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Abstract—Single- and double-ended fault location algorithms 
were among the first algorithms studied and devised in the field 
of numerical power network protection. These fault location 
methods, which have become conventional and are implemented 
in modern transmission line relays, have been recently 
supplemented with fault location based on traveling waves. 
Practically all the fault location methods assume a three-pole 
closed or normal mode of operation during the fault. The 
purpose of this paper is to demonstrate that errors will exist with 
the conventional single- or double-ended fault location 
calculation if the fault occurs during a pole-open condition, as 
could happen with single-pole reclosing. Compensated 
algorithms are presented that achieve accurate and error-free 
fault location under these conditions. 

I.  INTRODUCTION 
Single-ended fault location algorithms were among the first 

studied and developed at the onset of the digital protection 
technology era. These algorithms were also the first 
successfully implemented in numerical transmission line 
relays [1] [2]. Double-ended fault location algorithms 
followed, overcoming some of the shortcomings of earlier 
single-ended methods and achieving better accuracy [3] [4].  

When applying single-pole tripping and reclosing schemes, 
a fault during a single-pole-open condition is rare but cannot 
be considered exceptional [5] [6]. This paper shows that 
conventional fault location calculations based on single- or 
double-ended data exhibit significant errors following a pole-
open condition. Subsequently, this paper shows that 
compensated and corrected equations help achieve a level of 
accuracy equivalent to that found with a normal mode of 
operation (faults occurring with three poles closed). Recently, 
traveling wave-based fault location techniques have been 
introduced that achieve unprecedented accuracy with absolute 
distance accuracies better than 100 meters (300 feet) [7]. 
Although traveling wave-based fault location would maintain 
the same accuracy during a pole-open condition, the methods 
in this paper still use impedance-based techniques and process 
all six voltage and current waveforms from a single end or 
both ends of a transmission line. 

The paper first reviews conventional single- and double-
ended fault location principles and then introduces the 
required compensating formulas to take into account a pole-
open condition. 

II.  CONVENTIONAL SINGLE-ENDED FAULT LOCATION 

A.  Generic Equation of Distance Relaying 
When applying distance protection to the elementary power 

network shown in Fig. 1, the apparent loop impedance (ZLP) 

seen from the left bus and calculated for any of the six 
possible faulted loops (three for ground faults and three for 
phase faults) can be expressed by the following generic 
equation [8]: 

 LP LP
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Fig. 1. Elementary single-line power system 

In (1), VLP and ILP are the voltage and current relative to the 
particular faulted loop, d is the distance to the fault in per unit 
(pu) of the line length, ZL1 is the line positive-sequence 
impedance, Rf is the fault resistance, KLP is a factor involving 
network parameters, and KI is the ratio of the faulted loop 
current over the change of the same current. Reference [8] 
presents the voltage and current for any of the six possible 
faulted loops together with the corresponding KLP factor. The 
location of the fault resistance (Rf) for the different fault loops 
is also shown in the same reference. 

Using the demonstration of (1) for the particular case of the 
Phase-A-to-ground faulted loop in Reference [8], we end up 
with the following variables (defined for a relay installed on 
the left bus): 

 LP AG

LP AG 0

V V VAL
I I IAL K • I0L

= =

= = +
  (2) 

 
( )LP AG

0

3K K
2C1 C0 1 K

= =
+ +

  (3) 

 
( )

( )
0LP LP

I
LP LD LP 0 LD

IAL K • I0LI I
K

I – I I IAL K • I0L – I
+

= = =
∆ +

  (4) 

In (2), K0 is the zero-sequence compensation factor: 

 0
ZL0 – ZL1K

ZL1
=   (5) 

In (3), C1 is the positive-sequence current distribution 
factor, seen from the left bus, relative to the network in Fig. 1. 
C2, the negative-sequence current distribution factor of the 
same network is equal to C1. C0 is the zero-sequence network 
current distribution factor. All three quantities are provided as: 

 
( )1– d ZL1 ZR1

C1 C2
ZL1 ZS1 ZR1

+
= =

+ +
  (6) 
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( )1– d ZL0 ZR0

C0
ZL0 ZS0 ZR0

+
=

+ +
  (7) 

In (4), ILD is the load or the prefault loop current. For a 
Phase-A-to-ground fault, the prefault current is: 

 AG _ pf
VS – VTI

ZL1 ZS1 ZR1
=

+ +
  (8) 

B.  Takagi Principle for Fault Location 
Starting with (1), the Takagi principle for single-ended 

fault location can be defined by expressing the voltage of a 
particular impedance loop as follows [1]: 

 ( )LP LP LP LP LDV d • ZL1• I Rf • K I – I= +   (9) 

The Takagi principle for single-ended fault location 
assumes that the factor KLP is a pure real number, so if we 
multiply both sides of the equation by the conjugate of the 
difference current (ILP – ILD) and equate the imaginary parts of 
both sides of the equation, we have: 

 ( )( )2
LP LPIm Rf • K • I 0∆ =   (10) 

We end up with the following expression for the distance 
to the fault: 

 
( )

( )
LP LP

LP LP

Im V • conj I
d

Im ZL1• I • conj I
∆  =

∆  
  (11) 

C.  Modified Takagi Method 
The Takagi method as expressed in (10) and (11) could be 

fraught with errors because of the assumption that the factor 
KLP is a real number. A correction factor can be introduced by 
defining a tilt angle, θ, in (12). This tilt angle compensates for 
the phase angle of the factor KLP that was neglected in the first 
place. First, we express the complex number KLP in polar 
form: 

 j
LP LPK K • e θ=   (12) 

We multiply both sides of (9) by the next quantity and 
equate the imaginary parts of both sides of the new equation: 

 ( )j
LPconj I • e θ∆   (13) 

The following identity is applicable: 

 ( )j j
LP LP LPIm Rf • K • e • I • conj I • e 0θ θ ∆ ∆ =    (14) 

We end up therefore with the expression (15) for the 
distance to the fault: 

 
( )

( )

j
LP LP

j
LP LP

Im V • conj I • e
d

Im ZL1• I • conj I • e

θ

θ

 ∆ =
 ∆ 

  (15) 

In (15), the angle θ is, in reality, a function of the distance 
(d) to the fault. If this function is known (and that implies an 
accurate knowledge of all the network impedances, 
particularly the source impedances), an iterative approach can 
be used to solve it. Typically, a simplified approach is taken 

where a single value of θ is used for the entire range of the 
distance (d) (varying from 0 to 1). 

D.  Eliminating the Prefault Current 
For certain fault types, such as single-phase-to-ground 

faults, it is possible to eliminate the prefault current by 
expressing the voltage of the faulted impedance loop as a 
function of the total current at the fault [8]: 
 AG AGV d • ZL1• I 3Rf • I1F= +   (16) 

For single Phase-A-to-ground faults, we have at the fault 
location for the total sequence currents [8]: 
 I1F I2F I0F= =   (17) 

The negative- and zero-sequence currents at the relay can 
be expressed as the following functions of the total negative-
and zero-sequence currents at the fault: 

 
I2L C2 • I2F
I0L C0 • I0F

=
=

  (18) 

Equation (16) can now be expressed as a function of the 
zero-sequence current at the relay: 

 AG AG
I0LV d • ZL1• I 3Rf •
C0

= +   (19) 

The zero-sequence current distribution factor can be 
expressed using its modulus and argument: 

 0jC0 C0 • e φ=   (20) 

 Equation (19) can now be expressed as: 

 
0

AG AG j
I0LV d • ZL1• I 3Rf •

C0 • e φ= +   (21) 

We multiply both sides of (21) by the following expression 
and equate the imaginary parts of both sides: 

 ( )0– jconj I0L • e φ   (22) 

The distance to the fault can finally be expressed as: 

 
( )

( )
0

0

– j
AG

– j
AG

Im V • conj I0L • e
d

Im ZL1• I • conj I0L • e

φ

φ

 
 =

 
 

  (23) 

In order to obtain (23), the following identity has been 
used: 

 ( )0

0

– j 2

j

I0L • conj I0L • e I0LIm Im 0
C0C0 • e

φ

φ

     = =      

  (24) 

In (23), we replaced the prefault current with the zero-
sequence current measured at the relay location during the 
fault [2]. As for (15), the compensating tilt angle provides an 
exact solution only for the single distance point for which it 
was calculated.  

The same reasoning can be applied using the negative-
sequence current so that we get an equivalent equation: 

 
( )

( )
2

2

– j
AG

– j
AG

Im V • conj I2L • e
d

Im ZL1• I • conj I2L • e

φ

φ

 
 =

 
 

  (25) 
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Equation (23) with the zero-sequence current polarization 
and (25) with the negative-sequence current polarization are 
commonly used for single-ended fault location of Phase-A-to-
ground faults. Equivalent expressions are available for Phase-
B- or C-to-ground faults by introducing the proper loop 
voltage and current. 

III.  POLE-OPEN, SINGLE-ENDED FAULT LOCATION 

A.  Single-Ended Fault Location for Phase-A-to-Ground Fault 
During Phase B Pole-Open Condition 

The Appendix demonstrates that if a Phase-A-to-ground 
fault occurs during a Phase B pole-open condition, the relation 
between the voltage and current for the faulted loop, distance 
to the fault, fault resistance, and total sequence current at the 
fault point is provided by: 

 ( )0VAL d • ZL1• IAL K • I0L 3Rf • IF= + +   (26) 

In (26), IF is the total sequence current at the fault point, as 
shown in Fig. 16 in the Appendix. 

 Equation (26) for the pole-open condition is similar to (16) 
for a normal mode (or three-pole closed) condition. This 
indicates that a distance element will have practically the same 
performance whether in a pole-open or normal mode of 
operation. The major difference in a pole-open condition is 
that the sequence currents can no longer be expressed as in 
(18). The relationship between the zero-sequence current at 
the relay location and the total zero-sequence current at the 
fault point is given by (27): 

 
2

1 1m 2n–a VI0L – IF
m 2n m 2n

+∆
=

+ +
  (27)  

Similarly, the relationship between the negative-sequence 
current at the relay and the total sequence current at the fault 
point is: 

 
( )

( )2
11 1 m 1– am 2n–a Vn aI2L – IF

m m 2n 2 m 2n 2m
 +∆

= +  
+ + 

  (28)  

Finally, the relationship for the positive-sequence current is: 

 
( )

( )
( )2

11 1
m a –1V m n m 2naI1L IF

m m 2n 2 m 2n 2m

 ∆ + + = + +
 + +
 

  (29) 

For the elementary power network of Fig. 1, the expressions 
of m, n, m1, and n1 as functions of the network impedances are 
provided in the Appendix and are repeated here for 
convenience: 

 ( )
( )

1

1

m ZL1 ZS1 ZR1 ZL2 ZS2 ZR2
n ZL0 ZS0 ZR0

m – 1– d ZL1– ZR1

n – 1– d ZL0 – ZR0

= + + = + +
= + +

=

=

  (30) 

The following prefault sequence currents have been 
defined in the Appendix for a Phase B pole-open condition: 

 
2

pref
–a VI0L
m 2n

∆
=

+
  (31) 

 
( )pref
–a VnI2L

m m 2n
∆

=
+

  (32) 

 
( )

( )pref
V m n

I1L
m m 2n
∆ +

=
+

  (33) 

We now define the following set of current distribution 
factors in a Phase B pole-open condition: 

 0j 1 1
pob pob

m 2n
C0 C0 • e –

m 2n
ψ +

= =
+

  (34) 

 
( )

2

2
1j 1 1

pob pob
m 1– am 2naC2 C2 • e –

2 m 2n 2m
ψ  +

= =  
+ 

  (35) 

 
( )

1

2
1j 1 1

pob pob

m a –1m 2naC1 C1 • e
2 m 2n 2m

ψ
 + = = +
 +
 

  (36) 

Using (27), we express the total sequence current at the 
fault as a function of the zero-sequence current change at the 
relay [9]:  

 pref

pob pob

I0L – I0L I0LIF
C0 C0

∆
= =   (37) 

The same can be done with respect to the positive- and 
negative-sequence current changes at the relay: 

 
pob pob

I2L I1LIF
C2 C1
∆ ∆

= =   (38) 

Replacing IF in (26) by its function of the change of the 
zero-sequence current at the relay, we get: 

 ( )
0

0 j
pob

I0LVAL d • ZL1• IAL K • I0L 3Rf •
C0 • e ψ

∆
= + +  (39) 

We can then multiply both sides of (39) by the conjugate of 

( )0– jI0L • e ψ∆  and make use of the following identity:  

 
( )0

0

– j 2

j
pob pob

I0L • conj I0L • e I0LIm Im 0
C0 • e C0

ψ

ψ

   ∆ ∆ ∆   = =
   

  
  (40) 

By then equating the imaginary parts of both sides of the 
equal sign, we derive (41) for the distance to the fault: 

 
( )

( )
0

0

– j

– j
AG

Im VAL • conj I0L • e
d

Im ZL1• I • conj I0L • e

ψ

ψ

 ∆ =
 ∆ 

  (41) 

The equation for the distance (d) to the fault during a pole-
open condition using the zero-sequence current as the 
polarizing quantity has to be compared to (23) in normal 
mode. The main difference is that for a pole-open condition, 
we have to use the incremental quantity of the zero-sequence 
current, i.e., we have to subtract the prefault zero-sequence 
current existing during the pole-open condition from the zero-
sequence current during the fault. Furthermore, the current 
distribution factor phase angle needs to be calculated, and this 
calculation requires the impedances of both the positive- and 
zero-sequence networks, as expressed in (34). 
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Alternatively, we could use the negative-sequence current 
as the polarizing quantity and get a similar equation for the 
distance to the fault: 

 
( )

( )
2

2

– j

– j
AG

Im VAL • conj I2L • e
d

Im ZL1• I • conj I2L • e

ψ

ψ

 ∆ =
 ∆ 

  (42) 

Finally, the same reasoning can be made with the positive-
sequence current at the relay: 

 
( )

( )
1

1

– j

– j
AG

Im VAL • conj I1L • e
d

Im ZL1• I • conj I1L • e

ψ

ψ

 ∆ =
 ∆ 

  (43) 

We can use any one of the three equations, (41), (42), or 
(43), to provide the distance to the fault with data from one 
terminal. Each equation requires that the prefault sequence 
current be memorized ([9]) and that a compensating tilt angle 
be selected. In order to do so, the current distribution factor 
relative to each sequence current as provided by (34), (35), or 
(36) has to be investigated to select the best choice. A 
practical example is provided in the following subsection. 

B.  Practical Example of Fault Location 
For this example, we test the single-ended fault location 

method on the 60 km, 120 kV line system shown in Fig. 2. A 
single Phase-A-to-ground fault is applied at time t = 100 ms, 
at 66.66 percent of the line length with Phase B open and a 
primary fault resistance of 50 ohms. We assume that the fault 
location is performed with single-ended data from the left 
terminal. First, the normal mode fault location using (23) and 
(25) are tested and then pole-open equations (41), (42), and 
(43) are used. 

L R
VL

d

VT

ZL1 = 20.95∠86° ohms
ZL0 = 75.32∠75.39° ohms

ZS1 = 12.25∠84° ohms
ZS0 = 38.5∠72° ohms

ZR1 = 43.6∠80° ohms
ZR0 = 128.62∠78° ohms  

Fig. 2. 60 km line in 120 kV system 

In all presented cases, the voltage and current waveforms 
are acquired at a rate of 16 samples per cycle (or 960 Hz) and 
processed through a full-cycle cosine filter in order to get the 
corresponding phasors. 

    1)  Fault Location of Phase A-to-Ground Fault With 
Phase B Pole Open and Normal Mode Equations With Single 
Tilt Angle 

The angles φ2 and φ0, relative to the current distribution 
factors C1 and C0 in normal mode, are functions of the 
distance (d) to the fault. They are plotted in Fig. 3 for the 
network of Fig. 2 and for a relay located at the left terminal. In 
order to compute the distance (d) to the fault using (23) and 
(25), we select a single tilt angle corresponding to the phase 
angle of C1 and C0 at the mid-distance, or d = 0.5 pu. We then 
use: 

 0

2

1.1721
–1.1132

φ = °

φ = °
  (44) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance to Fault (pu of line length)

P
ha

se
 A

ng
le

 (d
eg

re
es

)

 

 

I2

I0

 

Fig. 3. Normal mode current distribution factors 

Using the tilt angles provided by (44) and introducing these 
values in (23) and (25), we obtain (as shown in Fig. 4) the 
time loci of the distance (d) to the fault using either the 
negative- or zero-sequence currents as the polarizing 
quantities. From Fig. 4, we can see that whereas the zero-
sequence polarization provides an error of about –46 percent 
(0.36 pu instead of 0.666 pu for the distance [d]), the negative-
sequence polarization ends up with an error of 41 percent 
(fault location at 0.94 pu instead of 0.666 pu). The reason for 
this discrepancy could be explained by way of Fig. 5, where 
the magnitudes of the negative- and zero-sequence currents 
have been plotted before and after the fault. We can see that 
both the zero- and negative-sequence currents are significant 
before the fault.  

Equations (25) and (42) are similar, with negative-
sequence current as polarization for the fault location in 
normal and pole-open modes, respectively. So are (23) and 
(41), with the zero-sequence current polarization. The major 
difference is that in pole-open mode, we have to subtract the 
prefault sequence current existing during the pole-open 
condition. If it turns out that the prefault sequence current is 
small or negligible, the two equations should provide similar 
results for a pole-open condition. This example demonstrates 
that the normal mode single-ended fault location techniques 
will provide substantial errors in pole-open mode unless the 
prefault sequence current is small with respect to the same 
sequence current during the fault. When the prefault sequence 
current is negligible, the discrepancy between the two 
calculations is mainly due to the difference between the 
distribution factor phase angles. 
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Fig. 4. Single-ended fault location during Phase B open, Phase-A-to-ground 
fault at 66.6 percent of the line length for Fig. 2 network using normal mode 
equations 
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Fig. 5. Secondary negative- and zero-sequence current magnitudes 

    2)  Fault Location With Pole-Open Equations and Single 
Tilt Angle 

When using the pole-open fault location in (41), (42), and 
(44), Fig. 6 represents the variation of the current distribution 
factor phase angles corresponding to (34), (35), and (36), 
using the zero-, negative-, and positive-sequence current as the 
polarizing quantity, respectively. Looking at Fig. 6, it appears 
that the positive-sequence current would provide the best 
result because it has the least variation of the phase angle over 
the distance range of 0 to 1 pu, followed by the zero-sequence 
current, and then followed by the negative-sequence current, 
which has the largest variation of the phase angle. In each 
case, we select the tilt angle corresponding to the mid-range 
distance value of 0.5 pu, as provided by (45): 
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Fig. 6. Current distribution factor phase angles for a Phase B pole-open 
condition for the Fig. 2 network 

Fig. 7 shows the fault location in pu of the line length. The 
zero-sequence current polarization provides the best result, 
although the positive-sequence current polarization fault 
location is very close. The polarization using the negative-
sequence current provides the worst fault location relative 
average error, although it is still below 2.3 percent (0.6807 pu 
measured against the true value of 0.666 pu). The zero-
sequence current polarization has an average relative error of 
0.3 percent (0.668 pu measured). The positive-sequence 
current polarization has an average error of 0.9 percent 
(0.672 pu measured). 
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Fig. 7. Single-ended fault location during a Phase B pole-open condition, 
Phase-A-to-ground fault at 66.6 percent of the line length for the Fig. 2 
network 

    3)  Fault Location With Pole-Open Equations and 
Polynomial Approximation of Tilt Angle 

In Fig. 6, the phase angle of the negative-sequence current 
distribution factor as a function of the distance (d) to the fault 
can be curve-fitted with high accuracy using a third order 
polynomial: 

( ) 3 2
2 d –0.5015• d – 0.4387 • d –1.9232 • d – 0.0475ψ =   (46) 

The distance to the fault can also be computed using (42), 
where the tilt angle is now a function of the distance to the 
fault: 

 
( ) ( )

( ) ( )

2

2

– j d

– j d
AG

Im VAL • conj I2L • e
d

Im ZL1• I • conj I2L • e

ψ

ψ

 ∆ =
 ∆ 

  (47) 

The idea is to use an iterative process starting with a tilt 
angle of zero first and then calculating the distance (d). Then, 
we use the newly calculated distance (d) to compute a new tilt 
angle using the polynomial curve-fit equation (46), and the 
process is repeated until the error is within a predefined 
tolerance. Fig. 8 shows the loci of the computed distance to 
the fault with respect to time. For this simulation, six 
iterations gave the required error tolerance. The iterative 
method allows a distance to be calculated with practically no 
error as opposed to the method where a single mid-curve tilt 
angle is used. 
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Fig. 8. Iterative fault location with polynomial approximation of the tilt 
angle using the negative-sequence current polarization 
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We must realize that the iterative fault location method is a 
bit unrealistic because it requires a precise knowledge of the 
network parameters and particularly the source impedances. 
This is something that is not easily achievable in reality with a 
practical application. The example, however, illustrates the 
factors that impact the single-ended fault location and shows 
what is possible with an ideal single-ended fault location 
method. 

IV.  DOUBLE-ENDED FAULT LOCATION 

A.  Double-Ended Fault Location in Normal Mode 
Double-ended fault location is typically applied by using 

the negative-sequence network in normal mode, as represented 
in Fig. 9 [3] [4]. Assuming synchronous sampling at both line 
terminals, we can write the following equation based on the 
property that the voltage drop between the left and right bus 
and VF is the same [4]: 

 ( )V2L – I2L • d • ZL1 V2R – 1– d • ZL1• I2R=   (48) 

Negative Sequence

Rf

d • ZL1

V2L V2RI2L

 ZS2  ZR2

VF (1 – d)ZL1

I2R
 

Fig. 9. Negative-sequence network 

From (48), we derive the fault location (d): 

 
( )

( )
V2L – V2R ZL1• I2R

d
ZL1• I2L I2R

+
=

+
  (49) 

B.  Double-Ended Fault Location With Phase B Open 
The same principle can be applied in a pole-open 

condition. From the negative-sequence network shown in 
Fig. 16 (in the Appendix), we can write: 

 
( )

2
XYBV2L – 0.33• a • V – I2L • d • ZL1

V2R – 1– d • ZL1• I2R
=

  (50) 

From the positive-sequence network in Fig. 16, we can 
write: 

 
( )

XYBV1L – 0.33• a • V – I1L • d • ZL1
V1R – 1– d • ZL1• I1R

=
  (51) 

From (51), we can extract the expression of VXYB: 

 
( ) ( )

XYB–0.33• a • V
V1R – V1L d • ZL1 I1L I1R – ZL1• I1R

=

+ +
  (52) 

Multiplying both sides of (52) by a and replacing (–0.33 • 
a2 • VXYB) in (50) by its expression derived from (52), we get 
the distance to the fault (d) during the pole-open condition for 
Phase B, using the double-ended method. 

( ) ( ) ( )
( ) ( )

V2L – V2R ZL1 I2R – a • I1R – a V1L – V1R
d

ZL1 I2L I2R – a • ZL1 I1L I1R
+

=
+ +

  (53) 

Comparing (49) during the normal condition to (53) for the 
Phase B pole-open condition, we can see that (53) now 
involves voltages and currents from both the positive- and 
negative-sequence networks. 

C.  Double-Ended Fault Location With Phase A Open 
Following the same reasoning as in the previous 

subsection, the double-ended fault location during a Phase A 
pole-open condition can be expressed as: 

 
( ) ( ) ( )

( ) ( )
V2L – V2R ZL1 I2R – I1R – V1L – V1R

d
ZL1 I2L I2R – ZL1 I1L I1R

+
=

+ +
  (54) 

D.  Double-Ended Fault Location With Phase C Open 
Similarly, the double-ended fault location method for a 

Phase C pole-open condition can be expressed as: 

( ) ( ) ( )
( ) ( )

2 2

2

V2L – V2R ZL1 I2R – a • I1R – a V1L – V1R
d

ZL1 I2L I2R – a • ZL1 I1L I1R

+
=

+ +
  (55) 

E.  Examples of Application 
We first test the double-ended fault location on the 120 kV 

system of Fig. 2 and then on the longer 500 kV system of 
Fig. 10. Both the normal mode (49) and the pole-open mode 
(53) and (55) equations are tested. 

L R
VL

d

VT

ZL1 = 73∠87.27° ohms
ZL0 = 274.1∠82.14° ohms

ZS1 = 15∠88° ohms
ZS0 = 52.2∠73.3° ohms

ZR1 = 15∠88° ohms
ZR0 = 52.2∠73.3° ohms  

Fig. 10. 200 km, 500 kV line system 

    1)  Phase-C-to-Ground Fault With Phase B Open at 
66 Percent of the Line Length With Fault Resistance of 
20 Ohms on 120 kV System of Fig. 2 

Fig. 11 shows the time trajectories of the distance (d) to the 
fault using both the normal mode (49) and the pole-open mode 
(53) equations. Obviously, the pole-open mode equation is 
more accurate than the normal mode equation (0.921 pu 
measured against the true value of 0.666 pu). In Fig. 12, the 
vertical axis provides the distance to the fault in pu of the line 
length. This axis has been expanded to further demonstrate the 
almost perfect accuracy of the pole-open method (the actual 
fault location is at 66.6 percent of the line length [0.666 pu]). 
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Fig. 11. 120 kV line double-ended fault location for Phase-C-to-ground fault 
with Phase B open and fault resistance of 20 ohms 
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Fig. 12. Fig. 11 with expanded vertical scale 

    2)  Phase A-to-Ground Fault With Phase C Open at 
33.3 Percent of the Line Length With Fault Resistance of 
10 Ohms on 500 kV System of Fig. 10 

Fig. 13 shows again the loci of the distance (d) to the fault 
using both the normal mode (49) and the pole-open mode (55)
equations. In Fig. 14, the vertical scale provides the distance 
to the fault in pu of the line length. It has been expanded to 
demonstrate the accuracy of the dual-ended pole-open method. 
The relative error is approximately 0.5 percent. 
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Fig. 13. 500 kV line double-ended fault location for Phase A-to-ground fault 
with Phase C open and fault resistance of 10 ohms at 33.3 percent of line 
length 
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Fig. 14. Fig. 13 with expanded vertical scale 

V.  CONCLUSION 
This paper shows that significant errors will be 

encountered when conventional single-ended fault location 
methods are used for fault location during a pole-open 
condition on a transmission line, particularly if the prefault 
sequence currents (negative or zero) are present. This situation 
becomes particularly true if the fault resistance increases so 
that the sequence current during the fault becomes comparable 
to the sequence current existing before the fault. The paper 
introduces equations with the proper compensations to take 
into account the sequence current existing before the fault. 

The paper also shows that the conventional fault location 
equation based on double-ended data for one sequence 
network (typically negative sequence) needs to be 
compensated for by using the combined information from two 
sequence networks, positive and negative, in order to achieve 
accuracy comparable to the normal mode situation. Using 
information from two sequence networks allows the resolution 
of the new unknown corresponding to the voltage across the 
open breaker pole. 

VI.  APPENDIX: RESOLUTION OF AN INTERNAL  
SINGLE PHASE-A-TO-GROUND FAULT WITH PHASE B  

OPEN USING THE SEQUENCE NETWORK 
We consider the elementary network of Fig. 1. The 

sequence network corresponding to a Phase B pole-open 
condition is represented in Fig. 15. 

In order to draw the sequence network for a Phase B pole-
open condition, two constraints must be embedded into the 
network: first, a voltage constraint, and second, a current 
constraint. We assume that Phase B is open between two 
points, x and y. The sequence voltages between Points x and y 
are provided by the following conditions: 

 

2
xy xy

2
xy xy

xy xy

1 a aV1 VA
1V2 • 1 a a • VB
3

V0 1 1 1 VC

    
    

=     
         

  (56) 

In (56), a is the conventional complex operator 1∠120°. 
VAxy and VCxy are clearly zero, so we end up with: 

 

xy xy

2
xy xy

xy xy

1V1 aVB
3
1V2 a VB
3
1V0 VB
3

 =  
 
 =  
 
 =  
 

  (57) 

The current constraint is expressed by the condition that the 
Phase B current must be equal to zero or: 

 2IB a I1L aI2L I0L 0= + + =   (58) 
The three ideal transformers represented in the sequence 

network of Fig. 15 implement the two voltage and current 
constraints. 
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I1L

x y

ZS1 ZR1

ZL1

N1

I2L

ZL2

I0L

ZS2 ZR2 ZS0

N2

x xy y ZL0

a:1  a2:1 1:1

VS VT

ZR0

N0

V1xy V2xy V0xy

I1R I2R

–

+

–

+
I0R

 

Fig. 15. Sequence network of Phase B pole-open condition elementary network 

 
2

2
xy

I1LZL1 ZS1 ZR1 0 0 a VL – VR
I2L

0 ZL1 ZS1 ZR1 0 a 0
• I0L

0 0 ZL0 ZS0 ZR0 1 0
1 VB 0a a 1 0 3

 + +        + +     =   + +                

  (59) 

The sequence network of Fig. 15 can be resolved for the 
unknown sequence currents by solving the linear matrix 
equation (59). 

We define the following variables: 

 ( )
( )

1

1

1

1

V VS – VT
m ZL1 ZS1 ZR1 ZL2 ZS2 ZR2
n ZL0 ZS0 ZR0

m – 1– d ZL1– ZR1

n – 1– d ZL0 – ZR0
p m m dZL1 ZS1 dZL2 ZS2
q n n dZL0 ZS0 dZL0 ZS0

∆ =
= + + = + +
= + +

=

=

= + = + = +
= + = + = +

  (60) 

Using the Gaussian elimination process, we can resolve the 
system of equations in (59), which leads to the solution for the 
three sequence currents as: 

 
( )

( )preflt preflt
V m n

I1L –I1R
m m 2n
∆ +

= =
+

  (61) 

 
( )preflt preflt
a VnI2L –I2R –

m m 2n
∆

= =
+

  (62) 

 
2

preflt preflt
a VI0L –I0R –
m 2n

∆
= =

+
  (63) 

It should be borne in mind at this stage of the analysis that 
the three sequence currents determined during the Phase B 
pole-open condition constitute the prefault currents before any 
other fault occurs at a later stage. For this reason, the sequence 
currents are shown in (61) through (63) with a prefault (preflt) 
subscript. 

Following the same reasoning, the Phase A prefault current 
on the left side can be computed as the sum of all three 
sequence currents: 

 
( ) ( )

( )

2

preflt

m V 1– a n V 1– a
IAL

m m 2n

∆ + ∆
=

+
  (64) 

We now assume that during the Phase B pole-open 
condition, a subsequent Phase-A-to-ground fault occurred at a 
distance (d) from the left bus of the line. This faulted sequence 
network is represented in Fig. 16, where the new condition of 
a Phase-A-to-ground fault has been added to the already 
represented Phase B pole-open condition. The sequence 
currents can now be resolved by solving the linear equations 
in (65) and (66). 

By using the same Gaussian elimination process as (65), 
the current at the fault (IF) and the sequence currents at the 
left-hand-side line bus can be computed as (66). 
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( )
( )
( )

2

2
xy

I1LZL1 ZS1 ZR1 0 0 – 1– d ZL1– ZR1 a V
I2L

00 ZL2 ZS2 ZR2 0 – 1– d ZL2 – ZR2 a
I0L

00 0 ZL0 ZS0 ZR0 – 1– d ZL0 – ZR0 1
IF

VAZS1 dZL1 ZS2 dZL2 ZS0 dZL0 3R 0
1 VB 0a a 1 0 0 3

 + +  ∆      + +       =+ +      + + +                 

  (65) 

 
( ) ( )( ) ( )

( )( ) ( ) ( )

2

1 1 1

–2a m V –0.5p – q – Vp 1– a m 2n 2mVA m 2n
IF

2m –0.5p – q m 2n – 3pm m 2n 6Rf m m 2n
∆ ∆ + + +

=
+ + + +

  (66) 

I1L

x y

ZS1 ZR1

ZL1

N1

ZL2

ZS2 ZR2

ZS0

N2

x

x

ZL0

a:1

 a2:1

1:1

VS VT

I2L

y

ZR0

N0

I0L

y

IF

3 • Rf

I1R

–

+

–

+

d

d
I2R

d
I0R

 

Fig. 16. Sequence network of Phase B pole-open condition with Phase-A-to-
ground fault elementary network 

 
2

1 1m 2n–a VI0L – IF
m 2n m 2n

+∆
=

+ +
  (67) 

 
( )

( )2
11 1 m 1– am 2n–a Vn aI2L – IF

m m 2n 2 m 2n 2m
 +∆

= +  
+ + 

  (68) 

 
( )

( )
( )2

11 1
m a –1V m n m 2naI1L IF

m m 2n 2 m 2n 2m

 ∆ + + = + +
 + +
 

  (69) 

The Phase A fault current on the left side is equal to the 
sum of the three sequence currents: 

 

( )
( ) ( )

( )

2

22 11 1

V m n –a Vn a VIAL –
m m 2n m m 2n m 2n

m a – 2 am 2na a –1 IF
2 2 m 2n 2m

∆ + ∆ ∆
= +

+ + +

 +  +  + + +   +   

  (70) 

Looking at (67) through (69) for the left-side bus and 
considering (61) through (63) for the sequence currents in the 
open-pole condition only, we can see that the sequence 
currents at both extremities of the lines are composed of a 
prefault term and a second term that is proportional to IF, so 
we can now write: 

 1 1
preflt

m 2n
I0L I0L – IF

m 2n
+

=
+

  (71) 

 
( )2

11 1
preflt

m 1– am 2naI2L I2L – IF
2 m 2n 2m

 +
= +  

+ 
  (72) 

 
( )2

11 1
preflt

m a –1m 2naI1L I1L IF
2 m 2n 2m

 + = + +
 +
 

  (73) 

Following the same line of thinking, the left-side Phase A 
current can be expressed as: 

 ( )
preflt

22 11 1

IAL IAL

m a – 2 am 2na a –1 IF
2 2 m 2n 2m

=

 +  +  + + +   +   

  (74) 

Following the identity: 

 2a a –1+ =   (75) 
Equation (74) can be rewritten as: 

 1 1 1
preflt

m 2n m3IAL IAL – IF
2 m 2n m

+ = + + 
  (76) 

If we sum up the voltages around the loop shown as the red 
dashed line in Fig. 16, and taking into account that: 
 xy xy xyV1 V2 V0 0+ + =   (77) 
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We end up with: 

 ( )V1L V2L V0L – d • ZL1• I1L I2L
–d • ZL0 • I0L – 3Rf • IF 0

+ + +

=
  (78) 

If we add and subtract d • ZL1 • I0L, we get: 

 
( )

( )
V1L V2L V0L – d • ZL1• I1L I2L I0L

–d • I0L ZL0 – ZL1 I0L – 3Rf • IF 0

+ + + +

=
  (79) 

Because we have: 

 
VAL V1L V2L V0L
IAL I1L I2L I0L

= + +
= + +

  (80) 

We finally end up with: 

 ( )0VAL d • ZL1• IAL K • I0L 3Rf • IF= + +   (81) 
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