fig. 29 shows the performance of the AB incremental 
distance element. For a fault at 100 percent and a Zone 1 reach 
of 80 percent, the incremental element is overreaching 
because VdAB is greater than VfAB. With a Zone 1 reach set at 
40 percent, the element covers a little less than 80 percent of 
the line. This example illustrates that the incremental distance 
element Zone 1 reach has to be reduced in the same proportion 
as the conventional mho elements.  
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Fig. 29. AB loop incremental distance VfAB and VdAB with reach equal to 40 
and 80 percent of ZL1 
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D.  Voltage Inversion 
For a system similar to that of Fig. 22, voltage inversion is 

traditionally defined as the condition that takes place when the 
inequalities in (65) are true [10]. 

 
EQ

EQ

ZC d • ZL1

ZS1 d • ZL1 ZC

>

+ >
  (65) 

Equation (65) embodies the principle that the impedance 
between the relaying point and the fault point is capacitive, 
but the overall impedance between the source behind the relay 
and the fault point is still inductive. 

The most onerous condition develops if a three-phase fault 
is applied at distance d = 0 with the MOV removed. The loop 
apparent impedance is simply equal to the capacitive 
reactance, as shown in (66). 
 APPZ jXC= −   (66) 

Fig. 30 shows the location of the loop apparent impedance 
relative to the three-phase mho and incremental distance 
element characteristics when a three-phase fault is applied at 
distance d = 0 for the system in Fig. 22 and where the Zone 1 
reach is set to 50 percent of the line length. 

–100

–50

0

50

–50 0 50

Im
ag

in
ar

y 
(Z

A
P

P
) _

(o
hm

s)

Real (ZAPP)_(ohms)

ZAPP at d = 0

Incremental Distance
Mho PSVM
Mho PSV

 

Fig. 30. Three-phase fault loop apparent impedance with voltage inversion 
for fault applied at d = 0 with original source impedance ZS1, MOV removed, 
and a reach of 50 percent 

Both the conventional mho distance element with PSVM 
polarization and the incremental distance element detect this 
fault (due to mho expansion). Only the conventional mho 
element with PSV polarization fails to detect the fault because 
its characteristic does not expand sufficiently enough to detect 
this type of fault. 

E.  Current Inversion 
For the system shown in Fig. 22, current inversion occurs 

when the condition in (67) is met [10]. 

 EQZC ZS1 d • ZL1> +   (67) 

Equation (67) embodies the principle that the overall 
impedance between the source behind the relay and the fault 
point is capacitive. 

For the system in Fig. 22, the source impedance ZS1 is 
divided by two in order to create a condition for current 
inversion. As for the voltage inversion case, the most onerous 
condition develops with a three-phase fault at distance d = 0 
with the MOV removed. The loop apparent impedance then 
corresponds again to (66). Fig. 31 shows the location of the 
loop apparent impedance relative to the three distance 
elements, conventional mho elements, and incremental 
distance element characteristics. The incremental distance 
element is the only one that detects the fault. This confirms the 
well-established fact that the mho element with PSVM 
polarization cannot normally handle current inversion. Note 
that the incremental distance element has no problem with 
current inversion. 
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Fig. 31. Three-phase fault loop apparent impedance with current inversion 
for a fault applied at d = 0 with source impedance divided by 2, MOV 
removed, and a reach of 50 percent 

F.  Example of Three-Phase Faults 
The sequence network shown in Fig. 26 is used to resolve 

cases of three-phase faults. The source impedance behind the 
relay (ZS1) is again divided by two so as to have a system that 
is more prone to current inversion. The three-phase faults are 
applied in front of the relay terminal (d = 0) with increasing 
values for RF. All of the distance element reaches r are set to 
50 percent of the line length. 

For a no-load condition, the apparent impedance (ZAPP_NLD) 
as seen by a phase impedance loop is demonstrated in (68). 

 F
APP _ NLD EQ

R
Z d • ZL1 ZC

C1
= + +   (68) 

The current distribution factor of (5) now becomes (69). 

 SER
EQ

(1 d) • ZL1 ZR1C1
ZS1 ZR1 ZL1 ZC

− +
=

+ + +
  (69) 
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Fig. 32 shows the locations of the apparent impedances for 
increasing RF together with the characteristics of the three 
distance elements if the relay were located at Bus L in Fig. 22. 
The conventional mho element with PSV polarization does 
not detect any of the faults. The conventional mho elements 
with PSVM polarization detect the faults up to a fault 
resistance RF of 6 ohms. The phase incremental distance 
elements detect faults with RF up to 34 ohms. Contrary to the 
case shown in Fig. 31, where the MOV was removed and the 
fault with current inversion was not detected by the mho 
element with PSVM polarization, the same element now 
detects the fault with zero resistance because the equivalent 
capacitor XCEQ is substantially reduced compared with XC 
due to the presence of the MOV and the high fault current (see 
Fig. 24). 
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Fig. 32. Location of apparent impedances as a function of the fault 
resistance for three-phase faults applied at d = 0 

Fig. 33 shows variations of the AB loop incremental 
quantities VfAB and VdAB as a function of the fault resistance 
RF. VdAB is greater than VfAB up to a resistance of 34 ohms. 
This is consistent with the Fig. 32 plot, which shows the 
apparent impedance with a resistance of 34 ohms right on the 
incremental distance three-phase fault characteristic. 
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Fig. 33. AB loop incremental quantities VfAB and VdAB for a three-phase 
fault at d = 0 as a function of fault resistance 

Fig. 34 shows the variation of the mho AB scalar products 
with PSVM and PSV polarizations. Obviously, the scalar 
product relative to the mho AB loop with PSV polarization 
never becomes positive. That corresponds in Fig. 32 to the 
apparent impedances that are never inside the blue dashed line 
characteristic. The mho AB scalar product with PSVM 
polarization is positive up to a fault resistance of about 
6 ohms. This is consistent with Fig. 32, which shows the 
apparent impedance with a 6-ohm resistance right above the 
blue line characteristic. 

0 10 20 30 40 50 60 70
–150,000

–100,000

–50,000

0

50,000

100,000

150,000

Fault Resistance (ohms)

M
ho

 A
B

 S
ca

la
r P

ro
du

ct
s 

(V
2 ) SP Mho AB (PSVM)

SP Mho AB (PSV)
Operate Threshold

 

Fig. 34. Mho AB scalar products with PSVM and PSV polarizations for a 
three-phase fault at d = 0 as a function of fault resistance 

Fig. 35 shows the variation of the resistance coverage for 
all three distance elements as the distance to the fault varies 
from 0 to 1 pu. The superiority of the incremental distance 
elements in terms of sensitivity and resistance coverage is 
again demonstrated. 
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Fig. 35. Resistance coverage for three-phase faults as a function of the 
distance to the fault for the network in Fig. 22 with ZS1 divided by 2 

IX.  CASE OF REVERSE AND RESISTIVE THREE-PHASE FAULTS 
Three cases exist where the reliability of mho elements 

with PSV polarization is particularly challenged and the risk 
of a misoperation is high. They are as follows: 

• Series-compensated lines with voltage inversion. 
• Three-phase bolted faults. 
• Resistive and reverse three-phase faults. 
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In order to illustrate the third case, Fig. 36 shows the 
maximum fault resistance RF that can be covered by 
conventional mho and incremental distance elements as a 
function of the reverse reach (in pu of the line length). The 
plots were obtained for the network in Fig. 6, where reverse 
three-phase faults are applied behind Bus L and the terminal 
imports power in steady state (VM has a phase angle lag of 
15 degrees with respect to VN). Obviously, the conventional 
mho element with PSV polarization does not perform well 
with an RF coverage close to zero [5]. The mho element with 
PSVM polarization does much better, and finally, the 
incremental distance exhibits superior performance. The plots 
indicate that the higher the reach, the higher the RF coverage 
for both the conventional mho element with PSVM 
polarization and the incremental distance element. 
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Fig. 36. Resistance coverage as a function of reverse reach for three-phase 
faults applied behind Bus L of the network in Fig. 6 

X.  IMPACT OF REMOTE INFEED (OR OUTFEED) ON THE 
DISTANCE ELEMENT REACH 

This section demonstrates that the underreaching effect due 
to remote infeed equally affects both the conventional mho 
element and the incremental distance element. In order to 
illustrate this, the three-terminal system shown in Fig. 37 has 
been created. The circuit in Fig. 37 is identical to the circuit in 
Fig. 6, with the exception of the added feeder and source. The 
T-point is exactly at 50 percent of the original line length. A 
three-phase fault is applied on the line, with the fault distance 
varying from 0 to 1 pu and the distance element reach set at 
80 percent. 
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d

 

Fig. 37. Addition of a feeder to the system in Fig. 6 

Fig. 38 shows the AB loop mho scalar product, which 
exhibits a discontinuity point at distance d = 50 percent, as 
expected. Past this distance, the element starts to underreach 
because of the infeed. The element detects the fault up to 
57 percent of the line length. Fig. 39 shows the plot of VfAB 
and VdAB and shows that the incremental distance behaves 
exactly as the conventional mho element. The amount of 
underreach is identical.  

In Fig. 38 and Fig. 39, the plots of the mho AB scalar 
product and VdAB, respectively, could be exactly superposed if 
the scaling were adjusted. This result should not be surprising, 
because for both elements, mho and incremental distance, the 
detection principles are based on the same equation, which is 
(8) in this paper. Similar conclusions can be reached with a 
remote outfeed. 
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Fig. 38. AB loop mho element scalar product with reach of 80 percent for a 
three-phase fault applied from distance 0 to 1 pu 
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Fig. 39. AB loop incremental distance VfAB and VdAB with a reach of 
80 percent for a three-phase fault applied from distance 0 to 1 pu 

XI.  IMPACT OF PARALLEL LINE WITH MUTUAL COUPLING ON 
DISTANCE ELEMENT REACH 

The principle described in the previous section can be 
applied in the case of parallel lines with mutual coupling: mho 
and incremental distance elements are affected in their 
underreaching or overreaching conditions in the same 
proportion, and the compensating principles to remove these 
problems are exactly the same for both distance elements. 
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In order to illustrate this, a double circuit line has been 
created using the same network as in Fig. 6 and is shown in 
Fig. 40. An identical line has been added in parallel, and the 
mutual impedance ZM0 has been set to 0.9 times the original 
ZL0. A single A-phase-to-ground fault is applied from 
distance 0 to 1 pu. The distance element reach is set at 
80 percent. 

L RZL1, ZL0

ZR1, ZR0ZS1, ZS0

VM

Relay

VN (θ°)

ZL1, ZL0
ZM0 = 0.9 • ZL0

d

 

Fig. 40. Parallel lines circuit based on network in Fig. 6 

Fig. 41 shows the variation of the AG loop incremental 
distance quantities VfAG and VdAG as a function of the 
distance to the fault. When no compensation is applied (VdAG 
in black trace), the element underreaches and covers up to 
70 percent of the line length. When compensation is applied 
(VdAG in blue trace), the element covers 80 percent of the line 
as expected. The compensation consists of adding the adjacent 
line zero-sequence current correction to the quantity VdAG, as 
would be done with a mho element, as shown in (70) [12]. 

AG 0 adj
ZM0Vd VA r • Z1L • ( IA K • I0 I0 • )
ZL1

= −∆ + ∆ + +   (70) 

This compensation type is normally not recommended 
because of its lack of practicality. It is used here only as an 
illustration because it provides a perfect mathematical 
compensation with zero error. As indicated in [12], a better 
compensation is the correction of the zero-sequence 
compensating factor K0.  
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Fig. 41. AG loop incremental distance VfAG and VdAG with a reach of 
80 percent for a single-phase fault applied from distance 0 to 1 pu 

Fig. 42 shows the scalar products of the AG loop mho 
element with and without compensation. Without 
compensation, the mho element underreaches in the same 
proportion as the incremental distance. The same 

compensation has been applied to the operating quantity of the 
mho element in (71). 

 opAG 0 adj
ZM0S r • ZL1• (IA K • I0 I0 ) VA
ZL1

= + + −   (71) 
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Fig. 42. AG loop mho scalar products with a reach of 80 percent for a 
single-phase fault applied from distance 0 to 1 pu 

The same comment can be made for this case as was made 
for the remote infeed case: the plots in Fig. 41 and Fig. 42 
could be exactly superposed if the scaling was adjusted. 
Again, this is proof that both distance elements, mho and 
incremental distance, use the same base equation in reality. 
This is (12) for single-phase-to-ground faults. 

XII.  CONCLUSION 
A fundamental difference between the characteristics in the 

impedance plane of the mho and incremental distance 
elements is that characteristics of incremental distance 
elements exist only if the corresponding incremental voltages 
and currents are non-zero. They are not defined in steady state. 

This paper shows that incremental distance elements 
exhibit characteristics in the loop impedance planes that have 
a larger intrinsic expansion than the ones shown with the 
maximum expansion of corresponding mho elements. As a 
consequence, incremental distance elements have better 
sensitivity and resistance coverage superior to corresponding 
mho elements. 

Because their characteristics cover a larger area in the 
capacitive reactance zone of the loop impedance plane and 
because of the inherent memory present with incremental 
distance elements, they also have a better and intrinsic 
capability to cope with voltage or current inversion when 
applied to series-compensated line protection. 

This paper demonstrates that the element reach for both 
mho and incremental distance elements is affected in the same 
proportions when it comes to Zone 1 with series 
compensation, remote infeed or outfeed, and, finally, parallel 
lines with mutual coupling. The same techniques to cope with 
conventional mho element issues can be applied to 
incremental distance elements. 
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If it were not for the limitations imposed by the delta filters 
in terms of an essentially reduced observation window, 
incremental distance elements would constitute a better choice 
as distance elements compared with mho elements. Because of 
these limitations, the technological trend has been to use them 
for the implementation of high or ultra-high speed distance 
elements where they are supplemented in parallel by slower 
conventional mho elements. 

XIII.  REFERENCES 
[1] G. Benmouyal and J. Roberts, “Superimposed Quantities: Their True 

Nature and Their Application in Relays,” proceedings of the 26th 
Annual Western Protective Relay Conference, Spokane, WA, 
October 1999. 

[2] G. Benmouyal, A. Guzmán, and R. Jain, “Tutorial on the Impact of 
Network Parameters on Distance Element Resistance Coverage,” 
proceedings of the 40th Annual Western Protective Relay Conference, 
Spokane, WA, October 2013. 

[3] R. J. Marttila, “Directional Characteristics of Distance Relay Mho 
Elements: Part I – A New Method of Analysis,” IEEE Transactions on 
Power Apparatus and Systems, Vol. PAS-100, No. 1, February 1981, 
pp. 96–102. 

[4] R. J. Marttila, “Directional Characteristics of Distance Relay Mho 
Elements: Part II – Results,” IEEE Transactions on Power Apparatus 
and Systems, Vol. PAS-100, No. 1, February 1981, pp. 103–113. 

[5] E. O. Schweitzer, III and J. Roberts, “Distance Relay Element Design,” 
proceedings of the 46th Annual Conference for Protective Relay 
Engineers, College Station, TX, April 1993. 

[6] D. D. Fentie, “Understanding the Dynamic Mho Distance 
Characteristic,” proceedings of the 69th Annual Conference for 
Protective Relay Engineers, College Station, TX, April 2016. 

[7] E. O. Schweitzer, III, B. Kasztenny, A. Guzmán, V. Skendzic, and M. 
V. Mynam, “Speed Of Line Protection – Can We Break Free of Phasor 
Limitations?” proceedings of the 68th Annual Conference for Protective 
Relay Engineers, College Station, TX, March 2015. 

[8] E. O. Schweitzer, III, B. Kasztenny, and M. V. Mynam, “Performance 
of Time-Domain Line Protection Elements on Real-World Faults,” 
proceedings of the 69th Annual Conference for Protective Relay 
Engineers, College Station, TX, April 2016. 

[9] B. Kasztenny, “Distance Protection of Series Compensated Lines – 
Problems and Solutions,” proceedings of the 28th Annual Western 
Protective Relay Conference, Spokane, WA, October 2001. 

[10] E. Bakie, C. Westhoff, N. Fischer, and J. Bell, “Voltage and Current 
Inversion Challenges When Protecting Series-Compensated Lines – A 
Case Study,” proceedings of the 69th Annual Conference for Protective 
Relay Engineers, College Station, TX, April 2016. 

[11] D. L. Goldsworthy, “A Linearized Model for MOV-Protected Series 
Capacitors,” IEEE Transactions on Power Systems, Vol. 2, No. 4, 
December 1987, pp. 953–957. 

[12] D. A. Tziouvaras, H. J. Altuve, and F. Calero, “Protecting Mutually 
Coupled Transmission Lines: Challenges and Solutions,” proceedings of 
the 67th Annual Conference for Protective Relay Engineers, College 
Station, TX, March 2014. 

XIV.   BIOGRAPHIES 
Gabriel Benmouyal, P.E., received his BASc in electrical engineering and 
his MASc in control engineering from Ecole Polytechnique, Université de 
Montréal, Canada. In 1978, he joined IREQ, where his main fields of activity 
were the application of microprocessors and digital techniques for substations 
and generating station control and protection systems. In 1997, he joined 
Schweitzer Engineering Laboratories, Inc. as a principal research engineer. 
Gabriel is a registered professional engineer in the Province of Québec and an 
IEEE senior member and has served on the Power System Relaying 
Committee since May 1989. He holds more than six patents and is the author 
or coauthor of several papers in the fields of signal processing and power 
network protection and control. 

Normann Fischer received a Higher Diploma in Technology, with honors 
from Technikon Witwatersrand, Johannesburg, South Africa, in 1988; a 
BSEE, with honors, from the University of Cape Town in 1993; a MSEE from 
the University of Idaho in 2005; and a PhD from the University of Idaho in 
2014. He joined Eskom as a protection technician in 1984 and was a senior 
design engineer in the Eskom protection design department for three years. He 
then joined IST Energy as a senior design engineer in 1996. In 1999, 
Normann joined Schweitzer Engineering Laboratories, Inc., where he is 
currently a fellow engineer in the research and development division. He was 
a registered professional engineer in South Africa and a member of the South 
African Institute of Electrical Engineers. He is currently a senior member of 
IEEE and a member of the American Society for Engineering Education 
(ASEE). 

Brian Smyth received a BSEE and MSEE from Montana Tech at the 
University of Montana in 2006 and 2008, respectively. He joined Montana 
Tech as a visiting professor in 2008 and taught classes in electrical circuits, 
electric machinery, instrumentation and controls, and power system analysis. 
He joined Schweitzer Engineering Laboratories, Inc. in 2009 as an associate 
power engineer in the research and development division. Brian is a lead 
product engineer in the transmission and substation group. He is a coauthor of 
several papers on battery impedance measurement and power system out-of-
step conditions. He is also an active IEEE member and a registered 
professional engineer in the state of Washington. 

 
 

Previously presented at the 2017 Texas A&M 
Conference for Protective Relay Engineers. 

© 2017 IEEE – All rights reserved. 
20170130 • TP6769-01 


	IEEE_Cover_Web_20171110
	6769_PerformanceComparison_GB_20170130

