

WHITE PAPER

Automating Protection System Monitoring and
Verification With the SEL RTAC

Darrin Kite and Robin Jenkins

INTRODUCTION
The North American Electric Reliability Corporation (NERC), under the direction of the Federal
Energy Regulatory Commission (FERC), is responsible for improving the reliability of the
North American bulk electric system (BES). This responsibility includes creating a compliance
program to improve the protection system reliability of generation and transmission facilities that
can impact the BES. Under NERC PRC-005-2, the definition of protection systems includes
protective relays, associated communications systems, voltage- and current-sensing devices
(including their circuits), dc control circuitry, and station dc supplies associated with protection
functions. Proposed future revisions of the NERC PRC-005 standard expand the scope of the
maintenance programs to include additional protection system components.

Compliance with the standard entails the creation of a comprehensive protection system
maintenance program and the execution of maintenance activities on a time- or performance-
based interval or a combination of both. Leveraging the inherent self-test functionality and
communications capability of modern intelligent electronic devices (IEDs), engineers can
implement an automated system to perform real-time monitoring, verification, and reporting for
power system components. This provides the following benefits [1]:

• Improves protection system awareness and identifies potential failed components that
may otherwise go unnoticed.

• Supports maintenance and validation testing documentation requirements for each of the
monitored critical protection system components.

• Documents the behavior of power system components during fault events and
steady-state operations.

Beyond compliance, monitoring critical assets via predictive alarming gives engineers the
necessary data to keep power system components online and avoid expensive downtime. This
white paper describes how to use the SEL Real-Time Automation Controller (RTAC) to build an
automated system to continuously monitor and validate many of the components identified in the
NERC PRC-005 standard. This paper describes how to:

• Verify commissioned IED settings and firmware configurations.

• Verify CTs and PTs with continuous IED measurements.

• Verify communications-assisted protection channel integrity.

• Monitor IED diagnostics.

• Generate automated reports for both local and remote access.

• Identify and log maintenance conditions.

Date Code 20160111 SEL White Paper LWP0019-01

2

VERIFY COMMISSIONED IED SETTINGS AND FIRMWARE CONFIGURATIONS
The Configuration Monitor is a feature in SEL clients that provides the capability to monitor
ASCII command responses. With this feature enabled, SEL IEDs are continuously monitored to
detect changes in configurations. Any ASCII command supported in the IED can be specified and
sent on a periodic interval. When the RTAC receives a valid response, a 32-bit cyclic redundancy
check (CRC) is calculated and stored in memory. If the RTAC receives a valid response in which
the calculated CRC does not match the stored CRC, the Check_IED_Configuration_Mismatch
POU pin pulses. Then, the most recent CRC is stored in memory. If the CRC cannot be calculated
correctly, the Check_IED_Configuration_Error POU pin pulses. The settings for the
Configuration Monitor are displayed by selecting the Advanced Settings check box in the
upper-right corner of the IED view screen (as shown in Figure 1).

Figure 1 Check IED Configuration Settings in an SEL Client

The advanced settings are available to optimize the monitoring interval and command retry
behavior. By default, messages are configured to allow users to monitor both the relay ID
information and settings configuration. However, users should verify with the relay’s manual that
the commands are supported in the IED firmware version. Users can click on the Check IED
Configuration Commands tab to view and edit the default messages (as shown in Figure 2).
Additional messages can be added at the user’s discretion. Also, by default, the Configuration
Monitor is not enabled. To enable it, users click on the POU Pin Settings tab and change the
Check_IED_Configuration POU pin to TRUE (as shown in Figure 3). In some instances,
software flow control interferes with the Configuration Monitor. To avoid this, disable software
flow control by toggling Xon\Xoff to False in the Communications section of the Settings tab.

Figure 2 Default Messages Sent by the Configuration Monitor in the SEL Client

SEL White Paper LWP0019-01 Date Code 20160111

3

Figure 3 Enabling the Configuration Monitor in the POU Pin Settings Tab

ACSELERATOR RTAC LIBRARY EXTENSIONS INTRODUCTION
The ACSELERATOR RTAC® SEL-5033 Software library extensions are a set of libraries
developed by SEL that offer additional functionality for programming applications in the RTAC’s
feature-rich, integrated IEC 61131 programming environment. Two libraries are used in this
white paper: 1) ChannelMonitoring and 2) FileIO. FileIO is a paid library, and an RTAC upgrade
package can be ordered by contacting your local sales or customer service representative.

To start programming with libraries, visit the ACSELERATOR RTAC software page at
https://www.selinc.com/SEL-5033/ and download the ACSELERATOR RTAC library extensions.
Once the library extensions are installed, navigate to the IEC 61131-3 ribbon button in
ACSELERATOR RTAC and select Library (as shown in Figure 4). From here, a wide range of
libraries are available, including the ChannelMonitoring and FileIO libraries. Note that users can
download and use the libraries in ACSELERATOR RTAC; however, if a paid library is uploaded to
an RTAC without the correct model option table (MOT), a warning will appear that will prevent
the project upload from completing.

Date Code 20160111 SEL White Paper LWP0019-01

4

Figure 4 Adding a Library Through the IEC 61131-3 Menu in ACSELERATOR RTAC

Each library has a corresponding instruction manual that is accessible through the ACSELERATOR
RTAC help button () drop-down menu in the upper-right corner of the screen (see Figure 5).
These manuals are installed automatically with the library extensions.

Figure 5 Accessing Library Documentation From the ACSELERATOR RTAC Help Menu

CHANNELMONITORING LIBRARY INTRODUCTION
The RTAC is a data concentrator and communications gateway that includes an integrated
IEC 61131 programming environment. The RTAC leverages these capabilities to monitor and
validate IED measurements in a substation. The ChannelMonitoring library aids engineers in
simplifying power system maintenance monitoring. The library includes tools that are used to
create a monitoring system that works on any substation topology. The function block outputs
provide Boolean alerts. The status outputs return information about the function block’s current
state. These outputs are assigned to enumerations provided in the library or to DINT data types.
Functions are provided to convert the enumerated outputs to strings for logging purposes. For
detailed information regarding the inputs, outputs, and information processing for the function

SEL White Paper LWP0019-01 Date Code 20160111

5

blocks, refer to the library’s instruction manual. In the following sections, brief examples are
provided that demonstrate the functionality of each function block.

Example Assumptions
Communications protocol clients are configured in ACSELERATOR RTAC to communicate with
IEDs. The phase measurements and the applicable relay status points are polled at user-defined
polling intervals. These measurements and status points are passed to the function block inputs
for processing. Input data are monitored by the function block, which determines if any
significant difference is detected based on the user-specified parameters. Function block outputs
are stored in tags configured in a virtual tag list (a virtual tag list is used in all of the following
examples; however, any tag matching the data type of the function block output can be used to
store the data). Example programs are constructed using Continuous Function Chart (CFC).
Similar examples are provided in Structured Text (ST) in the library’s instruction manual. For
additional information regarding any of the topics described in this paper, refer to [2], or view the
RTAC videos on the SEL website for quick tutorial videos produced by SEL automation
engineers [3].

The tags used in some of the following examples are complex measured value (CMV) data types.
When an SEL IED is queried via SEL protocol, some of the data returned include both magnitude
and angle; hence, a CMV data type is used to store that information. However, the function
blocks that use analog quantities as inputs only accept measured value (MV) data types because,
in most cases, the phasor magnitudes are compared to detect possible maintenance alert
conditions. The following function logic converts a CMV data type to an MV data type through
direct mapping of the magnitude quantity.

//////Declaration Section//////
FUNCTION fun_CMV_TO_MV_Mag : MV
VAR_INPUT
 CMV_IN : CMV;
END_VAR;

//////Start of function logic//////
fun_CMV_TO_MV_Mag.instMag := CMV_IN.instCVal.mag;
fun_CMV_TO_MV_Mag.q := CMV_IN.q;
fun_CMV_TO_MV_Mag.range := CMV_IN.range;
fun_CMV_TO_MV_Mag.rangeC := CMV_IN.rangeC;
fun_CMV_TO_MV_Mag.t := CMV_IN.t;
fun_CMV_TO_MV_Mag.zeroDb := CMV_IN.zeroDb;
fun_CMV_TO_MV_Mag.db := CMV_IN.db;

VERIFY CTS AND PTS WITH CONTINUOUS IED MEASUREMENTS
Two function blocks are provided in the ChannelMonitoring library that encapsulate logic to
monitor MV data and determine if critical system components are operating as designed. The two
function blocks alert on a test failure. The test failure indicates that either a sustained divergence
between two inputs has occurred or repeated divergences were detected. Both function blocks
also indicate the input information quality.

Date Code 20160111 SEL White Paper LWP0019-01

6

Example 1: Monitor for Deviations Between Phases on the High and Load Side
of a Breaker

This example demonstrates the use of the fb_MultiChannelAlert function block. Both the high
and load side of a breaker phase measurement are obtained from the IED. The IED has two
terminals that are connected to two separate current transformers (CTs) located on both sides of a
breaker, as shown in Figure 6. The function block monitoring is enabled when the high-side
power measurements are greater than or equal to 5 percent of the nominal value. Phases are
compared to detect a significant difference in measurements. The purpose is to detect any
difference between the phases of each CT that may indicate a maintenance condition.

RTAC

SEL-451

Terminal XTerminal W

52A

Figure 6 RTAC Polling Data From an IED Monitoring High and Load Sides of a Breaker

To configure this example, a CFC program (see the following PROGRAM Example1 logic) is
added to the ACSELERATOR RTAC project [2] [3]. The code block shown in Figure 7
demonstrates how to instantiate two fb_MultiChannelAlert function blocks, each monitoring a
three-phase CT, in the declaration section of the program. In the body of the program, the CMV
data reported by the IED are converted to MV data types. A check is then performed to determine
if the generator real power exceeds 5 percent of nominal before activating the instantiated
fb_MultiChannel function blocks. Once activated, the function blocks compare all of the
individual phases against one another to detect an abnormal condition.

PROGRAM Example1
VAR
 //Instantiate Function Blocks
 HighSide : fb_MultiChannelAlert;
 LoadSide : fb_MultiChannelAlert;

 //Function Block Parameters
 GeneratorNominal : REAL := 100;

EnableGeneratorMonitoring : BOOL;

END_VAR

SEL White Paper LWP0019-01 Date Code 20160111

7

Figure 7 Example 1 Configured in a CFC Program

Example 2: Monitor for Deviations in the Phase A Measurement From
Multiple IEDs

This example demonstrates the use of the fb_ChannelAlert function block. Phase A
measurements are obtained from four IEDs within the substation, as shown in Figure 8. The IEDs
are connected to CTs located throughout the substation. Phase A measurements are compared
against a chosen reference. By testing the measured values from an IED, the function blocks also
provide validation for additional critical protection system components, including the CT circuits
and the IED analog-to-digital converters. The monitoring function blocks enable when the
reference measurement has good quality. The purpose is to detect any difference between CT
measurements that may indicate a maintenance condition.

RTAC

Reference IED

IED

IED

IED

Figure 8 RTAC Polling Data From a Reference IED and Three IEDs Connected to Substation CTs

To configure this example, a CFC program (see the following PROGRAM Example2 logic) is
added to the ACSELERATOR RTAC project [2] [3]. The code block shown in Figure 9
demonstrates how to instantiate three fb_ChannelAlert function blocks, each monitoring a CT’s

Date Code 20160111 SEL White Paper LWP0019-01

8

Phase A measurements, in the declaration section of the program. As in the previous example, in
the body of the program the CMV data reported by the IED are converted to MV data types. A
check is then performed to determine if the reference value has good quality (i.e., the RTAC is
receiving valid data from the IED) before activating the instantiated function blocks. Once
activated, the function blocks compare the input channel and reference data to determine if an
abnormal condition is detected.

PROGRAM Example2

VAR
//Instantiate Function Blocks

 IED_Monitor1 : fb_ChannelAlert;
 IED_Monitor2 : fb_ChannelAlert;
 IED_Monitor3 : fb_ChannelAlert;

 //Function Block Shared Parameters
 ReferenceGoodQuality : BOOL;

END_VAR

Figure 9 Example 2 Configured in a CFC Program

SEL White Paper LWP0019-01 Date Code 20160111

9

VERIFY COMMUNICATIONS-ASSISTED PROTECTION CHANNEL INTEGRITY
Protection communications channels require high availability and reliability to ensure that critical
signals are available to other substation IEDs that participate in coordinated protection and
control schemes. Continuously monitoring these channels for communications errors provides
information on the health of the channel. Early alerting on a potential maintenance condition can
aid engineers in identifying conditions that may result in a misoperation.

Example 3: Monitor a MIRRORED BITS® Communications Channel for Data
Transmission Errors

This example demonstrates the use of the fb_IndicatorAlert function block. The RTAC and an
IED exchange critical control information over a serial MIRRORED BITS communications channel.
The channel health is monitored by the RTAC’s built-in diagnostic information included in all
communications instances. The Rx_OK_Instantaneous POU pin is monitored by the function
block. This pin deasserts the instant any of several types of transmission errors are detected or
any time that a MIRRORED BITS message is not received in the time required to transmit three
messages. Monitoring this pin provides a good indication of channel health. Note in the example
that a NOT block inverts the Rx_OK_Instantaneous POU pin because the fb_IndicatorAlert
function block detects a TRUE condition. Because the goal is to monitor the deasserting of the
pin, a NOT is included in the logic.

To configure this example, a CFC program (see the following PROGRAM Example3 logic) is
added to the ACSELERATOR RTAC project [2] [3]. The code block shown in Figure 10
demonstrates how to instantiate an fb_IndicatorAlert function block in the declaration section of
the program. Although not shown in Figure 10, the function block EN value can be tied to the
ENO POU pin of a MIRRORED BITS communications instance. This ensures that the MIRRORED
BITS channel is enabled before activating the instantiated function block. Once activated, the
function block monitors for a TRUE condition, which indicates that errors were detected in the
communications channel.

PROGRAM Example3
VAR

//Instantiate Function Blocks
MirrorBitsMonitor : fb_IndicatorAlert;

//Function Block Shared Parameters
EnableMonitoring : BOOL := TRUE;

END_VAR

Figure 10 Example 3 Configured in a CFC Program

MONITOR IED DIAGNOSTICS
Each SEL IED runs continuous self-tests to monitor the internal health of its major components.
If an out-of-tolerance condition is detected, the relay generates a warning or failure alarm. When
a self-test determines that one or more internal components have exceeded an expected limit but
have not compromised the relay operation, a warning alarm is generated and a contact pulsed. For

Date Code 20160111 SEL White Paper LWP0019-01

10

a severe out-of-tolerance condition, a failure alarm is issued and the relay enters a protection-
disabled state.

Example 4: Monitor the HALARM Relay Word Bit in an SEL IED
This example also demonstrates the use of the fb_IndicatorAlert function block. The RTAC is
polling an IED for the HALARM Relay Word bit. Many SEL IEDs have additional configurable
alerts that can also be monitored. Monitoring this Relay Word bit provides assurance that the IED
is functioning as designed. Using both the chatter and sustained event capability of the function
block, alerts can be generated when multiple warnings are received (which indicates an out-of-
tolerance condition) or if a failure alarm is generated. This example only monitors the HALARM
bit when communication with the IED is good.

To configure this example, a CFC program (see the following PROGRAM Example4 logic) is
added to the ACSELERATOR RTAC project [2] [3]. The code block shown in Figure 11
demonstrates how to instantiate an fb_IndicatorAlert function block in the declaration section of
the program. The SEL IED Offline POU pin is monitored to ensure that the IED is responding
correctly to poll requests. If the Offline POU pin is FALSE, the function block enables
monitoring. This ensures that a false condition does not trigger the alert output. Once activated,
the function blocks monitors for a true condition, which would indicate a hardware warning or
failure.

PROGRAM Example4
VAR

//Instantiate Function Blocks
SEL_451_HardwareMonitor : fb_IndicatorAlert;

//Function Block Shared Parameters
EnableMonitoring : BOOL;

END_VAR

Figure 11 Example 4 Configured in a CFC Program

GENERATE AUTOMATED REPORTS
Note that users must purchase the FileIO library option in the SEL RTAC for the example in this
section to work.

Alert conditions are monitored and reported daily. An alert could be associated with an IED self-
test, bad CT and or potential transformer (PT) data values, a relay firmware or setting change, or
bad data quality. If a component alert is generated, the RTAC identifies which of the components
generated the alert, logs the failure time, and includes the status of the failed component in the
daily report. This is accomplished by continually monitoring and processing the data required to
identify if a monitored component parameter exceeds the user-specified limits. The status of all
monitored protection system components is documented in a single automated report that can be

SEL White Paper LWP0019-01 Date Code 20160111

11

downloaded through the RTAC web interface or sent to a centralized server via File Transfer
Protocol (FTP).

Example 5: Daily Maintenance Report Generation
The logic in this example demonstrates how to create a report that can be downloaded through the
RTAC’s web interface, as shown in Figure 12, or sent to an FTP server. Sending the report via
FTP is not shown in this example, but examples are included in the FileIO instruction manual.

Figure 12 The RTAC Web Interface File Manager Menu Displaying Five Reports Generated Over a Five-Day

Time Frame

The following logic shows Example 5 configured in an ST program. The logic can be divided
into four general steps:

1. Monitor the time that has elapsed since the last report.

2. Convert the data from the examples into human-readable strings.

3. Construct and format message strings to log in the report.

4. Trigger the report creation.

PROGRAM Example2
VAR
 //Report generated every interval: user-defined seconds

ReportInterval : REAL := 86400; (*day*)

//Variables used to control program flow
NewDownload : BOOL := TRUE;
GenerateReport : BOOL;
DailyReportGenerated : BOOL;
TimeSinceLastReport : REAL;
LastReportGenerated : timestamp_t;

//FileIO library LogDirectoryManager class
MaintenanceReportManager : class_LogDirectoryManager(

 folderName := '/MaintenanceReports',
 logPostfix := 'ReportEx.txt',
 MaxFolderSize := 512000,
 maxNumFiles := 30,
 autoStartNewLogDaily := FALSE);

Date Code 20160111 SEL White Paper LWP0019-01

12

//Report messages
HighSideMessage : STRING(255);
LoadSideMessage : STRING(255);
IED_1_Ex2_Message : STRING(255);
IED_2_Ex2_Message : STRING(255);
IED_3_Ex2_Message : STRING(255);
ProtChMessage : STRING(255);
SEL451_HALARM_Message : STRING(255);

END_VAR

//Program generates a report based on a user-defined report interval//

//Reset variables
IF NOT Simulation.Reset THEN
 GenerateReport := FALSE;
 DailyReportGenerated := FALSE;
ELSE
 DailyReportGenerated := TRUE;
END_IF

//Calculate time in seconds since last report
TimeSinceLastReport := TS_DIFF(System_Time_Control_POU.System_Time.value,
LastReportGenerated.value);

//Report trigger logic
IF NewDownload THEN
 NewDownload := FALSE;
 (*This resets the report time after a new project is downloaded *)
 LastReportGenerated := SYS_TIME();
ELSIF TimeSinceLastReport > ReportInterval THEN
 GenerateReport := TRUE;
END_IF

//Generate a report
IF GenerateReport THEN

 //Report Formatting
 HighSideMessage := '';
 HighSideMessage := Concat('$NHighSide Ex1', '$NMonitoring Enabled: ');
 HighSideMessage := Concat(HighSideMessage,
BOOL_TO_STRING(VirtualTagList1.HighSide_ENO.stVal));
 HighSideMessage := Concat(HighSideMessage, '$NAlert: ');
 HighSideMessage := Concat(HighSideMessage,
BOOL_TO_STRING(VirtualTagList1.HighSide_Alert.stVal));
 HighSideMessage := Concat(HighSideMessage, '$NStatus: ');
 HighSideMessage := Concat(HighSideMessage,
fun_GetAlertString(VirtualTagList1.HighSide_Status.stVal));
 HighSideMessage := Concat(HighSideMessage, '$NChannelStatus: ');
 HighSideMessage := Concat(HighSideMessage,
fun_GetChannelString(VirtualTagList1.HighSide_ChannelStatus.stVal));
 HighSideMessage := Concat(HighSideMessage, '$NQualityAlert: ');
 HighSideMessage := Concat(HighSideMessage,
BOOL_TO_STRING(VirtualTagList1.HighSide_QualityAlert.stVal));
 HighSideMessage := Concat(HighSideMessage, '$NQualityStatus: ');
 HighSideMessage := Concat(HighSideMessage,
fun_GetChannelString(VirtualTagList1.HighSide_QualityStatus.stVal));
 HighSideMessage := Concat(HighSideMessage, '$N');

 LoadSideMessage := '';
 LoadSideMessage := Concat('$NLoadSide Ex1','$NMonitoring Enabled: ');
 LoadSideMessage := Concat(LoadSideMessage,
BOOL_TO_STRING(VirtualTagList1.LoadSide_ENO.stVal));
 LoadSideMessage := Concat(LoadSideMessage, '$NAlert: ');
 LoadSideMessage := Concat(LoadSideMessage,
BOOL_TO_STRING(VirtualTagList1.LoadSide_Alert.stVal));
 LoadSideMessage := Concat(LoadSideMessage, '$NStatus: ');
 LoadSideMessage := Concat(LoadSideMessage,
fun_GetAlertString(VirtualTagList1.LoadSide_Status.stVal));
 LoadSideMessage := Concat(LoadSideMessage, '$NChannelStatus: ');
 LoadSideMessage := Concat(LoadSideMessage,
fun_GetChannelString(VirtualTagList1.LoadSide_ChannelStatus.stVal));

SEL White Paper LWP0019-01 Date Code 20160111

13

 LoadSideMessage := Concat(LoadSideMessage, '$NQualityAlert: ');
 LoadSideMessage := Concat(LoadSideMessage,
BOOL_TO_STRING(VirtualTagList1.LoadSide_QualityAlert.stVal));
 LoadSideMessage := Concat(LoadSideMessage, '$NQualityStatus: ');
 LoadSideMessage := Concat(LoadSideMessage,
fun_GetChannelString(VirtualTagList1.LoadSide_QualityStatus.stVal));
 LoadSideMessage := Concat(LoadSideMessage, '$N');

 IED_1_Ex2_Message := '';
 IED_1_Ex2_Message := Concat('$NIED 1 Ex2','$NMonitoring Enabled: ');
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL351_ENO.stVal));
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message, '$NAlert: ');
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL351_Alert.stVal));
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message, '$NStatus: ');
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message,
fun_GetAlertString(VirtualTagList1.SEL351_Status.stVal));
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message, '$NQualityAlert: ');
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL351_QualtiyAlert.stVal));
 IED_1_Ex2_Message := Concat(IED_1_Ex2_Message, '$N');

 IED_2_Ex2_Message := '';
 IED_2_Ex2_Message := Concat('$NIED 2 Ex2','$NMonitoring Enabled: ');
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL501_ENO.stVal));
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message, '$NAlert: ');
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL501_Alert.stVal));
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message, '$NStatus: ');
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message,
fun_GetAlertString(VirtualTagList1.SEL501_Status.stVal));
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message, '$NQualityAlert: ');
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL501_QualtiyAlert.stVal));
 IED_2_Ex2_Message := Concat(IED_2_Ex2_Message, '$N');

 IED_3_Ex2_Message := '';
 IED_3_Ex2_Message := Concat('$NIED 3 Ex2','$NMonitoring Enabled: ');
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL421_ENO.stVal));
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message, '$NAlert: ');
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL421_Alert.stVal));
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message, '$NStatus: ');
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message,
fun_GetAlertString(VirtualTagList1.SEL421_Status.stVal));
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message, '$NQualityAlert: ');
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message,
BOOL_TO_STRING(VirtualTagList1.SEL421_QualtiyAlert.stVal));
 IED_3_Ex2_Message := Concat(IED_3_Ex2_Message, '$N');

 ProtChMessage := '';
 ProtChMessage := Concat('$NProt Ch Ex3','$NMonitoring Enabled: ');
 ProtChMessage := Concat(ProtChMessage,
BOOL_TO_STRING(VirtualTagList1.ProtectionChannelMonitoring_1_ENO.stVal));
 ProtChMessage := Concat(ProtChMessage,'$NAlert: ');
 ProtChMessage := Concat(ProtChMessage,
BOOL_TO_STRING(VirtualTagList1.ProtectionChannelMonitoring_1_Alert.stVal));
 ProtChMessage := Concat(ProtChMessage,'$NStatus: ');
 ProtChMessage := Concat(ProtChMessage,
fun_GetAlertString(VirtualTagList1.ProtectionChannelMonitoring_1_Status.stVal));
 ProtChMessage := Concat(ProtChMessage, '$N');

 SEL451_HALARM_Message := '';
 SEL451_HALARM_Message := Concat('$NSEL451 HALARM Ex4','$NMonitoring Enabled: ');
 SEL451_HALARM_Message := Concat(SEL451_HALARM_Message,
BOOL_TO_STRING(VirtualTagList1.SEL451_HardwareMonitor_ENO.stVal));
 SEL451_HALARM_Message := Concat(SEL451_HALARM_Message,'$NAlert: ');
 SEL451_HALARM_Message := Concat(SEL451_HALARM_Message,
BOOL_TO_STRING(VirtualTagList1.SEL451_HardwareMonitor_Alert.stVal));
 SEL451_HALARM_Message := Concat(SEL451_HALARM_Message,'$NStatus: ');

Date Code 20160111 SEL White Paper LWP0019-01

14

 SEL451_HALARM_Message := Concat(SEL451_HALARM_Message,
fun_GetAlertString(VirtualTagList1.SEL451_HardwareMonitor_Status.stVal));
 SEL451_HALARM_Message := Concat(SEL451_HALARM_Message, '$N');

 //Write the formatted reports
 MaintenanceReportManager.WriteLogEntryString(HighSideMessage);
 MaintenanceReportManager.WriteLogEntryString(LoadSideMessage);
 MaintenanceReportManager.WriteLogEntryString(IED_1_Ex2_Message);
 MaintenanceReportManager.WriteLogEntryString(IED_2_Ex2_Message);
 MaintenanceReportManager.WriteLogEntryString(IED_3_Ex2_Message);
 MaintenanceReportManager.WriteLogEntryString(ProtChMessage);
 MaintenanceReportManager.WriteLogEntryString(SEL451_HALARM_Message);

 //Update report time
 LastReportGenerated := SYS_TIME();

 //Reset the function blocks
 DailyReportGenerated := TRUE;
END_IF

//This has to be included every scan for the manager to process actions
MaintenanceReportManager.Run();

This example shows the creation of five daily reports (see Figure 13). Each daily report
demonstrates an alert condition in one or more of the function blocks. The maintenance report
includes the function block outputs from the previous examples and examples for monitoring the
following protection system component attributes:

• Relay configuration.

• IED, CT (PT), and associated circuitry.

• Protection communications.

• Relay hardware alarms.

SEL White Paper LWP0019-01 Date Code 20160111

15

Figure 13 Five Daily Reports Downloaded From the SEL RTAC Web Interface and Displayed

in Columnar Form

IDENTIFY AND LOG MAINTENANCE CONDITIONS
Tracking and archiving events is an important function provided by a data concentrator. In the
event that a potential maintenance condition is detected, it can be logged into the Sequence of
Events (SOE) record, which provides a nonvolatile storage location for maintenance alerts. The
SOE log in the SEL RTAC can store up to 30,000 log items. These logs are accessible through
the web interface or an ODBC connection and can be sent via Syslog protocol to a syslog server
for archiving. This provides a mechanism to store maintenance report results without the addition
of the FileIO library. For detailed information on how to log and collect SOE data into the SEL
RTAC, refer to [2] and/or [4]. Both resources provide detailed instructions on logging SOE
records and methods to retrieve that information.

CONCLUSION
Generator and transmission protection relays can be described as silent sentinels that only
demonstrate their designed function when a protection event occurs. Typically, an event may not
happen for an extended period of time. This can increase the possibility of a false operation or a
failure to operate on a protection event due to an undetected critical protection system component
failure, noncommissioned setting, or other potential issues. The RTAC helps mitigate these
possibilities by continuously monitoring many critical protection system components, recording

Date Code 20160111 SEL White Paper LWP0019-01

16

their statuses through daily reports, and increasing protection system engineering awareness
through data aggregation and logging tools.

REFERENCES
[1] D. Stewart, R. Jenkins, and D. Dolezilek, “Case Study in Improving Protection System

Reliability With Automatic NERC PRC-005 Inspection, Testing, Reporting, and Auditing,”
proceedings of the 66th Annual Conference for Protective Relay Engineers, College Station,
TX, April 2013. Available: http://dx.doi.org//10.1109/CPRE.2013.6822050.

[2] ACSELERATOR RTAC SEL-5033 Software Instruction Manual. Available:
https://www.selinc.com.

[3] Schweitzer Engineering Laboratories, Inc., “SEL Video,” January 2016. Available:
https://video.selinc.com.

[4] D. Kite, “Leveraging Security – Using the SEL-RTAC’s Built-In Security Features,”
January 2016. Available: https://www.selinc.com.

BIOGRAPHY
Darrin Kite received his Bachelor of Science in Renewable Energy Engineering from the
Oregon Institute of Technology in 2012. Before joining Schweitzer Engineering Laboratories,
Inc. (SEL) in 2012, he worked as an engineering intern at Bonneville Power Administration. He
is presently working as an automation engineer in SEL research and development.

© 2016 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

All brand or product names appearing in this document are the
trademark or registered trademark of their respective holders. No
SEL trademarks may be used without written permission.

SEL products appearing in this document may be covered by
U.S. and Foreign patents.

LWP0019-01

 SEL White Paper LWP0019-01 Date Code 20160111

