

WHITE PAPER

Date Code 20160523 SEL White Paper LWP0020-01

Modbus® Register Addressing and Data Type Variations
Chris Bontje

INTRODUCTION
Much of the early development of the Modbus® protocol occurred in the 1970s and early 1980s
and so has become shrouded in time. This white paper describes the early days of programmable
logic controllers (PLCs), the introduction of Modbus protocol, how it evolved into an industry
standard, and some of the challenges today with device interoperability. The paper is not an in-
depth analysis of Modbus protocol structure and physical connections. Rather, because Modbus
has been adopted by various manufacturers, the paper describes challenges related to register
addressing and data type formatting. For additional details on Modbus protocol structure, refer to
the Modbus appendixes in the instruction manuals of Modbus-enabled SEL intelligent electronic
devices (IEDs).

MODICON PLC ADDRESSING
When the first digital Modicon® PLCs (xxx84 series) were released in the late 1970s, the
programming environment provided for these controllers included ladder logic rungs for a user to
program the PLC to control their particular process. Use of ladder logic for programming allowed
some commonality between traditional relay-based control circuits and the new digital controllers
(with accompanying I/O modules) that were rapidly replacing them. What was needed within the
ladder logic structure was a way to intelligently address the different signals from the I/O
modules on a global basis as well as to provide internal memory for calculation and logic results.

Addressing differences for the basic I/O card types were each assigned a base offset for their
particular data type. These are summarized in Table 1.

Table 1 Modicon PLC I/O Card Addressing

Card Type Address Range Internal Register Data Type Data Size

Digital output 1–9999 Coil 1 bit

Digital input 10001–19999 Discrete input 1 bit

Analog input 30001–39999 Input register 16 bits

Analog output 40001–49999 Holding register 16 bits

For example, the first digital input card in a PLC rack may have eight individual inputs assigned
to discrete input program addresses 10001–10008 (using what is called a 1X offset). The first
digital output card in the rack may have four outputs assigned the coil program addresses 1–4 (a
0X offset). With coil addressing syntax, leading zeros are occasionally used, so the alternate
addresses are 00001–00004. Internally to the PLC, each digital data type (coil or discrete input) is
assigned a single bit of memory and each analog data type (input or holding register) is assigned
16 bits.

As PLC usage and programs grew, so did the memory and address requirements, which
eventually exhausted the maximum of 9,999 addressable values per data type. To alleviate this
pressure, six-digit addressing was introduced to allow access to additional memory locations,

2

SEL White Paper LWP0020-01 Date Code 20160523

with the upper limit of a fixed 16-bit address space (65,536). In six-digit addressing, the offset
references stayed the same for the various data types but an extra digit was added (e.g., holding
registers became addresses 400001–465536).

In addition to representing actual I/O signals, the two output address ranges (coils for digitals and
holding registers for analogs) were also frequently assigned as temporary “scratchpad” variables
for use as logic outputs in ladder logic programming. For example, whereas Holding Registers
40001–40004 can represent an actual analog output card with four 4–20 mA outputs,
Holding Registers 40101–40201 can represent user logic outputs that contain calculation results.

MODICON LADDER LOGIC PROGRAMMING METHODOLOGY
When programming ladder logic using these addresses, each line of logic code is arranged into
rungs with logical inputs on the left-hand side and outputs on the right-hand side. Figure 1 shows
a sample ladder program diagram.

In Rung 1, Digital Inputs 10001 and 10002 are connected in series, creating a logical AND. The
output of this statement is written to Digital Output 1.

In Rung 2, Input Register 30001 is multiplied (via the MUL calculation block) by a constant of 30
and the output is written to Holding Register 40101 for later use.

10001 10002 1

Rung 1

Rung 2 #30

30001

MUL
40101

Figure 1 Sample Ladder Logic

MODBUS PROTOCOL
In the early 1980s, the introduction of multiple coexisting PLCs and PC-based hardware to
control systems created the need for a standardized interface to connect various pieces of
equipment in order to read and write values from and to a given PLC. In response to these
changing customer needs, Modicon developed and published an open-standard binary protocol
known as Modbus that could enable the exchange of data between two serially connected devices.
Modbus was both simple and powerful enough that it soon became widely accepted by many
manufacturers as an industry standard to interconnect various pieces of digital industrial
hardware. A typical use of Modbus was to use a PC to run a Modbus-enabled human-machine
interface (HMI) software package that provided animated mimic screens illustrating the live
process that the PLC was controlling.

Modbus was designed as a master/slave (also known as client/server) protocol where a single
master in the communications network requested a data type with a specific range of addresses
from an addressable slave, and the slave responded with the requested data. The range of
addresses in a request message is determined by two values: a base address and a quantity. The
data types used in Modbus protocol are designed around the four internal data types previously
designated by Modicon for use in their PLCs, and each data type is specified by the master with
the use of a unique function code.

3

Date Code 20160523 SEL White Paper LWP0020-01

The primary function codes used by Modbus protocol include those shown in Table 2.
Table 2 Modbus Protocol Function Codes

Function Code Value (Hexadecimal) Description Function Type

0x01 Read coil status Read

0x02 Read discrete input status Read

0x03 Read holding registers Read

0x04 Read input registers Read

0x05 Force single coil Write

0x06 Preset single holding register Write

At the binary protocol level, each of the four different data types uses a series of indexed
addresses, starting with a register address of 0. For example, if a Modbus master wanted to read
the first eight holding registers from Modbus Slave 1, it issued a request to a specific address
using the following parameters:

• Slave address: 1

• Function code: 0x03

• Register base address: 0

• Register quantity: 8

ADDRESSING CONFUSION
Confusion surrounding Modbus protocol register addressing arises from the fact that different
manufacturers address registers using different syntax standards. For example, is the first holding
register referred to as 40001 or is it 0? Recall that, as originally designed for use in a Modicon
PLC, the first holding register actually was address 40001, but Modbus protocol at a binary level
reads that same 16-bit memory location using address 0. Conversion between the two syntaxes is
straightforward but does require some numeric manipulation. At its simplest, subtracting 40001
from a Modicon holding register address (for example) generates the raw address used in
Modbus. The other data types can be converted using similar methods.

Table 3 shows a mockup of a Modbus register memory map from a non-SEL meter. Note the
originally documented addresses in the Address column and the addition of the Raw Address
column not present in the non-SEL meter’s original table.

Table 3 Non-SEL Meter Modbus Register Memory Map

Label Address Raw Address Number of
Registers Format Scaling

Vln A 40011 10 1 UINT16 10

Vln B 40012 11 1 UINT16 10

Vln C 40013 12 1 UINT16 10

Vln avg 40014 13 1 UINT16 10

4

SEL White Paper LWP0020-01 Date Code 20160523

If a master scans these four voltage quantities, it needs to generate a request message using
function code 0x03, a register base address of 10, and a register quantity of 4. According to the
manufacturer’s documentation, the format of each register in the response is an unsigned 16-bit
integer (with a range of 0–65535) and has a scaling factor of 10 preapplied to preserve a single
decimal place from the original voltage quantity.

As a rule, all Modbus-compatible SEL devices use raw addressing with regards to registers. In
Figure 2, a similar set of register data is shown from the SEL-735 Power Quality and Revenue
Meter Instruction Manual (Appendix E: Modbus Communications Protocol). In the SEL-735
Instruction Manual, the LONG100 data type is defined as a 32-bit signed integer quantity that
occupies two sequential 16-bit register addresses and has a scaling factor of 100 preapplied. All
quantities marked with an R can be read using function code 0x03.

Figure 2 SEL-735 Modbus Registers

If a Modbus master wants to scan the three voltage quantities shown in Figure 2, it generates a
request using function code 0x03, starting at register address 358 with a register quantity of 6.
Each incoming pair of 16-bit registers in the response needs to be reassembled as a 32-bit signed
integer (with a range of –2147483647 to 2147483647) and has two decimal points of precision
preserved from the original quantity because of the multiplication factor of 100. For reference, the
hexadecimal addresses shown in Figure 2 represent the actual hexadecimal digits present in the
binary Modbus scan.

The two register addressing approaches illustrated by these examples are used in most cases, but
there are a few specific cases where manufacturers have deviated from these standards. Some
examples of these deviations for holding registers include the following:

• 1-based raw addressing where the data type offset (e.g., 4X) is implied elsewhere. In this
case, subtract 1 from each address.

• Raw addressing that uses a Modicon address (e.g., 40001) as an actual base address. In
this case, the raw base address of holding registers is actually 40001, which equates to
0x9C41 in the protocol message. This format is especially confusing because it combines
the two standards.

In these cases, it is important to remember that the underlying Modbus protocol itself does not
change or deviate, and these are all just syntax variations for register documentation.

5

Date Code 20160523 SEL White Paper LWP0020-01

ADDRESS CONVERSIONS
A quick reference for the various data type address conversions is provided by Table 4 through
Table 7.

Table 4 Coils

Raw Modicon Five-Digit Modicon Six-Digit

0 00001 000001

100 00101 000101

9998 09999 009999

9999 No addressing possible 010000

10000 No addressing possible 010001

Table 5 Discrete Inputs

Raw Modicon Five-Digit Modicon Six-Digit

0 10001 100001

100 10101 100101

9998 19999 109999

9999 No addressing possible 110000

10000 No addressing possible 110001

Table 6 Input Registers

Raw Modicon Five-Digit Modicon Six-Digit

0 30001 300001

100 30101 300101

9998 39999 309999

9999 No addressing possible 310000

10000 No addressing possible 310001

Table 7 Holding Registers

Raw Modicon Five-Digit Modicon Six-Digit

0 40001 400001

100 40101 400101

9998 49999 409999

9999 No addressing possible 410000

10000 No addressing possible 410001

6

SEL White Paper LWP0020-01 Date Code 20160523

HOLDING AND INPUT REGISTER DATA TYPE VARIATIONS
Recall that Modbus protocol only defines analog register data (holding or input) as a simple
16-bit value. What is not specified about that 16-bit data value is how it should be represented as
a real-world quantity. Each particular interpretation of the raw 16-bit register data type can be
referred to as a variation.

The most popular variations used in SEL and common third-party devices are documented in this
section using the following holding registers and their contents:

• Register 0 contains the 16-bit value of 0x1234 (00010010 00110100 in binary).

• Register 1 contains the 16-bit value of 0xABCD (10101011 11001101 in binary).

16-Bit Signed Integer
For the 16-bit signed integer variation, the quantity is interpreted directly from the 16-bit register
contents with two’s complement conversion applied to generate negative values (see Table 8).
The most significant bit is considered the sign bit, representing negative values if set. The real-
time automation controller (RTAC) platform refers to this variation as 16-bit signed MSB (most
significant byte). A rarely used reverse-byte-order interpretation uses the corresponding least
significant byte (LSB) variant.

Table 8 16-Bit Signed Integer Register Formatting

Minimum Value Maximum Value Register 0 Quantity Register 1 Quantity

–32768 32767 4660 –21555

16-Bit Unsigned Integer
For the 16-bit unsigned integer variation, the quantity is interpreted directly from the 16-bit
register contents without any conversion applied, and only positive quantities are supported (see
Table 9). The RTAC platform refers to this variation as 16-bit unsigned MSB. A rarely used
reverse-byte-order interpretation uses the corresponding LSB variant.

Table 9 16-Bit Unsigned Integer Register Formatting

Minimum Value Maximum Value Register 0 Quantity Register 1 Quantity

0 65535 4660 43981

32-Bit Signed Integer
For the 32-bit signed integer variation, the quantity is interpreted by combining the two 16-bit
registers’ contents sequentially to create a 32-bit value (0x1234ABCD) with two’s complement
conversion applied to generate negative values (see Table 10). The most significant bit is
considered the sign bit, representing negative values if set. The RTAC platform refers to this
variation as 32-bit signed MSR (most significant register). If the two 16-bit registers are
interpreted in reverse order (0xABCD1234), the variant used is 32-bit signed LSR (least
significant register).

Table 10 32-Bit Signed Integer Register Formatting

Minimum Value Maximum Value Register Data MSR Quantity LSR Quantity

–2147483648 2147483647 0x1234ABCD 305441741 –1412623820

7

Date Code 20160523 SEL White Paper LWP0020-01

32-Bit Unsigned Integer
For the 32-bit unsigned integer variation, the quantity is interpreted by combining the two 16-bit
registers’ contents sequentially to create a 32-bit value (0x1234ABCD) without any conversion
applied, and only positive quantities are supported (see Table 11). The RTAC platform refers to
this variation as 32-bit unsigned MSR. If the two 16-bit registers are interpreted in reverse-order
(0xABCD1234), the variant is 32-bit unsigned LSR.

Table 11 32-Bit Unsigned Integer Register Formatting

Minimum Value Maximum Value Register Data MSR Quantity LSR Quantity

0 4294967295 0x1234ABCD 305441741 2882343476

32-Bit Floating Point
For the 32-bit floating point variation, the quantity is interpreted by combining the two 16-bit
registers’ contents sequentially to create a 32-bit value (0x1234ABCD) and applying IEEE 754
single-precision floating-point formatting (see Table 12). The formulas defined by IEEE 754 split
the 32-bit value into three components: the sign (1 bit), the exponent (8 bits), and the fraction or
mantissa (23 bits). The format itself supports negative and positive values with decimal-point
precision, where precision decreases as the quantity itself increases. The RTAC platform refers to
this variation as 32-bit float MSR. If the two 16-bit registers are interpreted in reverse order
(0xABCD1234), the variant is 32-bit float LSR.

Table 12 32-Bit Floating Point Register Formatting

Minimum Value Maximum Value Register Data MSR Quantity LSR Quantity

–3.4028E+38 3.4028E+38 0x1234ABCD 5.7009E–28 –1.4571E–12

Bit-Packed 16-Bit Register

The real-world quantities determined from the 16-bit register contents in this case must be
considered on a bit-by-bit basis, and the register contents as a whole generally have little
meaning. A Boolean value (0 or 1) is assigned to a particular position within the 16-bit register so
that each bit position indicates an on/off status for some given signal.

For example, Register 1780 in the SEL-710 Motor Protection Relay is a bit-packed register (Trip
Status LO). If the value of Register 0 (0x1234 or 00010010 00110100) is applied to this particular
trip status, the SEL-710 will report Jam, Overcurrent, RTD Winding Bearing, Underpower, and
Phase Reversal, as shown in Table 13.

8

SEL White Paper LWP0020-01 Date Code 20160523

Table 13 SEL-710 Trip Status Bit-Packed Register

Bit Position Value Description

0 0 (off) Overload

1 0 (off) Undercurrent

2 1 (on) Jam

3 0 (off) Current underbalance

4 1 (on) Overcurrent

5 1 (on) Resistance temperature detector
(RTD) winding or bearing trip

6 0 (off) Positive temperature coefficient
switching thermistor

7 0 (off) Ground current

8 0 (off) VAR

9 1 (on) Underpower

10 0 (off) Undervoltage

11 0 (off) Overvoltage

12 1 (on) Phase reversal

13 0 (off) Power factor

14 0 (off) Speed switch

15 0 (off) Neutral current

CONCLUSION
This paper documents Modbus protocol and many of the common quirks and intricacies that
occasionally change a very simple protocol into something much more complicated. Because a
core Modbus protocol standard has been maintained that is very rudimentary, much of the more
advanced functionality present in other protocols today (advanced numeric types, file transfers,
and so on) has been determined by manufacturer-specific design choices, which creates problems
with manufacturer interoperability. The paper does not explain every possible variation in
addressing or register formatting, but it does provide a good start to understanding the reasoning
behind how Modbus is implemented in modern devices.

BIOGRAPHY
Chris Bontje has been involved in the integration, supervisory control and data acquisition
(SCADA), and automation disciplines since 2000. He graduated from the Southern Alberta
Institute of Technology in 2000 and has worked for a variety of firms in the United States and
Canada performing remote terminal unit, programmable logic controller, and SCADA
programming and system design. He has been with Schweitzer Engineering Laboratories, Inc.
(SEL) since 2011 and works as an application specialist in automation for the south-central
region, which includes Colorado, Oklahoma, Texas, Kansas, and Missouri. He has written
numerous technical documents at SEL concerning protocol decoding and real-time automation
controllers.

9

Date Code 20160523 SEL White Paper LWP0020-01

10

SEL White Paper LWP0020-01 Date Code 20160523

© 2016 by Schweitzer Engineering Laboratories, Inc. All rights
reserved.

All brand or product names appearing in this document are
the trademark or registered trademark of their respective
holders. No SEL trademarks may be used without written
permission.

SEL products appearing in this document may be covered by
US and Foreign patents.

LWP0020-01

